稀土荧光粉
2017-06-06 17:50:13
稀土荧光粉中的稀土元素,是指稀土
金属
(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。稀土
金属
是60年代,稀土用作石油裂化催化剂和制取荧光粉。稀土荧光粉是由这些稀土元素所生产的荧光粉。稀土荧光粉(俗称稀土夜光粉),通常分为光致储能夜光粉和带有放射性的夜光粉两类。光致储能夜光粉是荧光粉在受到自然光、日光灯光、紫外光等照射后,把光能储存起来,在停止光照射后,在缓慢地以荧光的方式释放出来,所以在夜间或者黑暗处,仍能看到发光,持续时间长达几小时至十几小时。带有放射性的夜光粉,是在荧光粉中掺入放射性物质,利用放射性物质不断发出的射线激发荧光粉发光,这类夜光粉发光时间很长,但因为有毒有害和环境污染等,所以应用范围小。荧光粉的历史:20世纪初,人们在研究放电发光现象的过程中开发了荧光灯和荧光粉。当时的荧光灯使用硅酸锌铍荧光粉,发光效率低,并有毒性。1942年,A.H.麦基格发明卤磷酸钙荧光粉并用在荧光灯内,在照明领域引起了一次革命。这种粉发光效率高、无毒、
价格
便宜,一直使用到现在。70年代初,荷兰科学家从理论上计算出荧光粉的发射光谱,发现荧光粉如由450nm、550nm和610nm三条窄峰组成(三基色),则显色指数和发光效率能同时提高。1974年,荷兰的范尔斯泰亨等人先后合成了发射峰值分别在上述范围内的三种稀土荧光粉,使灯的发光效率达到85lm/W,显色指数为85,使荧光灯有了新的突破。稀土荧光粉的特点是发光谱带狭窄,发光能量更为集中,且在短波紫外线激发下稳定性高,高温特性好,更适用于高负载细管荧光灯和各种单端紧凑型荧光灯。稀土荧光粉的基质和激活物质有所不同,但其中的发光关键均在于稀土激活物质(铕、铈、铽等),利用稀土
金属
外层离子(D→F)的跃迁而发光。采用稀土荧光粉的三基色荧光灯本身具有许多突出的优点,然而,稀土原料
价格
昂贵,造成三基色灯成本较高,限制了三基色灯的发展。缩小管径或采用新的涂覆技术降低三基色粉用量,用廉价的其他彩色粉来部分取代一种或两种稀土三基色粉,同样可制得高光效、高显色的荧光灯,但光衰可能要大一点。所以,荧光粉在各个领域内都具有广泛的应用。
稀土荧光粉
2017-06-06 17:50:13
不改变自身,而能把外来能量转换成光能的细小颗粒,称为荧光粉。含有稀土元素(元素周期表中第57到71号的镧系元素)的荧光粉,称为稀土荧光粉。荧光粉有许多种类,稀土荧光粉是其中较大的一个种类,包含Led粉、彩电粉、灯用三基色粉。各荧光粉制造过程差异不小,难以一一说清,说一些质量要求吧。一、常规:含水率、表面色。灯用三基色粉要求表面色‘白’。二、色度:光谱坐标、效率、这两者的稳定性。三、粒度:大小及分布、比表面积。四、应用性能:影响粉使用的诸参数。对灯用三基色粉,是影响灯管涂层‘均匀性’、‘致密性’的参数,有分散性、PH值、在浆液中的ζ电位。稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。中国是世界上稀土资源最丰富的国家,素有"稀土王国"之称,总保有储量TR2O3约9000万吨。全国探明储量的矿区有60多处,分布于16个省(区),以赣州为最,稀土储量
产量
均占全国的50%以上,湖北、贵州、江西、广东等省次之。我国稀土矿产不仅储量大,而且品种多、质量好,矿床类型独特,如内蒙古白云鄂博沉积变质-热液交代型铌-稀土矿床和南岭地区的风化壳型矿床,在世界上均居独特地位。我国稀土矿产多与其他矿产共生,南以重稀土为主,北以轻稀土为主。想要了解更多关于稀土荧光粉的信息,请继续浏览上海
有色
网。
LED荧光粉知识
2019-01-03 09:36:49
LED用LED芯片上涂敷荧光粉而实现白光发射。LED采用荧光粉实现白光主要有三种方法,但它们并没有完全成熟,由此严重地影响白光LED在照明领域的应用。
第一种方法是在蓝色LED芯片上涂敷能被蓝光激发的黄色荧光粉,芯片发出的蓝光与荧光粉发出的黄光互补形成白光。该技术被日本Nichia公司垄断,而且这种方案的一个原理性的缺点就是该荧光体中Ce3+离子的发射光谱不具连续光谱特性,显色性较差,难以满足低色温照明的要求,同时发光效率还不够高,需要通过开发新型的高效荧光粉来改 善。
第二种实现方法是蓝色LED芯片上涂覆绿色和红色荧光粉,通过芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光,显色性较好。但是,这种方法所用荧光粉有效转换效率较低,尤其是红色荧光粉的效率需要较大幅度的提高。
第三种实现方法是在紫光或紫外光LED芯片上涂敷三基色或多种颜色的荧光粉,利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm-410nm)来激发荧光粉而实现白光发射,该方法显色性更好,但同样存在和第二种方法相似的问题,且目前转换效率较高的红色和绿色荧光粉多为硫化物体系,这类荧光粉发光稳定性差、光衰较大,因此开发高效的、低光衰的白光LED用荧光粉已成为一项迫在眉睫的工作。
我们是国内率先进行LED用高效低光衰荧光粉研究的研究机构。最近,通过与我国台湾合作伙伴的联合攻关,多种采用荧光粉的彩色LED被开发出来了。
采用荧光粉来制作彩色LED有以下优点:
首先,虽然不使用荧光粉,就能制备出红、黄、绿、蓝、紫等不同颜色的彩色LED,但由于这些不同颜色LED的发光效率相差很大,采用荧光粉以后,可以利用某些波段LED发光效率高的优点来制备其他波段的LED,以提高该波段的发光效率。例如有些绿色波段的LED效率较低,台湾厂商利用我们提供的荧光粉制备出一种效率较高,被其称为"苹果绿"的LED用于手机背光源,取得了较好的经济效益。
其次,LED的发光波长现在还很难精确控制,因而会造成有些波长的LED得不到应用而出现浪费,例如需要制备470nm的LED时,可能制备出来的是从455nm到480nm范围很宽的LED,发光波长在两端的LED只能以较低廉的价格处理掉或者废弃,而采用荧光粉可以将这些所谓的"废品"转化成我们所需要的颜色而得到利用。
第三,采用荧光粉以后,有些LED的光色会变得更加柔和或鲜艳,以适应不同的应用需要。当然,荧光粉在LED上最广泛的应用还是在白光领域,但由于其特殊的优点,在彩色LED中也能得到一定的应用,但荧光粉在彩色LED上的应用还刚刚起步,需要进一步进行深入的研究和开发。
钙钛矿(Perovskite)
2019-01-21 10:39:10
CaTiO3
许多超导体及铁电体等往往具有钙钛矿型结构或其衍生结构,而超导体、铁电体在工业上特别是信息功能材料领域内有广泛的应用,因此,此处简单介绍钙钛矿的特征。
【化学组成】可有Na、K、Ce、Fe、Nb、Ta、Nd、La元素作为类质同像混入物。
【晶体结构】900°C以上为等轴晶系;a0=0.385 nm;Z=1。在600°C以下转变为斜方晶系;a0=0.537 nm,b0=0.764 nm,c0=0.544 nm;Z=4。在高温变体结构中,Ca2+位于立方晶胞的中心,为12个O2-包围成配位立方体八面体,配位数为12;Ti4位于立方晶胞的角顶,为6个O2-包围成配位八面体,配位数为6。[TiO6]八面体以共角顶的方式相联。整个结构也可以视为O2-和Ca2+共同组成六方最紧密堆积,Ti4+则充填于其八面体空隙中(图Y-9)。
图Y-9钙钛矿的晶体结构
(引自潘兆橹等,1993)
【形态】呈立方体晶形。在立方体晶面上常具平行晶棱的条纹,系高温变体转变为低温变体时产生聚片双晶的结果。
【物理性质】褐至灰黑色;条痕白至灰黄色;金刚光泽。解理不完全;参差状断口。硬度5.5~6。相对密度3.97~4.04(含Ce和Nb者较大)。
【成因及产状】常成副矿物见于碱性岩中,有时在蚀变的辉石岩中可以富集,主要与钛磁铁矿共生。
【鉴定特征】立方晶形及其晶面上的聚片双晶纹。
【主要用途】富集时可作为提炼钛、稀土和铌的矿物原料。
我国荧光粉行业摆脱困局的四大要点
2019-01-03 10:44:25
低价竞争、扩产并购、巨头跨界,LED行业已经进入微利时代,但荧光粉材料的利润空间,相比LED产业链其他领域来说还算较宽,目前国内荧光粉行业存在的最大问题是专利壁垒问题,其次国内外荧光粉产品的品质差别在缩小,在光效、转换效率等单项指标或性能方面,技术水平已相差无几,但在产品的稳定性及一致性上仍存在差距。近两年,人们对于照明的要求不仅仅是满足照明这一基本需求,更加关注光的品质,是否有利健康等。其中处于上游材料的荧光粉对于白光LED的显指、色彩还原起到至关重要作用。显然这一发展趋势也已经引起国家层面的重视,今年将“高品质全光谱白光LED”列为国家“十三五”重点专项的首批科技计划,也是第一批唯一一项通用照明项目。作为LED荧光粉行业的专家,中国照明电器协会副理事长、南京工业大学电光源材料研究所王海波所长亦参与了这一课题研究。为此,小编与王海波所长共同探讨荧光粉行业的现状及发展前景。低价竞争、扩产并购、巨头跨界,LED行业已经进入微利时代,但在王海波所长看来,荧光粉材料的利润空间,相比LED产业链其他领域来说还算较宽,“业内所谓的不好是因为下降较快,它曾经利润很高,但自从国产化后价格迅速下降。尽管利润下滑,但荧光粉产品的平均利润空间并不是整个产业链中最低的。目前荧光粉行业最大的问题是回款率,现时交易难以做到现金支付,拖欠货款问题严重。如果碰到跑路的用户,那就更惨了!”在荧光粉行业,按照目前白光LED的技术路线来看,蓝色芯片加荧光粉是其中性价比最好、产业化成熟度最高的技术路线。随着LED产业的发展,对上游材料荧光粉也提出更高的要求。目前国内荧光粉行业主要存在以下问题。首先,专利壁垒是最大的问题。专利问题一直制约着国内产品的出口,尤其是核心产品,仍需由国际大厂授权专利。虽然目前也申请了一些国际专利,但主要产品还是受到制约。国内外荧光粉产品的品质差别在缩小,在光效、转换效率等单项指标或性能方面,技术水平已相差无几,但在产品的稳定性及一致性上仍存在差距。具体体现在三个方面:一是批次与批次之间的一致性,每次供货能否保持高稳定性;二是产品的稳定性,在使用过程中各项指标是否维持在同一水平上,或波动极小;三是同一批次产品的一致性,使用同样工艺封装出来的光源是否存在色差及性能差异。
国内荧光粉企业如何突破这些局限性,追上甚至超越国际领先水平?王海波所长指出我国荧光粉企业需从四个方面同时着手:1、专利:目前国内还是跟随专利,并未做到原创性专利。这看似是专利问题,实际是创新能力的问题。要想从根本上突破专利壁垒,创新是关键,同时这也需要长期的积累和机遇。2、原料:国内原材料的精细程度不及国外,因此原材料稳定性较差,导致荧光粉出现问题。过去我们只是控制生产工艺,但高度精细化需要延伸到原材料的控制,摒弃拿来主义,对成分、杂质、颗粒、粒径、形貌等作深入研究,以提供稳定的原材料。3、设备:国内多数窑炉的温度控制精度以及温度的波动性和均匀性,都会受到环境温度影响,而国外窑炉温度稳定性高、精度高,但价格是国内的三倍,显然,提高设备水平与资金息息相关。国内需意识到设备的重要性才会着实在这一方面投入资金。4、工艺:当工艺摸索到一定程度,即可固化。“创新也是荧光粉行业的永恒话题,不是为赶时髦,而是中国企业真实的出路所在。”王海波所长再次强调,一方面国内荧光粉的水平与国际领先企业存在一定差距;另一方面荧光粉的技术含量在整个LED产业链中处于较高水平,相对于封装及应用端的难度高、复杂程度大,所以它更需要不断提高技术水平,增加原创性的开发,解决专利壁垒。在市场方面,荧光粉需逐步走向多元化。现阶段下游应用端为避开红海竞争,向各个细分市场渗透,光源对荧光粉提出了更多要求,为与之配合,荧光粉需要密切关注市场变化,跟踪及服务于市场。“LED照明的本质是为人类提供人造光。”随着LED照明的发展,人们对它的质量、品质、服务等照明总体性能的要求全面提升。高要求体现在光谱上,不在是简单的白光,而是具有各种光谱的更接近于太阳光的光源,在一些特别的照明领域,如医学、阅读、室内照明等,对人造光提出了更高的要求。显而易见,现在市场上需要的荧光粉,不会再是单纯的黄粉、黄粉或红粉加绿粉,还可加上青粉、远红等接近于红外的光粉,使人造光源更接近太阳光、更舒适、品质更高。王海波所长认为,“未来具高显色的全光谱LED荧光粉一定会有美好的前景。”
铈铌钙钛矿(前苏联)
2019-01-30 10:26:21
一、矿石性质
前苏联科拉半岛的铈铌钙钛矿产于碱性霓霞正长岩和异性霞石正长岩中,是一种含稀土、铌、钛的复合物。这种矿物的主要化学成分:含REO28.71%、ThO2 0.52%、Nb2O5 9.4%、Ta2O5 0.38%、TiO2 36.83%;矿物的密度为4.64~4.89克/厘米3;铈铌钙钛矿具有弱磁性。原矿含铈铌钙钛矿3.53%~3.70%,伴生的脉石有霞石、霓石等。矿石中有用矿物嵌布粒度较粗,一般可采用重选、磁选方法回收。
二、重选-磁选流程及选别指标
从矿山运来的矿石,采用两段破碎流程破碎至-20毫米,经一段磨矿磨至-1毫米送水力分级,粗粒级送跳汰,跳汰尾矿返回再磨。细粒级用摇床选别。所得的霞石-铈铌钙钛矿混合精矿用磁选除去霞石,获得含89%~91%铈铌钙钛矿的精矿,回收率为70%~75%。流程示于图1。
图1 回收铈铌钙钛矿的重-磁选流程
三、用浮选法从重选矿泥中进一步回收铈铌钙钛矿
用浮选法处理重选矿泥的流程(图2):首先将矿泥中易浮的磷灰石浮出,经四次精选获得含P2O5 36%~38%、回收率83%~85%的磷灰石精矿。磷灰石浮选尾矿进一步脱泥,并添加水玻璃和捕收剂ИM-50,采用H2SO4使矿浆pH调整至5.4~4.8,进行铈铌钙钛矿和霞石浮选;上述两种矿物的浮选泡沫经酸处理后,采用草酸、六偏磷酸钠、ИM-50,在pH6.2~6.4的条件下浮选铈铌钙钛矿,经精选获得含铈铌钙钛矿95%的最终精矿,对重选矿泥的作业回收率为82%(对原矿而言大约增加8%~10%的回收率)。
图2 从重选矿泥中用浮选回收铈铌钙钛矿流程
钙粉这么多,怎么选择好的碳酸钙??
2019-03-06 10:10:51
碳酸钙被广泛填充在聚氯乙烯(PVC)、聚乙烯(PE)、聚(PP)、晴一丁二烯一乙烯共聚物(ABS)等树脂之中,碳酸钙的添加对进步改善塑料制品某些功能以扩展其运用规模有必定效果,在塑料的加工中碳酸钙能够削减树脂缩短,改善流反常,操控粘度等用处。
一、碳酸钙在塑猜中的运用碳酸钙被广泛填充在聚氯乙烯(PVC)、聚乙烯(PE)、聚(PP)、晴一丁二烯一乙烯共聚物(ABS)等树脂之中,碳酸钙的添加对进步改善塑料制品某些功能以扩展其运用规模有必定效果,在塑料的加工中碳酸钙能够削减树脂缩短,改善流反常,操控粘度等用处。
碳酸钙的添加在塑料制品中起到一种骨架效果,对塑料制品尺度的安稳有很大效果。它能够添加塑料体积、下降产品成本,进步塑料的尺度安稳性,进步塑料的硬度和刚性,改善塑料的加工功能,进步塑料的耐热性,改善塑料的散光性等效果。其生产出的工程塑料在某些方面的强度超越钢材,硬度挨近玉石,具有耐磨、耐高温、耐老化的特性,可广泛用于电子、航天、精密机械、仪器、汽车职业等范畴。
塑料工业是碳酸钙的重要运用范畴,不管是从国际仍是国内状况来看,塑料工业所用填料运用最广的就是碳酸钙,21世纪以来,国际塑料产品耗用的无机非金属填料大约为1500万吨,而碳酸钙因为具有其他填料无与伦比的优势,在所耗用的各种非金属填猜中约占70%左右,即到达1000万多吨左右。
二、碳酸钙的特性 碳酸钙在塑猜中很多运用,得到塑料职业高度重视不是偶尔的,相比起其它非金属矿藏粉体材料,碳酸钙具有显着的优势:
1)报价便宜
不管是重钙仍是轻钙在各种非矿粉体材料是报价最低的,也就是说任何一种非矿粉体材料只是企图代替碳酸钙作为塑料填充料运用,而不是突显这种粉体材料自身的特色,那是没有意义的。
2)色泽好,易上色
且能够做淡色塑料制品。不足之处是上色的塑料制品色泽不行艳丽,在大都状况下仍是能够承受的。
3)硬度低
其莫氏硬度为3,远远低于制作加工机械设备与模具所用钢材(如氮化钢、高速钢)的硬度,因而填充塑料对所触摸的设备部件(螺杆、螺筒等)和模具的磨损较轻。
4)热安稳性及化学安稳性杰出
在碳酸钙的热分化温度在800℃以上,在所有的塑料加工温度下(300℃以下)都不会发生热分化。碳酸钙是强碱弱酸盐,除遇酸性介质外,其化学安稳性杰出。
5)易枯燥,无结晶水,吸附的水分经过加热简单除掉。
6)无毒、无刺激性、无味
特别是我国的方解石、大理石、石灰石资源丰富,可挑选余地大,绝大大都资源质量优秀,特别是重金属含量极低,到达国家卫生级要求。
三、怎样挑选好的碳酸钙?
了解了碳酸钙自身的特性以及碳酸钙对填充塑料功能的影响之后,提出对塑料用碳酸钙的基本要求就比较简单了。
1、碳酸钙含量要高,硅、铁等元素的化合物要尽量低,
2、有害重金属元素含量更要严格要求。
3、白度要尽或许高
不管重钙仍是轻钙,其白度首要取决于资源。关于塑料材料来说,白度凹凸并不影响材料的力学功能和加工功能,但白度高给人的感觉好,相同的功能白度高的更具竞赛优势。
4、吸油值越低越好
100g粉体材料所能吸收的邻二丁二醇酯(DBP)的最很多称之为该材料的吸油值。
关于某些塑料制品,如软质聚氯乙烯、人造革、电缆料等,需运用增塑剂,碳酸钙吸油值越高,越易将增塑剂吸附到填猜中,使其失掉增塑树脂的效果,从而为到达必定的柔软度需加大增塑剂用量,形成成本上升。经过对碳酸钙表面处理,将碳酸钙颗粒表面包覆,能够下降其吸油值。例如,经偶联剂处理的轻质碳酸钙其吸油值可从92.91g/100g降至49.33g/100g。
5、细度要恰当,并非越细越好,粒径散布也要因需而定
7、活化不活化要应依下流用户需求而定。
钛矿浮选了解
2019-02-22 16:55:15
常见的含钛矿藏有钛铁矿、金红石、钙钛矿和榍石。它们的可浮性如下。
钛铁矿(FeTiO3)和金红石(TiO2)用羧酸及胺类捕收剂都能浮游。但用羧酸类捕收时,脉石矿藏不易浮游,故羧酸类用得较多。工业上常用的详细药剂有油酸、塔尔油和环烷酸及其皂。并且常用火油为辅佐捕收剂。钛铁矿和金红石浮选之前,先用硫酸洗刷矿藏表面,能够进步它们的可浮性,下降捕收剂的用量。
用羧酸捕收钛铁矿和金红石时,pH=6~8,两种矿藏都浮游得比较好。在pH
钠和能够阻止十三酸和油酸钠在钛铁矿的表面固着,下降它们在钛铁矿表面的固着量,因而能按捺钛铁矿,硅酸钠关于钛铁矿也有必定的按捺作用。
钛铁矿浮选的回收率与调整时矿粒的絮凝和涣散状况有关。假如作调整槽传动轴的净功耗与调整时刻的联系曲线,可按其功耗的大小将调整时刻分红五个阶段,即感应阶段、絮凝阶段、絮凝高峰阶段、絮凝损坏阶段和涣散阶段。
矿浆开端絮凝时(絮凝阶段),净功耗、钛铁矿回收率和脉石回收率都上升;抵达絮凝高峰阶段,矿浆充沛絮凝,净功耗、钛铁矿回收率和脉石回收率都达到了极点;抵达絮凝损坏阶段,钛铁矿的回收率不变,精矿档次添加,净功耗和絮凝程度下降;抵达涣散阶段,精矿档次下降,回收率最小。
升高矿浆温度,捕收剂膜的疏水性增大,钛铁矿的回收率添加而精矿档次下降。充气对钛、锆矿藏有显着的影响。充空气60~120S,金红石和钛铁矿的回收率都上升而锆英石的回收率下降。若只充入氮气,则两种钛矿藏遭到按捺而锆英石能照旧浮游。
钙钛矿(CaTiO3)能够先用硫酸处理,经冲刷后用油酸或其他脂肪酸浮游。苏打和水玻璃能够按捺它,而铬酸盐和重铬酸盐能够活化它。当矿石中方解石多时,会使酸洗的耗酸量增大。为了削减酸的用量,在浮钙钛矿之前能够先浮方解石。
榍石CaTiSiO5能够用火油乳化的油酸捕收,能够被水玻璃按捺。其可浮性较其他含钛矿藏差,更比磷灰石等碱土金属盐类矿藏差,假如伴生的磷灰石多能够先浮磷灰石。
A钛锆矿的选别办法及实例
钛铅矿的选别办法钛铁矿、金红石和锆英石常常伴生,密度都在4.0~4.7g/cm3之间,用重选法选别时,它们一起进入重砂中。它们的可浮性也很挨近,用乳化油酸浮选时,它们一起进入混合精矿中。它们的混合精矿准则上有两种别离办法:
(1)先用磁选法分出钛铁矿(磁选也能够放在浮选之后),其非磁性部分用钠按捺锆英石,用乳化油酸在pH=3.8~4.6的介质中浮选金红石。
(2)用硫酸按捺金红石,用乳化油酸或阳离子捕收剂浮选锆英石。
B某钛锆矿浮选实例
该矿矿石为石英砂矿床,80%~95%的钛铁矿及金红石小于0.15mm,100%的铅英石小于0.15mm。先用摇床选别得到它们的混合精矿。
乌场钛矿
2019-02-19 09:09:04
一、概略
乌场钛矿坐落我国海南岛境内,是我国海边砂矿首要的出产厂矿之一。该矿所挖掘的矿区,储量大,挖掘条件较好。采选厂工艺技能水平及配备在我国海边砂矿出产厂矿中居领先地位;精选厂工艺流程和设备也比较完善,归纳收回作用较好。
该矿于1958年开端地质普查作业,1959年完结地质勘探,一起开端了土法挖掘。从1965年开端筹建公营矿山,至l950年末建成了精选厂;1971年精选厂扩建;1967平建成了水采一跳汰工艺的采选厂,未能正式投产使用;且78年开端选用推上机合作水挖掘,10.10厘米(4英寸)砂泵运送,摇床选别出产。1982年正式开端选用干采,干运及以圆锥选矿机为主体选别设备的移动式采选联合设备进行出产至今。
二、地质概略及矿石性质
乌场钛矿现在挖掘矿区属保定矿区,矿床坐落大塘岭至牛庙岭之间,是一个滨海岸线散布的含钛铁矿及锆英石为主并伴生有多种有价矿藏的归纳性海边砂矿矿床。矿区火成岩出露较少,属海边地貌,笫四纪地质以海相沉积为主。矿体全长18公里,均匀宽度230米,海平面以上矿体均匀厚度9.5米。矿体出露地表,呈砂堤状,无覆盖层。矿石粒度均匀松懈,含泥量少,挖掘条件较好。
矿石中有用矿藏以钛铁矿及锆英石为主,两者赋存量份额为钛铁矿∶锆英石10~19∶1。除首要有用矿藏外,还伴生有独居石、金红石、锡石、磁铁矿及微量黄金等多种有价矿藏可归纳收回。脉石矿藏以石英为主,其他为少数长石、云母,其总量占原矿总矿藏量的97%左右。因为矿石粒度均匀,无卵石,粗粒及细泥含量均较少,有用矿藏绝大部分呈单体存在,并且有用矿藏与脉石矿藏间有显着的密度差,故可选性较好。该矿区的原矿多项分析、筛分分析及矿藏量分析别离见表1、表2、表3。表1 原矿多项分析成果表项目称号SiO2Fe2O3Al2O3CaOMgOVP2O5MnTR2O3TiO2ZrO2Ta2O5Nb2O3含量,%81.061.142.201.131.070.00320.1990.0390.0361.010.0880.00160.0033
表2 原矿筛分分析表粒度mm分量,%档次,%占有率,%单个累积TiO2ZrO2TiO2ZrO2单个累积单个累积1.002.650.0730.00650.130.160.87.269.910.0720.00590.490.670.390.550.6313.5523.460.0440.00630.561.230.771.320.511.5435.000.0580.00630.631.860.661.980.416.1351.130.0840.00611.283.140.892.870.320.7471.870.120.00762.345.481.424.290.217.6289.490.440.0117.3012.781.756.040.167.1696.654.400.1429.6742.459.0515.090.102.6999.3419.902.0650.4292.8750.0465.130.080.3899.7217.839.346.3899.2532.0097.19-0.080.281002.831.110.751002.81100算计1001.0620.11100表3 原矿矿藏量分析表矿藏称号含量,%矿藏称号含量,%钛铁矿1.5028磁铁矿0.0338锐钛矿金红石0.0231褐铁矿0.0189白钛矿0.0514铁铝榴石0.0290榍石0.0318钙铝榴石0.0086锆英石0.1253尖晶石0.0118独居石0.0314绿帘石 十字石0.0360钍石0.003黄玉 蓝晶石0.0063磷钇矿0.008角闪石、电气石0.7739锡石0.0004石英、长石、方解石97.1200赤铁矿0.1946算计100.00
三、采选工艺流程及技能经济目标
(一)采选厂
乌场钛矿采选厂是选用一整套移动式采选联合设备进行出产的。全套设备于1981年建成,1982年投产。整套设备由采运体系、储矿给矿缓冲体系及移动选厂三个部份组成。
采矿选用69-4型斗轮式挖掘机进行干采,采矿工艺简略,作业接连,回采率高,操控便利,出产成本低。采矿方法选用前端式作业面法,采掘面宽度为15米,出产才能100吨/时,斗轮直径1.6米,9个挖斗,每个斗容积为11升,斗轮挖掘机总装机功率为33千瓦,总重13吨。采矿单位电耗为0.25千瓦·时∕吨·原矿,约为水采的 。
采出矿经斗轮挖掘机排料皮带运送机给到两台长45米的移动式皮带运送机进行接连运送。斗轮机与两台45米皮带运送机合作,每个采矿周期采幅可选宽15米,长200米。在此周期内,矿仓及选厂无需移动。依挖掘厚度而异,每周期可采矿景约2850米。
移动式矿仓由进料皮带运送机、矿仓、圆盘给矿机及履带式移动设备等组成。45米皮带运送机米矿,经矿仓入料皮带运送机给入容积为55米3矿仓,其缓冲才能为55分钟。在矿仓底部装有φ2米圆盘给矿机一台,用于操控给矿量。矿仓至移动选厂的排矿皮带运送机上装有DZB-2A型电子皮带秤进行矿量的检测及记载。
矿仓排矿送到移动选厂进跋涉别。移动选厂为电机驱动履带式自行移动。选厂底盘面积为宽5米,长8米。总高度11米,总分量约26吨,行走速度0.9公里/时。定位作业时,有四个辅佐支撑脚固定。移动选厂分上,下两层,基层为一高两米的作业间,内装驾驶台,砂泵、电器操控等设备;上层为一露天渠道,装有斜面冲击筛、圆锥选矿机、螺旋溜槽及矿浆浓度测定仪等设备。圆锥选矿机本机附有四层操作渠道,螺旋溜槽设有两层作业渠道。
干矿当选厂,首要加水构成高浓度矿浆,矿浆浓度为70%~72%。矿浆自流到一台五联500×1000毫米的斜面冲击筛进行筛分,+1.2毫米筛上产品包含粗砂、贝壳及杂草等异物作尾矿丢掉,-1.2毫米筛下产品由一台6.35厘米(2英寸)PS砂泵扬送至圆锥选矿机进行粗选。在圆锥选矿机给矿管上装有QN-I型浓度计,进行浓度检测及记载。原矿经圆锥选矿机粗选丢掉尾矿,选用砂泵扬送到采空区复砂堤;中矿回来至本机二段选别再选;精矿送至螺旋溜槽进行精选。螺旋溜槽精选分两段进行。一段精选螺旋溜槽精矿给二段螺旋溜槽精选;中矿回来至圆锥选矿机再选,尾矿抛弃。二段精选螺旋溜槽精矿为采选厂终究精矿;中矿回来至本段螺旋溜槽给矿再选;尾矿返至一段精选螺旋溜槽再选。采选厂全景、移动选厂表面、设备联络图及圆锥选矿机内部流程图别离见图1、图2、图3,图4,所用设备见表4。图1 采选厂全景图图2 移动选厂外观图图4 圆锥选矿机内部流程图
表4 采选新工艺设备表序号设备称号规格型号单位数量功率kW1斗轮挖掘机69 4台1252移动式皮带运送机L45m,B0.5m台27.53皮带运送机L20m,B0.5m台17.04移动矿仓55m台15圆盘给矿机φ2m台1136皮带运送机L15m,B0.5m台14.57电子皮带秤DZCB-2A台18造浆斗台19斜面冲击筛560×1000mm个12.910原矿砂泵-PS台122.911浓度计QN-1台112圆锥选矿机2米7层台113扇形溜槽940×290mm台1214圆锥精矿泵-PS台113.015圆锥中矿泵-PS台122.016圆锥尾矿泵-PS台122.017螺旋溜槽分浆斗个118一次精选螺旋溜槽φ900 4节4头台319砂泵1PN台13.020二次精选螺旋溜槽φ900 4头4节台1 移动选矿厂工业实验、试出产及1982~1986年出产技能目标见表5。采选厂电耗:1.79~3.52千瓦·时/吨·原矿;水耗:1.5~2.0吨∕吨·原矿。
表5 移动选矿厂出产技能目标表时期精矿
产率,%档次,%收回率,%原矿精矿尾矿精矿尾矿TiO2ZrO2TiO2ZrO2TiO2ZrO2TiO2ZrO2TiO2ZrO2工业
实验1.6500.730.07837.204.170.0120.009584.2088.2615.8011.74试出产1.3191.010.12333.603.850.1840.013382.2177.2817.7922.721982年1.03--33.25---71.79---1983年1.11--34.72---68.17---1984年1.24--36.11---73.15---1985年1.47--37.55---78.13-―-1986年1.46--37.18---76.00---
(二)精选厂
乌场钛矿精选厂是我国规划较大,工艺流程比较完善的海边砂矿精选厂之一。该厂除出产钛精矿外还归纳收回锆英石、独居石、金红石,锡石等多种副产品。该厂因为粗精矿自给率比较高,故经济效益较好;对缺乏部分粗精矿靠收买土法出产产品弥补。
该厂精选工艺流程,选用预先摇床重选丢尾,磁选收回钛铁矿,然后电选分组,再用强磁选、电选,浮选及重选等联合工艺进行别离及提纯,归纳收回锆英石、独居石、金红石、锡石及残存的钛铁矿。该厂精选流程见图5。精选厂技能目标见表6。图5 乌场钛矿精矿厂工艺流程
表6 乌场钛矿精选厂技能目标产品钛铁矿,%锆英石,%金红石,%生居石,%项目档次TiO2收回率档次(ZrHf)O2收回率档次TiO2收回率档次TR2O3+TRO2收回率1982年50.2588.6565.3146.087.95-61.92-1983年50.3181.1965.2147.089.65-61.77-1984年50.2681.9865.1047.590.14-61.10-1985年50.4681.9265.0449.590.21-61.10-1986年50.4081.7065.1551.090.05-60.90-
钛锆矿选矿
2019-02-13 10:12:33
一、钛锆资源和产值
1.钛资源及产值
全世界已探明钛资源储量为7.1亿吨(按钛计、下同),其间钛铁矿储量为5.6亿吨,金红石储量为1.7亿吨,钛工业储量为2.7亿吨。世界钛资源按矿床类型及矿藏品种的赋存情况见表1,国外钛资源储量见表2,产值见表3。
表1 钛资源赋存情况表
矿藏别储量,%砂矿床,%脉矿床,%钛铁矿
金红石
算计92.8
7.2
100.041.4
100
45.658.6
—
54.4
表2 1980年国外钛矿储量,万t钛(括号内为所占%)
洲别国别钛铁矿金红石储量资源算计储量资源算计北美加拿大
哥斯达黎加
美国
墨西哥
算计4459(22%)
—
1547(7.7%)
—
60063367
91
7189
—
106477826(14%)
91
7189
—
16653—
—
91
—
9118.2
—
692
264
97418.2
—
783(5%)
264
1065南美阿根廷
巴西
乌拉圭
算计—
91
—
9191
182
182
45591
273
182
546—
5460(74%)
—
5460—
3640
﹤5
3640—
9100(59%)
﹤5
9100欧洲芬兰
挪威
苏联
意大利
算计273
3640(18%)
364(1.8%)
—
427791
455
1456
—
2002364
4095(7.5%)
1820
—
6279—
—
146
246(3.3%)
392—
—
136.0
409.5
546—
—
282
655
938非洲莫桑比克
塞内加尔
南非
坦桑尼亚
埃及
上沃尔特
塞拉利昂算计①—
—
3003(15%)
—
91
—
—
—
30941183
182
10647
364
819
364
—
—
136501183
182
13650(25%)
364
910
364
—
—
16744—
—
291
—
—
—
164
—
455109
9.1
27.3
—
—
—
1456
﹤5
1601109
9.1
318.3
—
—
—
1620(10.6%)
﹤5
2056亚洲印度
印度尼西亚
马来西亚
斯里兰卡
算计①4550(22.7%)
—
—
91
46417280
91
91
91
764411830(21.7%)
91
91
182
12285455(6.1%)
—
—
18
4731092
—
—
9.1
11011547(10%)
—
—
27.1
1574大洋洲澳大利亚
新西兰
算计1638(8.1%)
—
1638819
637
14562457(4.5%)
637
3094546(7.4%)
—
546145.6
—
145.6692(4.5%)
—
692世界算计1974735854556017417800815425钛矿和金红石总储量储量 27164 资源量 43862 资源总量 71026钍铁矿和金红石总储量(按TiO2计)储量 45364 资源量 73250 资源总量 118613
①算计中包含其他地区的91万t储量。[next]
表3 世界钛精矿产量表,万tTiO2计
国别金红石钛铁矿算计产值%产值%产值%加拿大
美国
巴西
南非
塞拉利昂
芬兰
挪威
印度
斯里兰卡
马来西亚
澳大利亚
其他
世界算计—
—
0.0125
3.8810
5.1840
—
—
0.8710
1.3300
—
26.7085
2.873
40.86—
—
0.03
9.50
12.69
—
—
2.13
3.26
—
65.36
7.03
100.0033.39
34.95
0.76
31.50
—
5.85
36.89
8.42
3.71
10.26
65.43
22.08
253.2413.39
13.80
0.30
12.44
—
2.31
14.57
3.32
1.46
4.05
25.84
8.72
100.0033.39
34.95
0.77
35.38
5.18
5.85
36.89
9.29
5.04
10.26
92.14
24.95
294.0911.35
11.89
0.26
12.03
1.76
1.99
12.54
3.16
1.71
3.49
31.33
8.49
100.00
2.锆资源及产值
世界锆储量首要赋存于海边砂矿矿床中,只要少部分赋存于残积砂矿和原生矿中,工业价值不大。锆资源中首要矿藏是锆英石及斜锆矿,它们多与钛铁矿、独居石、金红石、磷钇矿、锡石等矿藏共生,呈归纳性砂矿床产出。澳大利亚锆资源及产值均居首位,其次为美国、南非等国,国外锆资源见表4、产值见表5。
表4 世界各国锆英石资源即,kt锆
国名储量其他资源总计美国
加拿大
巴西
苏联
马尔加什
南非
塞拉利昂
印度
马来西亚和泰国
斯里兰卡
澳大利亚
总计3628
—
907
2721
91
5442
454
3628
91
907
7256
251252721
907
227
1814
91
2721
1361
1814
91
454
2721
149226349
907
1134
4535
182
8163
1815
5442
182
1361
9977
40047
表5 世界首要锆英石出产国产值表,t
国别1979198019811982澳大利亚
南非
美国
其他
算计447000
86000
80000
8000
621000459000
103000
80000
8000
650000420000
110000
90000
10000
630000420000
130000
90000
10000
650000
二、钛锆精矿质量标准[next]
钛铅精矿质量因资源而异,尚无世界通用标准,故各出产国所属公司或供应商均依据其资源特色及用户要求拟定各自标准。我国钛精矿国家标准见表6,锆精矿标准见表7。
表6 我国钛精矿国家标准
类别用处等级化学成份,%粒度
mmTiO2杂质含量PSCaO+MgOFe2O3砂矿钛铁矿
精矿人工金红石钛铁合金高钛渣一级品①一类
二类52
500.030
0.025—
—0.5
0.5—
— 二级品
三级品
四级品
五级品50
49
49
480.030
0.040
0.050
0.070—
—
—
—0.5
0.6
0.6
0.1—
—
—
——钛白等用一级品②一类
二类50
50-0.020
0.020—
——
—10
13 二级品一类
二类49
490.020
0.025—
——
—10
13 天然红精金石矿电焊条钛金属及化合物一级品
二级品
三级品
四级品93
90
87
850.020
0.030
0.040
0.0500.02
0.03
0.04
0.05—
—
—
0.5
0.8
1.0
1.2砂矿
-0.18 100%
脉矿
-0.25 100%
①TiO2﹥57%,CaO+MgO﹤0.6%,P﹤0.045%作为一级品;
②TiO2﹥52%,Fe2O3﹤10%,P﹤0.025%作为一级品
表7 我国锆英石精矿国家标准
等级化学成份,%粒度
mm(Zr,Hf)O2杂质含量TiO2P2O5Fe2O3Al2O3SiO2特级品
一级品
二级品
三级品
四级品
五级品65.50
65.00
65.00
63.00
60.00
55.000.3
0.5
1.0
2.5
3.5
8.00.20
0.25
0.35
0.50
0.80
1.500.10
0.25
0.30
0.50
0.80
1.500.8
0.8
0.8
1.0
1.2
1.534
34
34
33
32
31-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
三、钛锆矿的选矿办法
钛锆矿的选矿所选用的选矿办法及工艺流程取决于矿床类型、矿石性质及矿藏组成等要素。鉴于钛原生矿(脉矿)矿石性质比较附近,意图矿藏品种比较简略,所选用的选矿办法及工艺流程共性较强;而钛砂矿和锆砂矿矿床中的钛、锆矿藏多与独居石、磷钇矿、锡石及贵金属等共生,呈归纳性砂矿床产出,所以,钛、锆砂矿的选矿从粗选至精选多归入一起的选矿工艺流程中进行。基此在本节中对钛、锆矿的选矿分为钛原生矿(脉矿)选矿及钛、锆砂矿选矿两部分叙说。
1.钛原生矿(脉矿)的选矿
现在工业上运用的钛原生矿(脉矿)均系含钛的复合铁矿。为运用其间的钛资源,依矿石性质而异,整个选矿进程可分预选、选铁及选钛三个阶段。其间选钛部分又可分为粗选及精选两个阶段进行。[next]
(1)预选
有的钛脉矿矿石,在破碎到必定程度的粗粒状态下即有适当数量的脉石到达根本单体解离,这些粗粒单体脉石可选用预选作业将其丢掉,到达添加选厂处理才能及进步当选档次的意图。预选作业可依据矿石性质在磨矿作业前的粗、中、细碎作业的适合阶段进行。预选常用办法为磁选及重选两种。
(2)选铁
含钛复合铁矿,现在工业上运用的首要意图是取得供炼铁用的铁精矿;关于含钒高的矿石则是取得供炼铁及提钒的钒铁精矿。选铁选用简略有用的磁选法进行。当选矿石经破碎(或先经预选)及磨矿,使其到达可选的单体解离度后,选用鼓式、带式弱磁场湿式磁选机选出铁精矿或钒铁精矿,磁选尾矿即为归纳收回钛的质料。
有的矿石铁、钛矿藏嵌布细密,选用单一选矿办法难以取得独自的精矿,则只经重选丢掉尾矿,将所取得的铁、钛混合精矿,直接进行焙烧及熔炼,出产出高纯生铁及钛渣产品。
(3)选钛
钛脉矿中钛的收回是在选出铁精矿后的磁选尾矿中进行。选钛选用的办法有重选、磁选、电选及浮选法,依矿石性质而异,选用适合的选矿办法组成不同的工艺流程进行选别。现在工业上所选用的选矿工艺流程有以下几品种型:
重选—电选工艺流程
重选—电选工艺流程特色是选用重选法粗选,电选法精选。重选选用的设备首要是螺旋选矿机(包含螺旋溜),其次为摇床。选用圆锥选矿机重选,现在已进行到工业实验阶段,但至今没有正式用于出产。在重选粗选阶段意图是丢掉低密度脉石,取得供电选用的粗精矿。
电选选用的设备为辊式电选机,其意图是将重选粗精矿进一步富集,使产品到达终究精矿标准。关于含硫矿石,在粗、精选工艺之间一般选用浮选法作为脱除硫化矿的辅佐工艺。
重选—磁选—浮选工艺流程
重选—磁选—浮选工艺流程特色是对进入钛选其他原矿,首要分级,粗粒级选用重选粗选,磁选精选,细粒级选用浮选。重选选用摇床,磁选选用干式磁选机进行。浮选给矿粒度一般为-0.074毫米,所用浮选剂有硫酸、、油酸、柴油及等。
单—浮选工艺流程
单—浮选法是选别细粒嵌布钛脉矿比较有用的选矿办法。单一浮选工艺简略,操作办理便利,但由于药剂耗费会添加本钱,一起存在尾矿排放所带来的环境保护问题,所以现在工业运用尚不广泛。
钛浮选选用的浮选剂有硫酸、塔尔油、柴油及乳化剂Etoxolp-19等。为进步浮选作用,对当选矿与浮选剂在浮选前进行高浓度长期拌和具有必定作用。
2.钛锆砂矿的选矿
钛锆砂矿首要矿床类型为海边砂矿,其次为内陆砂矿。钛锆砂矿是原生矿在天然条件下经风化、破碎、富集生成。具有易采、易选、出产本钱低,产品质量好及伴生矿藏品种多,归纳收回价值大等长处,是比较抱负的矿产资源之一。钛铅砂矿是现在世界上钛铁矿、金红石、锆英石及独居石等矿产品的首要来历。
钛、锆砂矿除少数矿体上部有覆盖层需经剥离外,一般不需剥离即可选用千采或船采机械进行挖掘。干采机械有:推土机、铲运机、装载机及斗轮挖掘机等;船采所用采船有链斗式、搅吸式及斗轮式三种。采出矿石经皮带运输机或砂泵管道运送至粗选厂。钛、锆砂矿选厂分粗选及精选两个阶段进行。
(1)粗选
送至粗选厂的矿石,首要通过除渣、筛分、分级、脱泥及浓缩等必要的预备作业,然后给入粗选流程进行选别。
粗选的意图是将当选矿石按矿藏密度不同进行别离,丢掉低密度脉石矿藏尾矿,取得重矿藏含量达90%左右的重矿藏混合精矿,作为精选厂给料。
粗选厂一般与采矿作业纳为一体,组成采选厂。为习惯砂矿床特征,一般粗选厂均建为移动式,移动方法有水上浮船及陆地轨迹、履带、托板及定时拆迁等方法。
钛、锆砂矿粗选一般选用处理量大,收回率高又便于移动式选厂运用的设备,较遍及的是圆锥选矿机及螺旋选矿机,少数选用摇床。上述设备有单一运用的,也有合作运用的:单一圆锥选矿机首要用于规划大或原矿中重矿藏含量高的粗选厂;大都厂选用以圆锥选矿机粗选,螺旋选矿机再精选;一些规划较小的选矿厂,往往选用单一的螺旋选矿机粗选。[next]
(2)精选
钛、锆砂矿多系含有几种有价矿藏的归纳性矿床,精选的意图是将粗精矿中有收回价值的矿藏进行有用的别离及提纯,到达各自的精矿质量要求,使之成为产品精矿。
精选厂一般建成固定式。粗精矿选用轿车、火车或管道运送等方法运输到精选厂处理。精选作业分为湿式及干式两个阶段,以干法作业为主。依据粗精矿的性质,在精选工艺的前段一般选用部分湿法作业。有时在精选进程中还存在干法、湿法替换的进程,不过从能源耗费及简化工艺流程视点考虑,在或许条件下力求削减这一进程。
精选厂的湿法作业品种有:选用摇床或螺旋选矿机重选,进一步丢掉残存在粗精矿中的密度小的脉石矿藏,关于含盐份的粗精矿,一起具有清洗盐份的作用;选用湿式磁选法预先选出部分易选钛精矿,削减干选当选矿量;在粗精矿中参加、、稀、焦亚等某种药剂进行高浓度拌和,到达铲除矿藏表面污染,进步精选作用的意图;选用浮选法进行锆英石、独居石产品的精选。
干式精选是按产品中各矿藏间的磁性、导电性、密度等差异进行分选。依粗精矿组成及性质而异,干选工艺流程的结构改变较大。关于矿藏组成比较复杂,归纳收回矿藏品种较多的粗精矿的干选,流程比较复杂,作业较多,流程结构改变也较大;关于矿藏组成简略的粗精矿,干选流程则很简略。
磁选是选用不同类型及场强的磁选机,比照磁化系数不同的矿藏间的分选,常用的磁选设备有:盘式(单盘、双盘、三盘)、穿插带式、辊式、对极式等磁选机,在干选流程中一般是首要选用弱磁选分选出强磁性矿藏——磁铁矿,然后选用中磁场选出大部分磁性较强又比较易选的钛铁矿产品。强磁选则用于部分磁性较弱的钛铁矿及独居石与非磁性矿藏锆英石、金红石、白钛石等的别离。
电选是运用粗精矿中矿藏间导电性的差异进行分选。所用电选机有辊式、板式、筛板式三种。电选在粗精矿干选流程中常用于导体与非导体矿藏间的分组;金红石与锆英石的别离;难选钛铁矿及锆英石、独居石等矿藏的精选。
在出产实践中,有时采纳改变磁场及电场强度等操作条件,使电、磁选作业替换进行,以增进分选作用。
钛矿的选矿
2019-02-13 10:12:44
一般以为,岩矿和砂矿到达下列含量,才具有工业挖掘价值:岩矿的钛铁矿TiO2含量在10%~40%之间,或金红石TiO2含量在3%以上;砂矿含钛铁矿在15kg/m3以上,或金红石在2kg/3以上;某些伴生有多种有价值成分的共生矿,即便TiO2档次低一些,也可归纳考虑加以挖掘。
钛铁矿一般都稠浊有不少废砂石和复合其他矿藏,其TiO2档次较低。选矿就是依据这些矿藏不同的组成和不同的物理化学性质,选用不同的选矿办法,将钛铁矿与它们别离,以进步TiO2档次。因为钛铁矿常与许多矿藏伴生在一起,只用单一的选矿手法,很难选得TiO2档次高而杂质少的钛铁精矿。要进步TiO2档次,有必要依据不同的矿种,选用分段办法重复地选用不同的选矿办法组合加以选别,才干到达抱负的作用。
一、岩矿的选矿
岩矿主要是含钛复合铁矿,其结构细密,难采难选。一般选矿流程可分为以下几个阶段。
1.预 选
将挖掘得的岩矿,选丢掉部分尾砂,以进步选矿才能,进步当选档次和降低本钱,预选常用磁滑轮磁选、重介质旋流器及粗粒跳等法。
2.选 铁
经过选别含钛复合铁矿选铁,可以获得供炼铁用的铁精矿或钒铁精矿,而且可使大部分铁与钛别离。选铁常用磁选法。
3.选 钛
将选铁后的尾矿,经过多段破碎和筛分,依据各种矿源成分不同,选用重选、磁选、电选和少、浮选等各种办法,进步钛矿的TiO2档次。
二、砂矿的选矿
因为钛铁矿的物理化学性质安稳,相对密度较大,在多雨区域可以在冲刷、转移、水力分选的过程中堆积下来,富集在地表与河槽中,或被洪水冲至河流出口处、近海处堆积下来。所以钛铁矿广泛地产于海边砂矿、河槽砂矿、冲积砂矿、残坡砂矿和低谷砂矿中。
在河槽上的,常运用链斗式或搅吸式或斗轮式运送器将砂矿送至采矿船再处理。
在沙滩上的,常运用推土机、铲运机、装载机、斗轮挖掘机经皮带运输机或砂泵管道送到粗选厂。
采得的砂矿先经除渣、筛分、分级、脱泥和浓缩后进行粗选。云南矿还经湿辗。
粗选是依据矿藏的密度不同进行别离,丢掉密度小的脉石尾矿,获取密度大的重矿藏约90%,常用圆锥选矿机和螺旋选矿机,粗选厂都是移动式的,常与采矿结合在一起。
精选是选进行湿法的重选、湿法磁选和浮选,再进行干法的磁选、电选和重力别离等。[next]
三、常用的选矿办法
1.用手选矿的原理是依据不同矿藏的外形特征如顔色、光泽、粒度和晶型等不同,用目测手拣的办法将稠浊的杂质别离,开始将石英等脉石除掉,这是一种原始而简略的选矿办法以。适用于钛铁矿的粗选。
2.重力选
重力选亦属粗选,用于粗选的筛分。因为钛铁矿和其他杂质矿藏相对密度不同,在一种运动着的介质中,沉降速度的不同,使矿粒和杂质别离。含钛矿藏的相对密度大于4,选用重力选法可将大部分相对密度小于3的长石、石英等脉石矿藏除掉。钛铁矿的密度比少土大,选用流水冲刷,相对密度小的沙土就随水而流走,最终选分出密度较大的钛铁矿砂。可是经过重力选后的钛铁矿仍含有与钛铁矿相对密度附近的锆英石、独居石、金红石、白钛石、锡石、磁铁矿和铬铁矿等矿藏及一些脉石。大规模的重力选,可选用溜槽、筛选机、螺旋选矿机和摇床等。如选用洗矿、筛分和脱泥后再进行重力选,则可用螺旋机。筛分介质通常是水和空气。
3.浮 选
浮选是运用各种矿藏表面的化学或物理性质的不同,参加某些能发泡的浮选药剂,使其发生许多泡沫,因为不同矿藏在空气和水的界面上的浸湿度不同,发生有挑选的吸附,某种成分便随泡沫浮起而漂出,其他成分则沉积下来,而得以别离。在钛铁矿砂浮洗时,常用的浮选剂有硫酸化皂、邃古油、十二酸钠、水玻璃、、钠和烷基磺酸钠等。浮选设备有成套的标准设备。该法作用虽好。但本钱高,浮选剂的挑选和分配较杂乱,废水排放较难处理。
4.磁 选
磁选归于钛铁矿的精选。它是运用各种矿藏导磁率的不同,使它们经过一个磁场,因为对磁场的反响不同,导磁率高的被磁盘吸起,再失磁就掉下,集料漏斗将其搜集,导磁率低的不被吸起,留在原下或随转动着的皮带,作为尾矿带出去而得以别离。钛铁矿是能被磁铁招引而自身不能吸铁,可磁化又可去磁的顺磁性矿藏,其磁性属中性和弱磁性。矿藏的磁性由强到弱改变的次序是:磁铁矿>钛铁矿>赤铁矿>石榴石>黑云母>独居石。而锆英石和金红石为非磁性矿藏。将粗矿经过单盘式或三盘式的干式磁选机,弱磁性的石榴石、独居石和非磁性的锆英石、金红石和脉石等就经过皮带别离出去。从钛铁矿选矿的实例得知,经几回磁选的钛铁矿砂其矿藏组成仍十分杂乱,仍含有较多的非钛矿藏。磁场的强度、电流巨细和温度凹凸对磁选的作用影响较大。此法对钛铁矿的选矿用得许多,为了确保矿的纯度,尽可能地除掉非钛矿藏,以利于出产的顺利进行。常常是将购进来的杂矿,在雷蒙磨磨矿前,先经一次磁选再进行破坏。
5.电 选电选也归于钛铁矿的精选,在选用其他办法达平到分选要求时而运用。选用这种静电选,一般能得到较好的作用。电选是依据矿藏在高压电场内电性的不同,而将不同矿藏进行选分的一种分法。运用两种矿藏的整流性不同,或它们的分选电位差值 超越3800V时,用静电选矿机选分。常用的有静电进矿机和电晕选矿机等。北海选矿厂精选工艺流程如下图所示。
铌钙矿浮选的研究
2019-02-21 12:00:34
铌钙矿浮选的研讨
H·任 等
摘 要 研讨了不同捕收剂对组成铌钙矿浮选的影响。这些捕收剂包含苄基胂酸、a-乙烯、双、环烷基羟肟酸和烷基羟肟酸。实验成果标明,双是浮选铌钙矿的一种有用选择性捕收剂。在双浓度为20mg/L和pH2.5~5.0的条件下,铌钙矿的浮选收回率为83.27%~85.10%。用红外吸收光谱(IAS)和X射线光电子能谱(XPS)分析了双与铌钙矿之间的相互效果。X射线光电子能谱成果证明经双处理后的铌钙矿的P2p结合能偏移3.85eV,由此可知,双化学吸附在铌钙矿表面上。
要害词 吸附 双 铌钙矿 浮选 IAS XPS
引 言
地球上共有130多种含铌矿藏,但只要几种铌矿藏能被工业运用,其间之一是铌钙矿,其化学式为(Ca,Ce,Na)(Nb,Ta,Ti)2(O,OH,F)6。铌是合金的一种重要成分,也被广泛地用于化学产品制作中。最具有工业价值的铌资源为巴西的黄绿石矿床,它是国际上最著名的铌矿资源。我国北部白云鄂博的多金属矿床(其间包含稀土、铌、铁和萤石)中铌矿资源储量居国际第二位。
浮选是一种有用的经济矿藏加工办法,并广泛地用于分选含铌矿藏。其它办法(如重选和磁选)也用于从连生的脉石矿藏中分选铌钙矿。但是,这些办法所得的收回率和精矿档次都难以令人满意。
近来针对含铌矿藏的高选择性捕收剂做了很多的研讨作业。介绍了几种新式捕收剂的浮选特性,引荐双衍生物的有机磷化合物作为锡石、萤石和磷钙土的浮选捕收剂。实验标明,它们在从杂乱的矿藏组合中别离这些矿藏具有很高的选择性。一系列的鳌合捕收剂(例如羟肟酸)已广泛地用于稀土矿的浮选中。在选择性浮选细粒浸染的锡石杂乱矿时,乙烯磷酸是一种有用的捕收剂。
本研讨运用了各种捕收剂对组成的铌钙矿进行浮选实验,并对实验成果进行了比较。用红外吸收光谱(IAS)和X射线光电子能谱(XPS)研讨了铌钙矿的浮选机理。由 IAS和XPS的实验数据断定了双在铌钙矿上的化学吸附机理。
1、试 验
1.1 铌钙矿的制备
从自然界中是难以获得实验所需的高纯铌钙矿。能够运用高温组成和氧化焙烧的办法来制取高纯铌钙矿。组成的铌钙矿是无色通明晶体或白色粉末。晶体粉末的X射线衍射光谱(XRD)以及衍射强度(I)和晶面间隔(d)等相关数据别离见图1和表1。
图1 组成的铌钙矿的X射线衍射光谱
表1 组成的铌钙矿X射线衍射数据
序号丈量数据标准数据dr(A)I/I0dr(A)I/I017.506217.4704025.38185.3402033.770273.9506043.440113.4282053.0601003.04910062.879102.8633072.68862.6811082.61292.6062092.57462.56410102.52082.51030112.498122.49830122.31632.30610132.25062.24220142.09152.09020151.76871.76850
XRD成果标明,一切的衍射峰是由CaNb2O6发生的。在试样中没有勘探到杂质。化学分析标明组成的铌钙矿中Nb2O5含量为82.15%。由于铌钙矿中Nb2O5含量理论值为82.58%,所以组成的试样纯度为99.48%。
1.2 脉石矿藏的制备
褐铁矿、霞石和白云石是与铌钙矿共生的首要脉石矿藏。这些脉石矿藏的制备关于研讨铌钙矿在脉石存在时的浮选性是有必要的。不同矿藏的提纯进程和它们的首要物理特性如表2所示。
表2 提纯与铌钙矿共生的脉石矿藏的办法及其密度和纯度
矿藏称号产地提纯办法密度/g·cm-3纯度/%褐铁矿我国安微铜官山碎矿、手选和瓷球机磨矿和筛分4.03495.8霞石我国内蒙古白云鄂博碎矿、手选、瓷球机磨矿和筛分3.55295.0白云石我国湖南莱阳摇床重选、湿式强磁选和筛分2.84398.2
1.3 药 剂
胂酸、和烷基羟肟酸被认为是铌钙矿的特效捕收剂。此项研讨中运用了苄基胂酸、a-乙烯、双、环烷基羟肟酸和烷基羟肟酸作为捕收剂。
1.4 浮选实验
本实验研讨运用70mL的XFGC-80型浮选槽进行浮选实验;矿浆温度控制在25℃到30℃之间;叶轮旋转速度固定在2000r/min。捕收剂品种、矿浆pH值和药剂用量是矿藏浮选实验的要害参数,实验中研讨了它们对铌钙矿浮选的影响。
1.5 IAS和XPS分析
运用带有MCT(镉碲化物)勘探器的JEOLJIR5500型富里叶改换红外光谱仪进行红外吸收光谱丈量。在波数为400~4000cm-1的范围内用萤石红外样品室对经和未经双处理过的铌钙矿样品摄取了差示红外光谱。
运用带有AIKa1.2放射源作为激发源(hr=1486.6eV)的Vacuum Generator Escalab MK II型光谱仪进行X射线光电子能谱研讨。电子分析仪在固定的2.0eV经过能量的传输形式下作业。一切的测验实验都是在分析室真空度低于10.10-8Pa下进行测定。
用于IAS和XPS分析的实验样品为经和未经双处理过的两种粒状铌钙矿。未经处理过的实验样品经拌和磨磨至2 Km,然后缩分1.0g样品进行分析。处理过的铌钙矿样品的制备进程如下:
1)用拌和磨将铌钙矿磨至2μm,以便增加其比表面积,使更多的双吸附在铌钙矿表面上。
2)用200 mL的烧杯制造150 mL 1%浓度的双,pH值为5.0。
3)增加2.0g磨细的铌钙矿至烧杯中,然后将矿浆在大约25℃,pH5.0的条件下拌和2 h。
4)用离心过滤机将矿浆进行固液别离。
5)别离出的固体用去离子水在pH5.0条件下洗刷,重复5次,以便削减液体中溶解的药剂浓度。
6)固体样品在30℃时进行烘干,并坚持枯燥,以便分析。[next]
2 成果与评论
2.1 浮选实验
用单矿藏浮选实验,研讨了各种捕收剂对铌钙矿浮选的选择性和捕收才能。5种不同捕收剂在不同pH值条件下对4种矿藏浮选的收回率如图2所示。显着,在用苄基胂酸作捕收剂时这些矿藏的可浮性比较差,在苄基胂酸浓度为216mg/L时铌钙矿的最大收回率大约为50%,合适浮选的pH值区间很窄。由图2能够看出,环烷基羟肟酸在较宽的pH值条件下对4种矿藏有很强的捕收力,但选择性差。在弱酸性、中性和弱碱性条件下,烷基羟肟酸(C7-9)和环烷基羟肟酸有类似的捕收效果。a-乙烯在酸性条件下有较好的选择性,但药剂用量大。运用这些捕收剂不能有用地别离铌钙矿与脉石矿藏。双对这些矿藏有较好地选择性。用双作捕收剂,在pH2.5~5.0时铌钙矿有很好的选择性。当pH值高于5.0或小于2.5时,它的可浮性下降很快。当pH值在2.0~11.0之间霞石很难浮。在pH 6.0时白云石的可浮性到达最大值,pH值低于5.0时它的可浮性十分低。当双作捕收剂时,在pH值2.0~4.0条件下,铌钙矿与褐铁矿的可浮性有很大的差异。显着,不同捕收剂的选择性以下列次序顺次下降:双>苄基胂酸>a-乙烯>烷基羟肟酸(C7-9)>环烷基羟肟酸。这些成果与郑等人的成果是十分共同的。任等人调查发现,在双浓度为75mg/L时,双对黑金红石((Ti,Nb,Fe)3O6)显现出杰出的捕收效果。在pH2.0~4.0时黑金红石的收回率为90.87%~91.70%。陈等人发现在酸性条件下双是铌铁矿((Fe, Mn) Nb2O6)的有用捕收剂。在双浓度为140mg/L、pH值低5.0时铌铁矿的收回率为84.24%~91.17%。这些成果标明,双及其衍生物是含铌矿藏的有用捕收剂。在最佳pH值条件下不同的捕收剂用量对铌钙矿收回率的影响如图3所示。由此可知,不同捕收剂的捕收才能的次序为:环烷基羟肟酸>烷基羟肟酸(C7-9)>双>a乙烯>苄基胂酸。
图2 不同捕收剂浮选时不同矿藏收回率与pH值联系
(A)苄基胂酸(216 mg/L);(B)环烷基羟肟酸(8 mg/L);
(C)烷基羟肟酸(10 mg/L)(D)a-乙烯(184 mg/1)
(E)双(20 mg/L)
◆-铌钙矿;■-褐铁矿;▲-霞石;●-白云石
图3 在它们的最佳pH条件下捕收剂的用量
对铌钙矿浮选收回率的影晌
口-环烷羟肟酸(pH 7.0);○-C7~9烷基羟肟酸(pH 6.0);
△-双(pH 5.0);△-a-乙烯(pH 5.0);
+-苄基胂酸(pH 5.0)
2.2 理论研讨
为了更好地了解用双浮选铌钙矿的基本原理,用 IAS和 XPS对经1%的双溶液处理2h的铌钙矿样品进行了特性分析。
2.2.1 IAS分析
药剂的吸附特性和官能团的键合原子能够经过IAS进行辨别。双、铌钙矿和经双处理过的铌钙矿的IAS光谱如图4所示。用经和未经双处理过的铌钙矿的红外差示光谱如图5所示。由图4能够清楚地看出,经双处理过的铌钙矿有4个特征吸收峰呈现,这与甲基和亚甲基别离在波数为1465、2854、2925和2957cm-1的振荡有关。在图5差示光谱中,与—P—O—和—P=O—官能团振荡有关的波数别离为1178、1142、1087和934cm-1处的吸收峰不显着。由于双的—P—O—特征峰在波数1062cm-1处,因而峰方位显着偏移至1087cm-1,这标明双吸附在铌钙矿表面上。陈等人报道,当用双作捕收剂浮选铌铁矿时,—P—O—特征峰从 1062cm-1偏移至 1049cm-1处。他们的数据标明,双吸附在铌铁矿的表面上,但峰方位偏移的不象铌钙矿那么显着。[next]
图4 双(上)、铌钙矿(中)和经双处理过
的铌钙矿(下)的IAS光谱
图5 经和未经双处理的铌钙矿的差示红外光谱
2.2.2 XPS分析
用单色软X射线照耀样品,使电射出去,以进行XPS分析。由光电强度决议电子的相对浓度。由XPS的强度可辨别不同的化学状况,这关于研讨吸附组分、氧化/腐蚀产品和薄膜的生长进程都是有用的。
双是由磷、碳、氢和氧组成的。既不能将氧也不能将碳作为双存在的依据,这是由于矿藏表面或许存在碳污染和矿藏自身含有氧。XPS勘探不到氢,由于氢没有内层电子。因而,磷是双的最好标志元素。
图6展现了经和未经双处理的铌钙矿的整个XPS光谱。在未经处理过的铌钙矿光谱中,有矿藏自身的铌、氧和钙谱峰,还有外来的碳谱峰。经双处理过的铌钙矿光谱的特点是,呈现了谱峰,C1s谱峰增强,而其它谱峰却稍微下降。经和未经双处理的铌钙矿表面的相对原子浓度如表3所示。双处理过的铌钙矿的P/Nb的浓度从0.01增加到0.96,C/Nb的浓度从3.06增加到12.30。这些成果标明,经双处理后的铌钙矿表面上的磷和碳的浓度明显增大。
图6 未经(上图)和经(下图)双处理的
铌钙矿的整个XPS光谱
表3 铌钙矿表面的相对原子浓度
试 样Ca/NbP/NbC/NbO/Nb未处理的铌钙矿0.470.013.063.57处理过的铌钙矿0.680.9612.306.02
药剂吸附对P2p峰的影响如图7所示。双的P2p峰坐落132.95eV处,而经双处理过的铌钙矿的P2p峰坐落136.80eV处,相差3.85eV。经双处理后的其它矿藏也得到了类似的成果。任等人和陈等人报道,经双处理后黑金红石的P2p峰的结合能改变值为0.45eV,铌铁矿的P2p峰的结合能改变值为2.85eV。从图7能够看 ,经双处理后,铌钙矿的峰方位改变了,发生了磷的化学置换反响。由此能够得出以下定论,双化学吸附在铌钙矿表面上,增加了磷原子浓度。
图7 双(上图)和经双处理过的铌钙矿(下)的峰
3、结 论
依据以上成果和评论,可得到以下定论:
1)环烷基羟肟酸对铌钙矿有较高的浮选收回率。不同捕收剂对铌钙矿的浮选收回次序为:环烷基羟肟酸>烷基羟肟酸(C7-9)>双>a-乙烯>苄基胂酸。
2)双是铌钙矿选择性最好的捕收剂。不同捕收剂对铌钙矿的浮选的选择性次序为:双>苄基胂酸>a-乙烯>烷基羟肟酸(C7-9)>环烷基羟肟酸。
3)双浓度为20 mg/L,pH值为2.5~5.0时,铌钙矿的浮选收回率为83.27%~85.10%。
4)IAS分析成果标明,双在铌钙矿表面上吸附的—P=O和—P—O—特征峰对应的波数为1178、1142、1087和934cm-1。
5)由XPS分析成果能够得出,双化学吸附在铌钙矿表面上,而且双的P2p的结合能偏移3.85eV。
钛矿选矿工艺
2019-02-25 09:35:32
钒钛磁铁矿:这是我国钛铁矿岩矿床的首要矿石类型。依据攀枝花矿山公司的选矿研讨和出产实践,其钛铁矿精矿的选矿是在对钒钛磁铁矿石经一段磨矿(-0.4mm),一粗、一精、一扫的磁选流程磁选出磁铁矿精矿(Fe51%~52%,TiO212.6%~13.4%,V2O50.5%~0.6%)之后的磁尾(矿)进行。
钒钛磁铁矿石以Fe与Ti方式细密共生赋存在钛磁铁矿中的TiO2(约占攀西区域TiO2总储量的53%),因为赋存状况、粒度,以及在高炉冶炼绝大部分没有被复原而以TiO2方式进入炉渣的化学反应特性等要素,现在还难以用机械选矿办法收回使用。
可是,跟着攀枝花钢铁研讨所和北京钢铁研讨总院对钛磁铁矿的铁、钛、钒归纳收回而对冶炼工艺和技能的改善与进步,现已基本上打通流程,取得了活跃的效果。此外,还展开了复原磨选制取铁粉和归纳收回钒钛的实验。其流程是:
钒钛铁精矿—铁粉燧道窑
碳复原—V2O5
破碎磨矿— 富钒钛料—湿法别离—TiO2
重磁选别离
钛铁矿、金红石砂矿:这是我国现在出产钛铁矿和金红石精矿的首要矿石类型。依据海南中兴精密陶瓷微粉总厂和海南省冶金工业总公司所属沙老、南港、清澜(铺前)、乌场(保定)4个国有钛(砂)矿的出产实践,其钛铁矿、金红石、锆石、独居石砂矿的采矿、选矿工艺流程和各种精矿的技能指标如图3.5.10。采矿的回采率>95%,贫化率
为了进步资源的使用率和经济效益,削减中矿、尾矿的积压和对环境的污染,广州有色金属研讨院曾专题研讨了“海南岛海边砂矿难选中矿钛元素赋存状况及归纳收回途径”(第三届全国矿产资源归纳使用学术会议论文集,1990年)。该研讨、实验标明:
①钛元素首要赋存在以Ti4+与Fe2+呈类质同象置换而构成的钛-铁矿系列中;其间钛铁矿(含TiO252%~54%)和富铁钛铁矿(含TiO246%)所占的份额达66.2%,其次是富钛钛铁矿(含TiO256%~58%)占19.2%,钛赤铁矿(含TiO210.7%~19.5%)占14.6%。此外,钛元素还少量地赋存在金红石、锐钛矿、白钛石和榍石中。
②难选中矿属钛铁矿、锆石、独居石、金红石、锐钛矿等的混合矿藏,矿藏粒度0.2~0.08mm(属可选粒度);选用二介质作“沉浮”选矿,比重
3.3的有用重矿藏下沉产率达73.5%。
③在下沉的重矿藏中,除主收钛铁矿外,可归纳收回锆石、独居石、富钛钛铁矿和金红石;其有用的选矿流程有二:其一是有用重矿藏经电磁选场强6000Oe分选出占钛铁矿矿藏份额88.1%的磁性产品(TiO243%),再经800℃、10min的氧化焙烧,最终经场强650Oe弱磁选,在磁选产品中可取得TiO250%~51%的钛铁矿精矿产品;其二是有用重矿藏(钛铁矿粗精矿,含TiO243%~46%)经电选(2.1kV,120r/min),在导体产品中可取得TiO251%~53%的钛铁矿精矿产品。
④在经场强8000—12000Oe磁选的尾矿中,再选用浮选,可取得合格的独居石精矿;再对其经场强>20000Oe磁选的非电磁性重矿藏尾矿中,选用电选,可在非导体性产品中取得合格的锆石精矿,在导体性产品中取得合格的金红石精矿。
国内外钛矿资源的90%以上用于出产钛白,钛白的出产工艺流程,首要有先进的氯化法、法和传统的硫酸法。
铅铟二元体系高效钙钛矿太阳能电池
2018-04-26 17:40:52
近年来,以CH3NH3PbX3,为代表的有机-无机杂化钙钛矿材料成本价廉,有非常合适的带隙宽度,同时具有空穴和电子输运能力,其制备的太阳能电池的光电转换效率已达22%以上。但是,CH3NH3PbX3中铅的毒性会破坏社会环境以及导致人类多种疾病。因此,无铅(Lead-Free)或低铅(Less-Lead)钙钛矿太阳能电池的研究,是研究者下一步要努力的方向。 针对钙钛矿太阳电池中铅的毒性问题,苏州大学廖良生教授、王照奎副教授领导的团队通过尝试采用引入铟(In)部分替代铅(Pb)的来制备钙钛矿太阳能电池,从钙钛矿薄膜制备、退火工艺、器件结构设计等方面进行了优化。结果发现,当用15%的铟(In)代替铅(Pb)时,在降低铅(Pb)使用量的同时,所制备的钙钛矿太阳能电池的光电转换效率可以从纯铅(Pb)体系的12.61%提高到铅(Pb)铟(In)二元体系的17.55%。X线光电子能谱(XPS)表征表明,铟(In)和氯(Cl)元素存在于退火后的钙钛矿薄膜中。通过与上海应用物理研究所高兴宇研究员、杨迎国博士合作,利用上海光源衍射线站GIXRD进一步表征发现,铅(Pb)铟(In)二元体系钙钛矿太阳能电池薄膜具有多重有序的结晶取向和多重电荷传输通道,从而很好地解释了掺铟钙钛矿型太阳能电池具备效率高(17.55%)和稳定性好的主要原因。此研究工作为开辟无铅(Lead-Free)或低铅(Less-Lead)钙钛矿太阳能电池研究奠定了一定的实验基础。
粉体课堂 · 标准篇:纳米碳酸钙
2019-03-08 09:05:26
本标准适用于纳米碳酸体材料。该产品首要用于橡胶、塑料、密封胶、胶黏剂、涂料和油墨等。
纳米碳酸钙是20世纪80年代发展起来的一种新式超细固体粉末材料,其粒度介于0.01~0.1μm之间。因为纳米碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的量子尺度效应、小尺度效应、表面效应和微观量子效应。
分子式:CaCO3
相对分子质量:100.09(按2007年世界相对原子质量)
外观:白色粉末
晶型:方解石、文石、球霰石、非晶态
描摹:立方形、近球形、纺锤形、棒形、链状、针状
纳米碳酸钙的要求
表1 要求橡胶、塑料用纳米碳酸钙
表2 橡胶、塑料用纳米碳酸钙引荐目标密封胶、胶黏剂用纳米碳酸钙
表3 密封胶、胶黏剂用纳米碳酸钙引荐目标胶印油墨用纳米碳酸钙
表4 胶印油墨用纳米碳酸钙引荐目标涂料用纳米碳酸钙
表5 涂料用纳米碳酸钙荐目标
钒钛烧结矿的特点
2019-02-14 10:39:49
(一)钒钛烧结矿的化学成分 钒钛烧结矿除含TiO2和V2O5外,其他化学成分与普通烧结矿比较也有较大差异,依据TiO2含量凹凸,钒钛烧结矿可分为高钛型(攀钢)、中钛型(承钢)和低钛型(马钢)。 与普通烧结矿的化学成分比较,钒钛烧结矿具有“三低”、“三高”的特色。即烧结矿含铁低、FeO和SiO2含量低,TiO2、MgO、Al2O3含量高。 (二)钒钛烧结矿的矿藏组成 钒钛烧结矿的物相组成首要有:钛赤铁矿、钛磁铁矿、铁酸钙、钛榴石、钙钛矿、钛辉石、玻璃质等。 1.钒钛烧结矿的矿藏特色 钛赤铁矿是烧结矿中的首要含铁物相,一般可占烧结矿总量的40%~50%,是赤铁矿-钛铁矿固熔体,属六方晶系,反射光下呈灰白色,强非均质性,不透明,反射率25%,以Fe2O3为晶格,除Ti外,还固溶Mg、Al、Mn等元素。钒钛烧结矿中的钛赤铁矿以粒状、斑状结构为主,少量呈他型和自型柱状。一般出现在孔洞周围或钛磁铁矿晶粒周围构成包边或花边结构。钛赤铁矿的很多存在及其连晶效果,使烧结矿具有杰出的复原性和机械强度。 钛磁铁矿不同于普通烧结矿的磁性矿藏,是磁铁矿-钛铁晶石固溶体,是烧结矿中的首要含铁矿藏,其含量在25%~35%之间,是以Fe3O4为晶格的固熔体,其固溶有Ti、Mg、Mn、V、Al的氧化物。在反光下呈灰白色带褐彩、均质性、反射率为18%~22%,内反射不透明、强磁性、表面可被腐蚀、呈暗褐色。首要呈自形粒状和不规则他形柱状方法。也有从硅酸盐相中分出的自形、半自形八面体(多边形断面)及细微树枝状骸晶,部分钛磁铁矿常被赤铁矿色边。 铁酸钙首要存在于熔剂性钒钛烧结矿中,并随烧结碱度添加而添加,一般占烧结矿总量的3%~20%,在反光下为灰色带蓝彩,非均质性,反射率为16%。首要呈板粒状和针状,多与钛磁铁矿构成熔蚀结构和柱状交错结构。在剩余石灰颗粒边际构成很多的铁酸钙晶体。它具有好的复原性和高的抗压强度。 钛榴石在钒钛烧结矿中属硅酸盐相,一般占烧结矿总量的3%~15%,在熔剂性钒钛烧结矿中常可见到。首要呈粒状、浑圆状和树枝状集合体,单个区域钛榴石连成片。反射光下呈灰色,无内反色,反射率低(12%~13%).透射光下呈黄色、黄褐色,无解理,无双晶纹,属晚结晶的硅酸盐物相,对烧结矿起必定的粘结效果。从化学成分看,钒钛烧结矿中的钛榴石与天然钛榴石挨近。 钙钛矿是熔剂性钒钛烧结矿首要含钛矿藏,一般占烧结矿总量的2%~10%,属甲等轴晶系,反光下为灰白色,反射率为15%~16%,略低于钛磁铁矿固溶体,均质到非均质,内反射色为黄褐色,在透射光下,呈褐、黄、紫、红棕等多种色彩。干与色一级,有时出现反常干与色。钙钛矿在烧结矿中首要呈粒状、纺锤状、骨架状、树枝集合体,涣散于渣相或钛赤铁矿褐钛磁铁矿之间。其熔点很高(1970℃),结晶才能强,是晶出最早的物相。硬度高于钛磁铁矿。 钛辉石属斜方晶系,多呈短柱状,有时块状集合体存在,充填于钙钛矿、钛磁铁矿、钛赤铁矿之间,是钒钛烧结矿硅酸盐粘结相之一。在反射光下为深灰色,反射率稍高于玻璃相,透光下呈黄绿~浅红紫色,有用多色性。[next] 2.影响钒钛烧结矿矿藏组成的要素 烧结矿的矿藏组成,跟着烧结质料、烧结工艺条件等的改变有所区别。 (1)碱度的影响。不同碱度对钒钛烧结矿矿藏组成的影响见图.天然碱度钒钛烧结矿首要矿藏为钛磁铁矿、钛赤铁矿、铁橄榄石和玻璃隐晶质,钛赤铁矿和钛磁铁矿多为自形或半自形粗晶、晶体紧密结合为连晶,是天然碱度钒钛烧结矿的首要连接方法。其次是橄榄石和玻璃质,将连晶粘结,构成细孔均匀的海绵状结构,气孔一般为1~2mm.烧结矿结构细密、强度好、转鼓指数高、制品率高。但因很多磁铁矿被氧化,需求较长时刻,故笔直烧结速度低。 碱度1.0~2.0的熔剂性钒钛烧结矿,其首要矿藏为钛磁铁矿、钛赤铁矿、钙铁橄榄石、钛榴石、钙钛矿、铁酸钙、钛辉石和玻璃质。 碱度大于3.0的烧结矿,钛赤铁矿固熔体削减而钛磁铁矿固溶体添加,烧结矿外观发黑、光泽暗、铁酸钙显着添加。 (2)燃料用量对矿藏组成影响。钒钛烧结矿的矿藏组成随燃料用量的增减而改变,当燃料用量偏低时,烧结矿中钛赤铁矿含量高而玻璃质少,粘结相缺乏,烧结矿强度差。跟着燃料添加,复原气氛增强,烧结温度升高,烧结矿中钛磁铁矿和浮氏体显着添加,硅酸盐粘结相和铁酸钙添加,但钛赤铁矿很多削减,削弱钛赤铁矿连晶效果。当燃料超越必定量时,烧结矿中钛赤铁矿进一步下降,铁酸钙含量也低,而钙钛矿含量显着添加,此刻硅酸相无甚改变。因而,进步含碳量对进步钒钛烧结矿强度并晦气。 (3)TiO2含量对矿藏组成的影响。跟着烧结矿中TiO2含量的添加,钙钛矿量添加,铁酸钙量削减,一起钛辉石添加,玻璃质削减。[next] (三)钒钛烧结矿的冶金功能 1.钒钛烧结矿的转鼓强度 钒钛烧结矿的转鼓强度一般较普通烧结矿低。其原因首要是:(1)烧结矿中SiO2含量低,构成的硅酸盐粘结相少;(2)因为TiO2含量较高,烧结过程中与CaO易构成性脆的钙钛矿;(3)烧结液相量少,粘结才能差。别的,因为矿藏特性所决议,此种烧结矿还具有耐磨不耐摔的特色。 添加配碳量虽可改进钒钛矿的转鼓强度,但当配碳量超越必定配比时,强度反而下降。配碳量的添加可促进烧结液相量增多,有利于转鼓强度的进步,但一起因为配碳量的添加导致复原气氛加强,铁酸盐削减,钙钛矿量添加,因而,应操控恰当的配碳。 2.烧结矿储存功能 钒钛烧结矿有较好的储存功能,其储存天然粉化率比普通烧结矿低得多。原因在于烧结矿冷却过程中,当温度下降到675℃时普通烧结矿中的正硅酸钙(2CaO•SiO2)发作相变(由β-2CaO•SiO2向γ-2CaO改变),体积发作急剧胀大(添加10%),引起烧结矿粉化;而钒钛烧结矿在烧结过程中无2CaO•SiO2生成,因烧结矿中SiO2含量低,即便烧结碱度达1.70,其CaO含量也仅为9.5%~9.1%,且部分CaO与TiO2构成钙钛矿(CaO•TiO2),故游离CaO很少。 3.钒钛烧结矿的复原功能 钒钛烧结矿因为氧化度高、FeO含量低,其复原功能较普通烧结矿好。影响钒钛烧结矿复原性的要素首要有碱度、FeO含量等。 (1)碱度的影响。碱度对钒钛烧结矿复原性的影响规则与普通烧结矿类似,随烧结矿碱度的进步,复原度显着上升。 (2)FeO含量的影响。钒钛烧结矿中FeO首要以钛磁铁矿和钙铁橄榄石方法存在,其复原性较差,但与普通烧结矿比较,其含量较低,比较之下复原性仍较好。跟着FeO含量的添加,钒钛烧结矿复原度呈直线下降,因而,钒钛磁铁精矿烧结时,应操控适合的FeO含量,在确保钒钛烧结矿强度的条件下,使之具有杰出的复原性。 (3)TiO2含量的影响。随钒钛矿中TiO2含量的添加,烧结矿的复原度下降。一般以为因为TiO2含量的添加,势必会导致烧结矿中含铁物相(如钛赤铁矿、铁酸钙盐等)削减,而脉石矿藏(如钙钛矿、钛辉石等)添加,而晦气于复原气体的分散。 4.钒钛烧结矿的低温复原粉化功能 一般以为,烧结矿低温(400~500℃)复原粉化的发生,首要是因为赤铁矿复原为磁铁矿的过程中,晶形的改变所造成的。钛赤铁矿有各种晶型,如粒状、斑状、树枝状、叶片状、骸晶状等。关于不同晶型,其复原粉化功能不同,其间以骸晶状菱形钛赤铁矿复原粉化最为严峻。 钒钛烧结矿的低温复原粉化率RDI-3.15比普通烧结矿高得多。攀钢烧结矿的RDI-3.15一般大于55%~60%,且当普通烧结矿中参加部分钒钛物料时,烧结矿的复原粉化率也会显着上升。 钒钛烧结矿低温复原粉化率高的原因是:(1)烧结矿中含有很多的钛赤铁矿(40%~50%),其间约50%以骸晶状菱形赤铁矿存在,别的还有部分钛赤铁矿以网格状占有于钛铁矿的方位上。复原时,因为晶型改变而引起胀大粉化。(2)烧结矿中SiO2含量低,起粘结效果的硅酸盐相少,加之不起粘结效果的钙钛矿的存在,它不只自身性脆,并且还阻碍钛赤铁矿和钛磁铁矿间的连晶效果,抗胀大粉化的才能下降.(3)钒钛烧结矿的物相组成较普通烧结矿的物相组成杂乱,其不同的热胀大性引起的内应力,在低温复原阶段会导致很多微裂纹的构成,然后也下降了烧结矿强度。 虽然钒钛烧结矿低温复原粉化现象较为严峻,但实践生产中,没有因烧结矿的低温复原粉化率高而引起高炉上部块状带透气恶化而成为约束冶炼强化的环节。对小高炉冶炼钒钛烧结矿的解剖查询,所测得的烧结矿粒度组成也未发现反常。 进步烧结矿中FeO含量,能够削减再生赤铁矿的数量,下下降温复原粉化率,但FeO过高会引起烧结矿复原性的恶化。为此,攀钢在制品烧结矿上喷洒卤化物水溶液,使烧结矿低温复原粉化现象得到大幅度改进。 5.钒钛烧结矿的软熔滴落功能 烧结矿的矿藏组成决议了其软熔滴落功能,因为钒钛烧结矿高熔点矿藏多,致使其软化温度高,一起又因高熔点矿藏熔点不同大,因而其熔滴温度区间宽,且滴落过程中渣铁分离差,渣中带铁多。影响钒钛烧结矿软熔滴落功能的首要要素有烧结矿的碱度、TiO2含量等。 碱度对钒钛烧结矿软熔滴落功能的影响研讨。随碱度进步,烧结矿软化开端温度(Ta)、软化终了温度(Ts)(熔化开端温度)、开端熔滴温度(Tm)上升,软化温度区间(ΔTs-a)和熔滴温度区间(Tc)变窄,压差陡升,温度(TΔp)上升,最高压差(ΔPmax)减小,熔滴带厚度(H)变薄。 TiO2含量对钒钛烧结矿软熔滴落功能的影响的的研讨。随烧结矿中TiO2含量添加,开端滴落温度下降,压差陡升温度下降,最高压差减小,软熔温度区间变宽,滴落时刻延伸。
如何找钛矿和铀矿
2019-02-26 09:00:22
怎么找钛矿 找钛矿标志
1、沿陈旧地块、地块边际、深大开裂散布的超基性-基性杂岩体,是寻觅钒钛磁铁矿床的好去处。如扬子地台西缘的盐源-丽江台缘拗陷、康滇地轴、华北地台北缘深大开裂、勉略宁区域、中天山、左权桐峪、代县黑山谷、黎城西头、怀柔新地、昌平上庄、舞阳赵案庄、兴宁霞岚、哈密尾亚和黑龙江呼玛等。其富集成矿规则是:在晚期岩浆阶段,钛成独立矿藏或成类质同象参加铁的氧化物,能够构成具工业价值的分异型和贯入型的钛铁矿床、钛磁铁矿床。
2、滨临基性-超基性岩区及老蜕变岩区的滨海堆积、残坡积和河流冲积物,是寻觅钛铁矿、金红石等砂矿的好去处。首要散布在海南岛(省)东部滨海,即万宁保定、南桥、东澳-龙保、横山、坑垄、琼海沙老、南港、博敖、潭门、文峰岭、文昌辅前、三更寺、陵水乌石-港坡、万洲坡、新村港、南湾岭、三亚马岭、儋州龙山、徐闻柳尾、陆丰甲子、阳江南山海、吴川吴阳、厦门黄厝、诏安宫口、合浦石康、保山板桥、藤县东胜、三吉壤、翰池、苍梧、定南车步、赤水、健康大同、岳阳新墙河、华容三郎堰、湘阴望湘、勐海勐河、勐往、健康付家河、月河恒口、岑溪义昌河、陵水陵水河、珲春珲春河等地。
3、超基性至中基性区域蜕变岩区,是寻觅金红石矿床的好去处。如枣阳大阜山、代县碾子沟、瑞安仙岩、大河熊山谷、西峡县八庙子沟、新县红显边、杨冲、莱西刘家庄等地。
4、人工重砂反常。因为钛矿藏比重较大,抗风化能力强,在风化剥蚀条件下,易于堆积于水系下流、堆积物或土壤底层,并富集成矿。有时在堆积的铝土矿及红土内也有钛的集合。
5、磁反常。常用于寻觅原生钛矿,因为原生钛矿中的钛铁矿、钛磁铁矿具有弱磁性,并且岩浆型和蜕变型钛矿中往往与磁铁矿共生或伴生,会显示出较强的磁性。
怎么找铀矿
依据地质环境,可将铀资源划分为以下矿床类型:
1)不整合型产于大型腐蚀不整合面邻近,多构成于16亿年-18亿年前,往往含有砷、镍、钼和金等元素;
2)砂岩型原生矿石中含有的铀矿藏是沥青铀矿和铀石,氧化后生成次生铀矿藏,如钾铀矿、钒钙铀矿和铀矿,合适原地浸出;
3)石英卵石砾岩型仅存在于缺氧条件下构成的早元古代堆积岩中,如兰德式矿床,为黄金的副产品;
4)脉型指填充于裂缝、裂隙或角砾岩中的矿床;
5)角砾杂岩型构成于非造山期的元古代古陆中,围岩为富含火山碎屑的石英岩和堆积岩,铀矿化产于近花岗基底杂岩之上的岩层中,矿石一般呈层状和不整合方式产出,伴有铜、银、金等;
6)侵入岩型(斑岩型)是指与侵入岩或深源岩有关的铀矿床,如白岗岩和碳酸岩;
7)磷灰岩型指含有低档次铀的磷灰岩,为磷酸工业的副产品;
8)破火山口型赋存于破火山口中,铀和钼、银等富集在火山筒的渗透性角砾岩填充物中和火山筒周围的弧形开裂带中;
9)火山岩型产于酸性火山岩的层状或锥状火山组织中,与钼、氟等伴生;
10)钙结砾岩型是构成于第四纪,埋藏浅,与钙化堆积物有关,堆积环境是泥碳、沼地、岩溶窟窿和裂隙;
11)告知型产于微斜长石花岗岩的告知岩中;
12)蜕变型构成在堆积蜕变岩或火山堆积岩中;
13)褐煤型产于褐煤和直接接近褐煤的粘土或砂岩中;
14)黑色页岩型五元素缔造,铀的含量很低,只能作为副产品;
15)其他类型矿床,如美国新墨西哥州格兰茨区的托迪尔托石灰岩矿床。
找铀矿标志
1、因为铀具有放射性,能够用航空放射性丈量和地上放射性丈量来寻觅铀矿床;
2、使用色彩斑斓的铀的次生矿藏来寻觅,如钙铀云母、铜铀云母、铀矿、钒钾铀矿、橙黄铀矿等;
3、使用共生脉石矿藏的变色来寻觅铀矿,放射性能使萤石变紫、水晶成为烟水晶、钻石变绿、黄玉发蓝,锆石中的铀能够在黑云母中发生多色性晕圈。放射线的照耀能使一些矿藏宣布荧光、磷光;
4、使用特征的围岩蚀变来寻觅,与铀矿化有关的蚀变组合有:硅化、红化、绢云母化、绿泥石化和碳酸盐化等。红化可使钾长石、斜长石、绿泥石,乃至石英、方解石等变红,这是因为含铁矿藏的二价铁受放射性效果而变成三价铁所造成的,在这些矿藏中往往呈现微粒赤铁矿,首要沿解理纹及不规则的裂隙散布;
5、具有铀、钍地球化学反常;花岗岩基底的红盆地周边的砂岩、黑色岩系、含煤含磷层位、碱告知岩区、火山红层区等。
钛锆矿选矿方法介绍
2019-02-21 10:13:28
钛锆矿的选矿所选用的选矿办法及工艺流程取决于矿床类型、矿石性质及矿藏组成等要素。鉴于钛原生矿(脉矿)矿石性质比较附近,意图矿藏品种比较简略,所选用的选办法及工艺流程共性较强;而钛砂矿和锆砂矿矿床中的钛、锆矿藏多与独居石、磷钇矿、锡石及贵金属等共生,呈归纳性砂矿床产出,所以,钛、锆砂矿的选矿从粗选至精选多钠入一起的选矿工艺流程中进行。基此在本节中对钛、锆矿的选矿分为钛原生矿(脉矿)主矿及钛、锆选矿选矿两部分叙说。
一、钛原生矿(脉矿)的选矿
现在工业上运用的钛原生矿(脉矿)均系含钛的复合铁矿。为运用其间的钛资源,依矿石性质而异,整个选矿进程可分预选、选铁及选钛三个阶段。其间选钛部分又可分为粗选及精选两个阶段进行。
(一)预选
有的钛脉矿矿石,在破碎到必定程度的粗粒状态下即有适当数量的脉石到达根本单体解离,这些粗粒单体脉石可选用预选作业将其丢掉,到达添加选厂处理才能及进步当选档次的意图。预选作业可依据矿石性质在磨矿作业前的粗、中、细碎作业的适合阶段进行。预选常用办法为磁选及重选两种。
(二)选铁
含铁复合铁矿,现在工业上运用的首要意图是取得供炼铁用的铁精矿;关于含钒高的矿石则是取得供炼铁及提钒的钒铁精矿。选铁选用简略有用的磁选法进行。当选矿石经破碎(或先经预选)及磨矿,使其到达可选的单体解离度后,选用鼓式、带式弱磁场温式磁选机选出铁精矿或钒铁精矿,磁选尾矿即为归纳收回钛的质料。
有的矿石铁、钛矿藏嵌布细密,选用单一选矿办法难以取得独自的精矿,则只经重选丢掉尾矿,将所取得的铁、钛混合精矿,直接进行熔烧及熔炼,出产出高纯生铁及铁渣产品。
(三)选钛
钛脉矿中钛的收回是在选出铁精矿后的磁选尾矿中进行。选钛选用的办法有重选、磁选、电选及浮选法,依矿石性质而异,选用适合的选矿办法组成不同的工艺流程进行选别。现在工业上所选用的选矿工艺流程有以下几品种型:
重选-电选工艺流程
重选-电选工艺流程特点是选用重选法粗选,电选法精选。重选选用的设备首要是螺旋选矿机(包含螺旋溜槽),其次为摇床。选用圆锥选矿机重选,现在已进行到工业实验阶段,但至今没有正式用于出产。在重选粗选阶段意图是丢掉低密度脉石,取得供电选用的粗精矿。
电选选用的设备为辊式电选机,其意图是将重选粗精矿进一步富集,使产品到达终究精矿标准。关于含硫矿石,在粗、精选工艺之间一般选用浮选法作为脱除硫化矿的辅佐工艺。
重选-磁选-浮选工艺流程
重选-磁选-浮选工艺流程特点是对进入钛选其他原矿,首要分级,租粒级选用重选粗选,磁选精选,细粒级选用浮选。重选选用摇床,磁选选用干式磁选机进行。浮选给矿粒度一般为-0.074毫米,所用浮选剂有硫酸、、油酸、柴油及等。
单一浮选工艺流程
单一浮选法是选别细粒嵌布钛脉矿比较有用的选矿办法。单一浮选工艺简略,操作办理便利,但由于药剂耗费会添加本钱,一起存在尾矿排放所带来的环境保护问题,所以现在工业运用尚不广泛。
钛浮选选用的浮选剂有硫酸、塔尔油、柴油及乳化剂Etoxolp-19等。为进步浮选作用,对当选矿与浮选剂在浮选前进行高浓度长期拌和具有必定作用。
二、钛锆砂矿的选矿
钛锆砂矿首要矿床类型为海边砂矿,其次为内陆砂矿。钛锆砂矿是原生矿在天然条件下经风化、破碎、富集生成。具有易采、易选、出产本钱低,产品质量好及伴生矿藏品种多,归纳收回价值大等长处,是比较抱负的矿产资源之一。铁铅砂矿是现在世界上钛铁矿、金红石、锆英石及独居石等矿产品的首要来历。
钛、锆砂矿除少数矿体上部有覆盖层需经剥离外,一般不需剥离即可选用千采或船采机械进行挖掘。干采机械有:推土机、铲运机、装载机及斗轮挖掘机等;船采所用采船有链斗式、搅吸式及斗轮式三种。采出矿石经皮带运输机或砂泵管道运送至粗选厂。
钛、锆砂矿选厂分粗选及精选两个阶段进行。
(一)粗选
送至粗选厂的矿石,首要通过除渣、筛分、分级、脱泥及浓缩等必要的预备作业,然后给人粗选流程进行选别。
粗选的意图是将人选矿石按矿藏密度不同进行别离,丢掉低密度脉石矿藏尾矿,取得重矿藏含量达90%左右的重矿藏混合精矿,作为精选厂给料。
粗选厂一般与采矿作业纳为一体,组成采选厂。为习惯砂矿床特征,一般粗选厂均建为移动式,移动方法有水上浮船及陆地轨迹、履带、托板及定时拆迁等方法。
钛、锆砂矿粗选一般选用处理量大,收回率高又便于移动式选厂运用的设备,较遍及的是圆锥选矿机及螺旋选矿机,少数选用摇床。上述设备有单一运用的,也有合作运用的:单一圆锥选矿机首要用于规划大或原矿中重矿藏含量高的粗选厂;大都厂选用以圆锥选矿机粗选,螺旋选矿机再精选;一些规划较小的选矿广,往往选用单一的螺旋选矿机粗选。
(二)精选
钛、锆砂矿多系含有几种有价矿藏的归纳性矿床,精选的意图是将粗精矿中有收回价值的矿藏进行有用的别离及提纯,到达各自的精矿质量要求,使之成为产品精矿。
精选厂一般建成固定式。粗精矿选用轿车、火车或管道运送等方法运输到精选厂处理。精选作业分为湿式及干式两个阶段,以干法作业为主。依据粗精矿的性质,在精选工艺的前段一般选用部分湿法作业。有时在精选进程中还存在干法、湿法替换的进程,不过从能源耗费及简化工艺流程视点考虑,在或许条件下力求削减这一进程。
精选厂的湿法作业品种有:选用摇床或螺旋选矿机重选,进一步丢掉残存在粗精矿中的密度小的脉石矿藏,关于含盐份的粗精矿,一起具有清洗盐份的作用;选用湿式磁选法预先选出部分易选钛精矿,削减干选当选矿量;在粗精矿中参加、、稀、焦亚等某种药剂进行高浓度拌和,到达铲除矿藏表面污染,进步精选作用的意图;选用浮选法进行锆英石、独居石产品的精选。
干式精选是按产品中各矿藏间的磁性、导电性、密度等差异进行分选。依粗精矿组成及性质而异,干选工艺流程的结构改变较大。关于矿藏组成比较复杂,归纳收回矿藏品种较多的粗精矿的干选,流程比较复杂,作业较多,流程结构改变也较大;关于矿藏组成简略的粗精矿,干选流程则很简略。
磁选是选用不同类型及场强的磁选机,比照磁化系数不同的矿藏间的分选,常用的磁选设备有:盘式(单盘、双盘、三盘)、穿插带式、辊式、对极式等磁选机,在干选流程中一般是首要选用弱磁选分选出强磁性矿藏-磁铁矿,然后选用中磁场选出大部分磁性较强又比较易选的钛铁矿产品。强磁选则用于部分磁性较弱的钛铁矿及独居石与非磁性矿藏锆英石、金红石、白钛石等的别离。
电选是运用粗精矿中矿藏间导电性的差异进行分选。所用电选机有辊式、板式、筛板式三种。电选在粗精矿干选流程中常用于导体与非导体矿藏间的分组;金红石与锆英石的别离;难选钛铁矿及锆英石、独居石等矿藏的精选。
在出产实践中,有时采纳改变磁场及电场强度等操作条件,使电、磁选作业替换进行,以增进分选作用。
钛原生矿(脉矿)的选矿
2019-01-31 11:06:17
现在工业上使用的钛原生矿(脉矿)均系含钛的复合铁矿。为使用其间的钛资源,依矿石性质而异,整个选矿进程可分预选、选铁及选钛三个阶段。其间选钛部分又可分为粗选及精选两个阶段进行。
一、预选
有的钛脉矿矿石,在破碎到必定程度的粗粒状态下即有适当数量的脉石到达根本单体解离,这些粗粒单体脉石可选用预选作业将其丢掉,到达添加选厂处理才能及进步当选档次的意图。预选作业可根据矿石性质在磨矿作业前的粗、中、细碎作业的适合阶段进行。预选常用办法为磁选及重选两种。
二、选铁
含钛复合铁矿,现在工业上使用的首要意图是取得供炼铁用的铁精矿;关于含钒高的矿石则是取得供炼铁及提钒的钒铁精矿。选铁选用简略有用的磁选法进行。当选矿石经破碎(或先经预选)及磨矿,使其到达可选的单体解离度后,选用鼓式、带式弱磁场温式磁选机选出铁精矿或钒铁精矿,磁选尾矿即为归纳收回钛的质料。
有的矿石铁、钛矿藏嵌布细密,选用单一选矿办法难以取得独自的精矿,则只经重选丢掉尾矿,将所取得的铁,钛混合精矿,直接进行焙烧及熔炼,出产出高纯生铁及钛渣产品。
三、选钛
钛脉矿中钛的收回是在选出铁精矿后的磁选尾矿中进行。选钛选用的办法有重选、磁选、电选及浮选法,依矿石性质而异,选用适合的选矿办法组成不同的工艺流程进行选别。现在工业上所选用的选矿工艺流程有以下几种类型:
重选-电选工艺流程
重选-电选工艺流程特点是选用重选法粗选,电选法精选。重选选用的设备首要是螺旋选矿机(包含螺旋溜槽),其次为摇床。选用圆锥选矿机重选,现在已进行到工业实验阶段,但至今没有正式用于出产。在重选粗选阶段意图是丢掉低密度脉石,取得供电选用的粗精矿。
电选选用的设备为辊式电选机,其意图是将重选粗精矿进一步富集,使产品到达终究精矿标准。关于含硫矿石,在粗、精选工艺之间一般选用浮选法作为脱除硫化矿的辅佐工艺。
重选-磁选-浮选工艺流程
重选-磁选-浮选工艺流程特点是对进入钛选其他原矿,首要分级,粗粒级选用重选粗选,磁选精选,细粒级选用浮选。重选选用摇床,磁选选用于式磁选机进行。浮选给矿粒度一般为-0.074毫米,所用浮选剂有硫酸、、油酸、柴油及等。
单-浮选工艺流程
单-浮选法是选别细粒嵌布钛脉矿比较有用的选矿办法。单-浮选工艺简略,操作办理便利,但由于药剂耗费会添加本钱,一起存在尾矿排放所带来的环境保护问题,所以现在工业使用尚不广泛。
钛浮选选用的浮选剂有硫酸、塔尔油、柴油及乳化剂Et-oxolp-19等。为进步浮选效果,对当选矿与浮选剂在浮选前进行高浓度长期拌和具有必定效果。
立式粉磨机制备超微细重质碳酸钙
2019-03-07 09:03:45
重质碳酸钙,简称重钙,是由天然碳酸盐矿藏如方解石、大理石、石灰石经破碎与粉磨而成,是重要的绿色环保、节能减排、契合国家可持续发展的非金属矿藏材料,可广泛使用于塑料、涂料和橡胶等职业。
图1 重质碳酸钙的使用范畴我国重钙首要出产基地1
我国国重质碳酸钙出产基地首要有广西贺州、广东连州、浙江建德和四川宝兴等,广西贺州被称为“我国重钙之都”,年产重质碳酸体达800万吨以上,产品商场占有量到达60%以上,是全国最大的重质碳酸体出产基地。
图2 广西贺州碳酸钙千亿元工业演示基地重质碳酸钙出产工艺
2
重质碳酸钙工艺首要有干法、湿法和干湿结合法。
(1)干法工艺
重质碳酸钙干法出产工艺一般有球磨-分级机多种规格产品粉磨体系、雷蒙磨混合振动磨-分级机组合粉磨体系、气流磨-分级机组合体系、立式拌和磨-分级机组合粉磨体系。
(2)湿法工艺
重质碳酸钙干法出产工艺一般有卧式磨串并联组合体系、立式磨单机开路粉磨体系、和立式磨多机串联粉磨体系。湿法出产的滤饼、浆料可直接供应,或经冲击式自磨、枯燥体系枯燥成粉体产品。
(3)干湿结合工艺
干湿结合法行将两种工艺进行组合,其出产工艺流程见图。
图3 重质碳酸钙干湿结合出产工艺常见的超细粉磨设备3
选用雷蒙磨、立式磨、球磨机、旋磨机和高速机械冲击式破坏机等粉磨设备,产品细度多在200-1250目之间,想要得到1250-2500意图超细重质碳酸体,须将磨机和干式精密分级机组合,多段分级,接连闭路进行出产,循环负荷高达300-500%。
立式粉磨机的作业原理4
图4 立式粉磨机结构(1)研磨
质料由反转下料器进入主机,在底部磨盘滚动的离心力下,质料被推送至磨轮之间进行研磨,三个磨轮均有独自的油压连杆操控研磨压力,油压体系所输出的安稳压力为70-75kg/cm2,使质料于三个磨轮与磨盘之间进行研磨,油压体系配备有六个蓄压器可吸收颗粒状质料开始破坏时所发生出来的震动力。
(2)分级
质料由磨轮和磨盘之间研磨成细粉之后,自磨盘周围溢出,跟着环带状气流上升,进入上端的滚动锥形分级叶片区,经过分级叶片区较粗的粉无法经过以设定转速的分级叶片区,而直接落在下部持续研磨,经过分级叶片区的粉末称为细粉,这些细粉将被收人在后段收尘设备中。
(3)制品
细粉跟着气流经过分级叶片后,进入旋风收尘器或是脉冲式袋式收尘器中,收尘设备搜集细粉后,被别离的空气会借风机再次运行至体系中,整个体系中的气流呈负压状况,然后将不会导致因粉尘的数量而发生的环境污染。
立式粉磨机制备重工艺5
(1)方解石经过选矿、水冲刷等除掉杂质,暴晒风干送入堆棚。
(2)分一段或许两段进行破碎,如有大块石料,须先送入鄂式破碎机粗碎,之后再进入锤式破碎机细碎,破碎后的细石料经斗式提高机送入质料储库待用。
(3)闭路粉磨分级体系中,首要细石料从质料库由定量给料机送入立式粉磨机粉磨-分级体系,较细产品将直接被搜集到高浓度高压脉冲袋式收尘器内,经过分级叶片可将产品细度操控在500-3000目之间调理,之后进行包装。粗粉再次进入立式粉磨机,与质料混合,从头粉磨。
图5 姑苏某公司立式粉磨机制备重质碳酸工艺选用立式粉磨机制备重质碳酸,具有简略高效、能耗低、噪音小等优势。
重钙出产技能发展趋势6
(1)商场关于超微细重质碳酸钙产品的需求愈来愈多,分级机作为超细粉加工关键设备,其发展趋势将在超微细范畴使用。当时,国内加工3000目以下超微细产品的分级机技能比较老练,但是加工3000目以上超微细产品的分级机技能有待开发。
(2)以产品质量安稳、出产成本下降为意图,在新建厂及现有厂的技能改造中选用低能耗、低损耗、操作保护便利、功能安稳的老练设备。
(3)出产过程的自动化和智能化程度有待进一步提高。
钛矿的浮选药剂制度实例
2019-02-20 09:02:00
常见的含钛矿藏有钛铁矿、金红石、钙钛矿和榍石。它们的可浮性如下。
钛铁矿(FeTiO3)和金红石(TiO2)用羧酸及胺类捕收剂都能浮游。但用羧酸类捕收时,脉石矿藏不易浮游,故羧酸类用得较多。工业上常用的详细药剂有油酸、塔尔油和环烷酸及其皂。并且常用火油为辅佐捕收剂。钛铁矿和金红石浮选之前,先用硫酸洗刷矿藏表面,能够进步它们的可浮性,下降捕收剂的用量。
用羧酸捕收钛铁矿和金红石时,PH=6~8,两种矿藏都浮游得比较好。在PH<5的酸性介质中,吸附于钛铁矿表面的油酸简单洗脱,洗刷后钛铁矿的可浮性显着下降。
钠和能够阻止十三酸和油酸钠在钛铁矿的表面固着,下降它们在钛铁矿表面的固着量,因而能按捺钛铁矿,硅酸钠关于钛铁矿也有必定的按捺作用。
钛铁矿浮选的回收率与调整时矿粒的絮凝和涣散状况有关。假如作调整槽传动轴的净功耗与调整时刻的联系曲线,可按其功耗的大小将调整时刻分红五个阶段,即感应阶段、絮凝阶段、絮凝高峰阶段、絮凝损坏阶段和涣散阶段,如图1所示。各阶段的回收率和精矿档次的联系如图2所示。
图1 净功耗与调整时刻的联系
1—感应阶段;2—絮凝阶段;3—絮凝高峰阶段;
4—絮凝损坏阶段;5—涣散阶段
图2 钛铁矿的回收率与档次的联系
2—絮凝阶段;3—絮凝高峰阶段;
4—絮凝损坏阶段;5—涣散阶段[next]
由图可见,矿浆开端絮凝时(絮凝阶段),净功耗、钛铁矿回收率和脉石回收率都上升;抵达絮凝高峰阶段,矿浆充沛絮凝,净功耗、钦铁矿回收率和脉石回收率都达到了极点;抵达絮凝损坏阶段,钛铁矿的回收率不变,精矿档次添加,净功耗和絮凝程度下降;抵达涣散阶段,精矿档次下降,回收率最小。
升高矿浆温度,捕收剂膜的疏水性增大,钛铁矿的回收率添加而精矿档次下降。充气对钛、锆矿藏有显着的影响。充空气60~120s,金红石和钛铁矿的回收率都上升而锆英石的回收率下降。若只充入氮气,则两种钛矿藏遭到按捺而锆英石能照旧浮游。
钙钛矿(CaTiO3)能够先用硫酸处理,经冲刷后用油酸或其他脂肪酸浮游。苏打和水玻璃能够按捺它,而铬酸盐和重铬酸盐能够活化它。当矿石中方解石多时,会使酸洗的耗酸量增大。为了削减酸的用量,在浮钙钛矿之前能够先浮方解石。
榍石CaTiSiO5能够用火油乳化的油酸捕收,能够被水玻璃按捺。其可浮性较其他含钛矿藏差,更比磷灰石等碱土金属盐类矿藏差,假如伴生的磷灰石多能够先浮磷灰石。
A 钛锆矿的选别办法及实例
钛锆矿的选别办法 钛铁矿、金红石和锆英石常常伴生,密度都在4.0~4.7g/cm3之间,用重选法选别时,它们一起进入重砂中。它们的可浮性也很挨近,用乳化油酸浮选时,它们一起进入混合精矿中。它们的混合精矿准则上有两种别离办法:
(1)先用磁选法分出钛铁矿(磁选也能够放在浮选之后),其非磁性部分用钠按捺锆英石,用乳化油酸在pH= 3.8~4.6的介质中浮选金红石。
(2)用硫酸按捺金红石,用乳化油酸或阳离子捕收剂浮选锆英石。
B 某钛锆矿浮选实例
该矿矿石为石英砂矿床,80%~95%的钛铁矿及金红石小于0.15mm,100%的铅英石小于0.15mm。先用摇床选别得到它们的混合精矿。然后将摇床精矿按图3所示的流程处理。
图3 钛锆摇床精矿别离流程
纳米金属氧化物在钙钛矿电池中的应用研究进展
2019-01-04 13:39:36
纳米金属氧化物半导体已被广泛应用于场效应管、气体探测器、锂离子电池以及超级电容器等诸多电子器件。随着染料敏化电池、有机薄膜太阳能电池以及无机有机杂化电池技术的不断革新,纳米金属氧化物已作为此类电池中重要的电极材料应用于太阳能电池领域。钙钛矿是一种具有高吸光系数、高载流子迁移率与寿命和可控带隙的半导体,加之制备工艺简便,成本低廉,受到国内外学术界的广泛关注。短短数年间此类“钙钛矿型太阳能电池”(PSCs)的小面积的单电池效率已突破20%,1cm2以上大面积电池也达到了15%以上的认证效率。钙钛矿电池结构可分为量子点敏化型、介观结构钙钛矿电池和平板结构钙钛矿电池三大类,如图1所示。图1量子点敏化、平板和介观结构钙钛矿电池结构示意图钙钛矿电池中的纳米氧化物致密层钙钛矿电池中的致密层主要发挥载流子的选择性传输的作用。由于分离后的自由电子与空穴易在界面处产生复合,因此引入一层致密层材料有利于通过电极材料间的能级势垒差选择性地让载流子通过,抑制界面复合。依据通过的载流子种类的不同,可以将致密层区分为电子选择层或空穴选择层;或相对应的以阻挡的载流子命名为空穴阻挡层或电子阻挡层。一般而言,性能优异的致密层需要满足以下三点要求:第一,光学性能良好。即不影响钙钛矿层对可见光的吸收。第二,能带结构与电极、敏化材料等相匹配,通过电池各功能层间合适的能带架构,达到高效选择性注入所需载流子,并阻挡另一种载流子的目的。第三,致密层薄膜厚度合适。一方面,致密层厚度增加有利于提高覆盖率,减少致密层孔洞数量,降低复合率;另一方面,致密层本身电阻影响电池性能。钙钛矿电池中的纳米氧化物骨架在介观结构的钙钛矿电池中,纳米氧化物发挥两大主要作用:第一,TiO2、ZnO、SnO2等电子传输材料可以作为介观结构钙钛矿电池的电子传输层,参与电池中载流子输运过程;第二,由于钙钛矿自身即可传递载流子,上述材料及Al2O3、ZrO2等高带隙氧化物也可以作为钙钛矿生长结晶的骨架,用于支撑钙钛矿层的生长。相比较于平板型电池,介观结构电池在测试时往往具有更高的稳定性,电池的迟滞效应相对较小,载流子收集效率相对较高。本节将介绍近两年来氧化物半导体载流子传输材料与介孔绝缘骨架材料在介观结构钙钛矿电池中的制备及其改性方法对钙钛矿电池性能的影响。介观结构电子传输层自2012年首个全固态钙钛矿电池问世以来,以TiO2介孔纳米颗粒为代表的电子传输层被广泛地应用于钙钛矿电池中。与致密层材料类似,符合电池能级结构匹配、高载流子迁移率的半导体均可能作为介观结构的电子(或空穴)传输层材料。介孔层一般使用商用TiO2介孔颗粒浆料经稀释后旋涂,后经高温热处理而制备,但若想使用ZnO、SnO2等非TiO2介孔层,或调节介孔层性能,或设计无需高温烧结能够应用于柔性钙钛矿电池中的介孔层,则需通过溶胶–凝胶法、水热法、电化学法等制备介孔层材料。除了纳米颗粒,多维结构也被应用于钙钛矿电池电子输运层中。尽管多维结构的电池效率略低于传统介孔结构,但基于DSSCs与HSCs中一维纳米阵列光阳极的研究表明,一维的纳米结构相比纳米颗粒具有更高的表面积以及更好的光散射能力;并且,一维纳米结构独特的形貌为电子输运提供了连续的传输路径,因此此类结构有可能应用于高性能钙钛矿电池。而其合成方法有水热法、电纺丝等多种方法,如图2所示.图2基于TiO2“纳米碗”电子传输层的钙钛矿电池制备流程示意图类似于致密层的改性,介孔层改性不仅能够影响介孔层本征电子传输特性,也能够影响其与钙钛矿层的界面。此外,由于TiO2具有光催化活性,在紫外光照射下会发生价电子受激跃迁,形成价带空穴h+,而光生空穴有很强的氧化性,因此表面包覆也有助于降低TiO2对钙钛矿的降解作用,提升钙钛矿稳定性。由前述致密层改性及本节介孔层改性可以看出,改性不仅可能影响钙钛矿电池内载流子的输运性能,还可能影响制备的钙钛矿层形貌结构及电池的稳定性。但无论是在平板结构还是介观结构钙钛矿电池中,氧化物改性均围绕着两大主题,即通过改变半导体本征特性与改变致密层/钙钛矿界面影响钙钛矿电池性能。介观结构绝缘骨架层以绝缘Al2O3介孔层为骨架的介观结构钙钛矿电池,电池结构如图3所示,这种结构的电池效率达到了10.9%,比选用介孔TiO2电子传输层高约2%。由于Al2O3是一种宽带隙半导体材料,其导带底远高于钙钛矿导带底,因此能带结构阻挡了电子的传递,从而使纳米Al2O3颗粒仅仅起到了支撑钙钛矿生长的骨架作用。相比介孔TiO2电子输运层,绝缘Al2O3骨架有以下两大优势:图3(左)含介孔TiO2颗粒和(右)含介孔Al2O3颗粒钙钛矿电池载流子传输示意图首先,在含有Al2O3介孔层的钙钛矿电池中,由于电子在钙钛矿内的传递速度大于在TiO2介孔颗粒中的传递速度,电子直接由钙钛矿传递到致密层表面,传输速率更快,从而使电池效率更高。其次,使用Al2O3绝缘骨架的电池有更好的稳定性。TiO2是一种光催化材料,为解决长期稳定性,需要对TiO2介孔层进行一些表面修饰以减缓其对钙钛矿层的降解。而对于Al2O3,则有报道指出添加一层Al2O3介孔颗粒有助于提升电池性能及稳定性,这是由于Al2O3绝缘层起到了屏蔽电极间载流子复合引起的漏电流。此外,绝缘介孔骨架还常常用于无HTM的钙钛矿电池中。总结与展望纳米氧化物功能层对电池效率有着至关重要的作用。研究表明,纳米氧化物材料的形貌设计、修饰改性等显著地影响其物化性能或钙钛矿/氧化物界面性质,进而影响钙钛矿电池的性能。但由于钙钛矿电池结构体系繁多、界面复杂,对于其中的纳米氧化物材料,仍有许多科学问题尚待解决:氧化物改性以提高钙钛矿电池稳定性氧化物纳微结构设计及界面改性应用于柔性钙钛矿电池上的氧化物致密层/介孔层制备工艺随着钙钛矿电池单电池效率不断提升,以及未来柔性电池的实际使用需求,氧化物层设计要求不需经过高温烧结、且能在大尺寸上保持电极形貌、性能的均匀性。而现有制备方法中,溅射等物理法成本高昂,而溶胶–凝胶旋涂等化学法往往由于致密层均匀性不佳而使钙钛矿电池性能缺乏竞争力。因此亟需兼顾电极性能与制备成本的氧化物致密层与介孔层制备方法。文章选自:《无机材料学报》作者:王伟琦, 郑惠锋, 陆冠宏等
重质碳酸钙粉体颗粒为什么会团聚?
2019-01-04 17:20:24
导读ID:bjyyxtech重质碳酸钙( GCC) 是一种广泛应用的非金属 矿物粉,白度高、遮盖力好、流动性优良,是造纸用 颜料的主要来源。 造纸用涂料要求高浓低黏,使重 质碳酸钙分散成高浓度变得非常重要。 目前对碳酸 钙颗粒分散已有较广泛的研究,但主要集中在高效 分散剂的制备及对分散效果的影响研究上,对碳 酸钙分散机理也有部分研究,获得的信息对超细 碳酸钙分散提供了借鉴。 但要制备高浓度高分散性 的重质碳酸钙, 还必须全面了解 GCC 颗粒的团聚 机理、GCC 分散机理以及 GCC 的分散效果科学评价这三个环节。 重质碳酸钙( GCC) 是一种广泛应用的非金属 矿物粉,白度高、遮盖力好、流动性优良,是造纸用 颜料的主要来源。 造纸用涂料要求高浓低黏,使重 质碳酸钙分散成高浓度变得非常重要。 目前对碳酸 钙颗粒分散已有较广泛的研究,但主要集中在高效 分散剂的制备及对分散效果的影响研究上,对碳 酸钙分散机理也有部分研究,获得的信息对超细 碳酸钙分散提供了借鉴。 但要制备高浓度高分散性 的重质碳酸钙, 还必须全面了解 GCC 颗粒的团聚 机理、GCC 分散机理以及 GCC 的分散效果科学评价这三个环节。重质碳酸钙颗粒团聚机理
用于造纸涂料的重质碳酸钙是一种经湿磨后 得到的微细颗粒,颗粒的细度级别因用途不同而不 同, 如涂料的底涂 GCC 可稍粗, 面涂 GCC 必须细 小,细度达到 95%以上(从热力学的角度来说,由于超细粉体拥有巨大 的比表面积,其表面能相当大,造成体系处于相对 极不稳定的热力学状态。 而且固体的微细化过程 中,小粒子的内部结合力、晶格不断地被破坏,颗粒表面形成许多不饱和键, 使颗粒的表面活性和体 系的总能量不断增加,使超细粉的表面性质变得更加活跃,必须吸附周围的物质。 通常在介质中加入 分散剂以稳定颗粒。重质碳酸钙颗粒团聚通过三个作用力进行,一是吸引力(电磁力,负值),二是排斥力(静电力),三是空间位阻力。 三个力之和正值越大,表示斥力越大, 颗粒越稳定;三个力之和负值越大,表示吸引力越 大,颗粒越团聚。 由于这三种力引起的原因不同,可分别分析和计算位能。电磁力也就是常说的范德华引力,是由于相互 作用的粒子内部偶极的影响产生的,表现为相互吸 引。 它的计算可用下式粗略表示:VA/KT=-A(d/H)( 1)式中:VA-吸引力;KT-粒子的动能, 即所有粒 子布朗运动具有的动能;K-Boltzmann 常数;T-绝对 温度;A-常数,代表溶液特性;d-粒子直径;H-粒子外表面分隔距离。由式( 1) 可知,颗粒越细,颗粒间吸引力越小; 分散体系中颗粒数越少,分开距离远,颗粒间吸引 力越小。 同时介质特性很重要。而静电排斥力起因于溶液及粒子表面上电荷 的分布不均匀,主要是加入体系中的电解质型分散 剂,使粒子表面吸附离子,造成粒子间的排斥现象。 总的情况就是电荷的双电层, 一层位于粒子的表面,另一层存在于扩散区域,向外伸入溶液。 双电层的厚度与离子浓度、离子价数有关,增加离子价或离子浓度均降低双电层厚度 d, 该厚度降低会降低粒子间的排斥力 VR。这个排斥力还与溶液介电常数θ、粒子直径 d、Zeta 电位 ζ,两粒子间表面距离 H 有关,粗略表达如下:
VR/KT= 0.01θ d ζ2ln (1+exp-H/δ)(2)习惯上吸引力 VA 为负值, 排斥力 VR 为正值, 吸引力及排斥力的和可表示分散粒子的稳定性,和为正,则以分散稳定为主,和为负,则发生絮聚。 两者和的表达式为:VR+VA= 0.01θ d ζ2ln (1+exp-H/δ)- A(δ/H)( 3)从方程(3)看出,颗粒分散稳定性的影响因素多 而复杂。 对于水性分散体系,θ 一定, 增加颗粒的表 面 Zeta 电位,可明显提高排斥力;双电层厚度 δ 增大,也可提高排斥力;而粒子直径 d 和两粒子间距 离 H 对排斥力的贡献则具有不确定性。而空间位阻力是颗粒吸附高聚物后, 使颗粒 互相靠近变得困难,产生了一种新的斥力位能— 空间位阻能(VSR),它的计算可采用如下式进行:
(4)式中:R 为颗粒半径;δ 为高分子吸附层厚度, 相当于吸附分子长度;H 为颗粒间的间距;K 为 Boltzmann 常数,1.381×10-23 J·K-1;Ar 为一个大分子 在颗粒表面所占面积;若大分子在颗粒表面上的吸 附量较小,吸附层厚度可用经验公式表示为:
(5)
式中:MW 为高分子吸附质的相对分子质量。 由式( 4) 看出,空间位阻位能的影响因素多,关系复 杂,较难直接观察,必须计算。当体系中加入离子型高分子表面活性剂作为分散剂时,分散体系稳定性增加,体现在以下几方 面:1) 高分子电离后,吸附在颗粒表面的电荷增加,Zeta 电位增加 ,同时双电层厚度也增加 ,根据式( 2),颗粒之间的静电斥力位能(VR)增加 ;2)高聚物吸附在颗粒表面, 引起粒子间距离增大, 根据式(1),颗粒间的引力位能(VA)减小;3)颗粒吸附高聚 物后,根据其相对分子量,可计算吸附层厚度,根据 式( 4),吸附层厚度和该大分子在颗粒表面所占面 积一起作用,如果吸附量多,但在颗粒表面所占面 积并不大,根据式( 4) 所得的空间斥力位能较大。 而吸附分子所占颗粒面积超过 1 倍时,空间斥力位能 有可能减小,也就是高聚物在分子量更高时可作为 絮凝剂的原因。 分散体系总的位能 VT 为
VT = VR+ VA+ VSR ( 6)分散颗粒是否团聚取决于分散体系总位能的 大小,如果数值为正,则团聚不明显,相反,数值为 负,颗粒必定再团聚。 因为分散体系总能量是相对 于粒子的布朗运动能量来分析的,因而总有一些粒 子的能量高于布朗运动粒子的平均能量,保持颗粒分散状态的最好的总位能不能刚好为 0, 小于 0 颗粒必定团聚。
白钨矿(Scheelite)(又称钨酸钙矿)
2019-01-21 10:39:06
Ca[WO4]
【化学组成】由于W和Mo离子半径几乎相等,因此,白钨矿中W与Mo为完全类质同像,成
为白钨矿—钼钨矿系列。高温时,Mo含量高;与辉钼矿共生的白钨矿中,Mo含量也高。部分的Ca可被Cu和TR代替。
【晶体结构】四方晶系;a0=0.525nm,c0=1.140nm;Z=4。白钨矿晶体结构简单,是由稍扁平的[WO4]四面体和Ca离子沿c轴相间排列而成。
【形态】晶体常呈四方双锥,也有的沿{001}呈板状(图H-22)。依(110)成双晶普遍。集合体多呈不规则粒状,较少呈致密块状。
图H-22白钨矿晶体
【物理性质】白色、黄白、浅紫等,油脂光泽或金刚光泽;透明至半透明。解理{111}中等;断口参差状。硬度4.5~5。相对密度5.8~6.2(相对密度随Mo的增加而降低)。性脆。具发旋旋光性,在紫外光照射下发浅蓝色至黄色(依Mo的含量而定,Mo增加,荧光变浅黄至白)的荧光。
【成因及产状】主要产于接触交代矿床。也可见于高—中温热液矿床。
【主要用途】重要钨矿石矿物。
钛原生矿选矿厂实例-攀桂花选钛厂
2019-01-21 09:41:18
一、概况
我国攀西地区是一个钒钛磁铁矿矿产资源集中地,该区钛瓷源储量居世界首位,占我国钛资源总储量的95.8%。矿山一期巳投产的是兰尖矿,该矿于l966年开始筹建,1970年投产。采矿为露天开采,选矿采用磁选法选出铁精矿,作为攀枝花钢铁公司炼铁及提钒原料,选矿厂尾矿(磁尾),即为选钛给矿。为充分合理的利用攀枝花钛资源,自1977年以来,全国各有关单位,从选钛、钛富料、钛白到海绵钛等各项工艺技术开展了大量科研工作,并取得了很大成绩,为攀枝花钛的综合利用奠定了基础。在选钛方面,于1970年建成了带有试验厂性质的选钛厂,给综合利用攀枝花钛资源创造了条件,也为将来大型选钛厂的建设打下了技术基础。现有选钛厂仅对部分磁选尾矿进行钛的综合回收,随着钛工业的发展,攀枝花将成为我国钛原料的主要生产基地。
二、矿石性质
攀枝花选钛厂给矿系攀枝花矿山公司密地选矿厂1~4系列的磁选尾矿,一般含TiO28%左右,含泥量较高,-0.045毫米粒级含量达34~39%。钛铁矿嵌布粒度一般在0.4毫米以下,+0.4毫米TiO2品位不高,可作尾矿丢弃。给矿中主要有价矿物为钛铁矿,其次为钛磁铁矿及少量磁黄铁矿等硫化物;脉石矿物以辉石为主,其次为斜长石等。选钛厂给矿主要化学成分、粒度组成及主要矿物含量和性质分别见表1、表2、表3。
表1 磁选尾矿主要化学成分成分TFeTiO2CoCuNiMnO含量,%13.828.630.0160.0190.0100.187成分SiO2Al2O3PSCaOMgO含量,%34.4011.060.0340.60911.217.66 表2 磁选尾矿粒度组成表,%取样日期1980.11.221981.11.30粒级,mmγβTiO2ξγβTiO2ξ+0.634.602.481.323.031.920.74-0.63+0.47.384.633.946.362.562.07-0.4+0.3164.504.632.464.544.392.53-0.315+0.255.355.673.504.946.233.91-0.25+0.15410.379.4311.2813.527.1912.36-0.154+0.111.7611.3515.4014.039.9117.66-0.1+0.0714.4910.395.385.8510.077.48-0.071+0.04515.729.6717.359.899.9912.55-0.04535.739.5139.1934.848.4740.71合计100.008.67100.00100.007.27100.00(续表2)取样日期1983.12.231984.7.5粒级,mmγβTiO2ξγβTiO2ξ+0.632.562.340.703.431.920.68-0.63+0.46.712.832.227.262.722.04-0.4+0.3164.974.012.334.333.341.72-0.315+0.255.445.663.615.144.562.42-0.25+0.15414.498.3014.0314.628.6313.03-0.154+0.112.0410.3814.638.9715.3414.21-0.1+0.0718.2110.8810.465.9510.3917.12-0.071+0.04511.3911.1514.8711.2910.0711.85-0.04534.199.2737.1030.019.1936.03合计100.008.54100.00100.009.68100.00表3 磁选尾矿中主要矿物含量及性质项目钛铁矿硫化物钛磁铁矿钛辉石等斜长石矿相对含量,%11.4~15.31.6~2.14.3~5.445.6~50.330.4~33.3单体解离度,%84.2~37.080.5~84.752.6~60.189.4~91.487.3~92.7密度,t∕m34.19~4.714.58~4.704.74~4.813.1~3.32.65~2.67硬度,kg∕mm2713~752295~426752~795933~1018762~894比磁化系数,cm3∕g240×10-64100×10-6-100×10-614×10-4比电里,Ω·cm1.75×1051.25×1041.38×1033.13×10+3>10+4三、选矿工艺流程及技术指标
攀枝花选钛厂目前生产上采用的是重选粗选、电选精选的工艺流程。流程见图1。图1 选钛生产原则流程
密地选厂磁选尾矿自流到选钛厂,首先进入隔渣筛分脱泥作业,筛分粒度为0.4毫米,筛上产品含TiO2仅为2.35~3.80%,作尾矿丢弃。筛下产品人φ9米浓缩机脱泥,浓缩机溢流作尾矿丢弃,底流进入水力分级机,分成0.4~0.1毫米、0.1~0.04毫米,-0.04毫米三个级别。一级入螺旋选矿机粗选,二级入螺旋溜槽选别,分级溢流(-0.04毫米)作尾矿丢弃。经粗选丢尾后的一级及二级精矿合并,再经浮选脱硫、磁选除铁后,进行过滤干燥,然后再采用风力分级分成0.4~0.1毫米及0.1~0.04毫米两个级别分别进行电选,获得成品钛精矿,电选尾矿作最终尾矿丢弃。技术指标见表4。
表4 选钛厂生产技术指标表指标名称1982年1983年1984年给矿品位,TiO2%8.698.858.95粗选精矿品位,TiO2%29.0529.0529.71粗选尾矿品位,TiO2%6.926.686.31粗选回收率(理论),%26.7031.8437.45电选给矿品位,TiO2%29.0228.9629.34电选精矿品位,TiO2%47.0047.3347.07电选尾矿品位,TiO2%16.5814.3913.22电选回收率(理论),%66.2372.0476.40选钛总回收率(理论),%17.6822.9428.61
酒钢粉矿选别工艺方案优化
2019-01-21 18:04:35
“十二五”末,酒钢计划本部的铁产量将达到1000万t,选矿年处理原矿规模将达到1400万t,年产铁精矿700万t左右,全部供给酒钢本部烧结、炼铁生产。为了保证炼铁生产任务及经营利润的完成,一方面要提高入炉铁料品位,提高高炉利用系数;另一方面,要降低焦比,缓解公司焦煤资源紧缺的压力,减少外购焦炭,降低成本。因此,必须提高选矿厂铁精矿质量。
酒钢选矿厂主要处理自有矿山—镜铁山桦树沟和黑沟矿区的铁矿石。镜铁山铁矿石属典型的难选氧化贫铁矿石,具有矿石品位低、矿物组成复杂、嵌布粒度细的特点。矿石中铁矿物主要为镜铁矿、镁菱铁矿和褐铁矿,有少量磁铁矿;脉石矿物主要为碧玉、重晶石、铁白云石和石英;矿体围岩为千枚岩。
以往酒钢选矿厂对块矿(100~15mm)采用竖炉焙烧一弱磁选工艺,对粉矿(15~0mm)采用强磁选工艺,综合精矿铁品位仅52.5%左右,其中强磁选、弱磁选精矿铁品位分别为47.5%和56.0%左右,Si02含量分别为10.0%和10.5%左右,金属回收率分别为67%和81%左右。铁精矿质量不高一直影响着高炉的冶炼系数和焦比,而回收率低又使资源没有得到充分的利用,这些都成为制约酒钢发展的重要因素。
2005年底酒钢与长沙矿冶研究院合作,完成了酒钢弱磁选精矿提质降杂的半工业试验,该项目已于2007年底工业化。采用反浮选精选后,将酒钢弱磁选精矿铁品位提高到60%左右,Si02含量降低至6.5%左右。在这种情况下,如何提高粉矿系统的精矿质量已成为解决整个选矿厂精矿质量问题的关键。本研究通过多方案的对比,寻求提高酒钢粉矿系统精矿质量的合理工艺。
一、粉矿选别工艺及指标现状
酒钢选矿厂粉矿系统于1980年投产,原设计为两段连续磨矿一一粗一扫强磁选工艺流程,因矿石难选,投产后回收率很低,仅为60%左右,后经多次流程改造,回收率达到了67%左右。近年来,随着选矿规模逐渐扩大,人选矿石中难选矿的比例逐渐增加,矿石嵌布粒度变细,矿石性质严重恶化。
目前粉矿系统的生产流程如图1所示,其精矿铁品位为47.5%左右,铁回收率为67%左右,Si02+A1203含量在11.5%左右,尾矿铁品位高达20%左右。该流程存在的主要问题为:①磨矿产品粒度粗细不均。一方面细度达不到要求,铁矿物不能完全解离,影响了精矿铁品位的提高和杂质含量的降低;另一方面过粉碎严重,磁选工艺难以回收的-0.038mm细粒铁矿物达45%~55%之多,成为影响金属回收率的主要原因。②流程结构不够合理。采用单一强磁选流程,机械夹杂严重,造成精矿杂质含量高。 三、试验矿样
试验矿样取自现场中磁机给矿,其化学多元素分析结果及粒度分析结果见表1,表2。
表1 矿样化学多元素分析结果%成分TFeFeOSi02A1203CaOMgOMnO含量31.537.9027.333.961.452.091.24成分BaOSPKa20Na20lg含量4.721.120.0530.0870.05410.14表2 矿样粒度分析结果粒级/目产率/%品位/%分布率/%TFeSiO2TFeSiO2+1206.0228.0232.335.227.78-120+1502.0128.9932.891.802.64-150+2006.0231.0029.445.787.08-200+30013.8432.0718.9013.7410.46-300+4006.3235.7924.587.006.21-40065.7932.6225.0266.4665.83合计100.0032.3025.01100.00100.00
由表2结果可知:现场磨矿产品-200目含量较高,达到了85.95%,但粒度分布粗细不均,过粗及过粉碎现象比较严重。-120目粒级含量占6.02%,这部分铁品位低,Si02含量高,大多数为连生体,需要进一步细磨;过粉碎的-400目粒级含量高达65.8%,这部分由于泥化严重,选别时容易造成金属流失,影响回收率。
四、试验结果
在试验室进行粉矿选别工艺优化研究。磨矿设备为XMB 240×300棒磨机,磁选设备为SLon-100周期式脉动高梯度磁选机和 500仿琼斯强磁选机,浮选设备为XFDⅡ-0.75L和XFDⅡ-0.5L单槽式浮选机,分级设备为 50旋流器。反浮选捕收剂为阳离子捕收剂GE-609,抑制剂为淀粉,调整剂为NaOH。
(一)现场生产流程模拟试验
为便于分析对比,首先按图2进行了现场强磁选工艺流程的模拟试验。图2中高梯度磁选部分与现场流程不同,是因为实验室试验受条件限制,高梯度磁选作业不能形成闭路。
模拟试验获得的选别指标为:精矿铁品位47.60%,Si02含量9.86%,铁回收率77.13%;尾矿铁品位14.43%。 (二)强磁粗选不得精矿的优化流程试验
1、强磁粗选不得精矿的全磁选流程 在图2流程基础上,将强磁粗选精矿及粗粒级强磁扫选精矿再磨至-300目84%后,采用高梯度磁选机进行一粗三扫再选,细粒级部分不变。试验流程见图3,试验结果为:精矿铁品位49.74%,Si02含量6.76%,铁回收率74.41%;尾矿铁品位14.97%。
2、强磁粗选不得精矿的磁-浮流程1
在图3流程基础上,对-300目占84%的再磨产品和细粒级高梯度中矿不是进行高梯度再选,而是分别进行一粗一精三扫和一粗二精三扫反浮选。试验流程见图4,试验结果为:精矿铁品位51.31%,Si02含量4.51%,铁回收率73.80%;尾矿铁品位14.83%。
3、强磁粗选不得精矿的磁-浮流程2
在图4流程基础上,将细粒级部分由对高梯度中矿进行一粗二精三扫反浮选改为对高梯度粗选和扫选精矿进行一粗二精三扫反浮选。试验流程见图5,试验结果为:精矿铁品位51.44%,SiO2含量4.43%,铁回收率73.45%;尾矿铁品位14.94%。
(三)强磁粗选得部分精矿的优化流程试验
1、强磁粗选得部分精矿的全磁选流程
在图3流程基础上,降低强磁粗选场强,使强磁粗选精矿先作为部分最终精矿产出,而不与粗粒级强磁扫选精矿一同进行再磨-高梯度磁选机再选。试验流程见图6,试验结果为:精矿铁品位49.82%,Si02含量7.20%,铁回收率74.50%;尾矿铁品位14.91%。
2、强磁粗选得部分精矿的磁-浮流程1 在图4流程基础上,降低强磁粗选场强,使强磁粗选精矿先作为部分最终精矿产出,而不与粗粒级强磁扫选精矿一同进行再磨-反浮选。试验流程见图7,试验结果为:精矿铁品位50.66%,Si02含量5.30%,铁回收率74.38%;尾矿铁品位14.75%。
3、强磁粗选得部分精矿的磁-浮流程2
在图5流程基础上,降低强磁粗选场强,使强磁粗选精矿先作为部分最终精矿产出,而不与粗粒级强磁扫选精矿一同进行再磨-反浮选。试验流程见图8,试验结果为:精矿铁品位50.82%,Si02含量5.02%,铁回收率74.65%;尾矿铁品位14.60%。
五、各流程指标对比分析
6种优化流程与现场模拟流程的试验结果对比见表3。
表3 各流程指标对比%流程原矿
铁品位精矿
产率精矿品位尾矿
铁品位精矿铁回收率TFe烧后TFeSiO2烧后SiO2Ig图231.2050.5647.609.8614.4377.13图331.2046.6849.7457.916.767.8714.1114.9774.41图431.2044.8751.3160.364.515.3614.9914.8373.80图531.2044.5551.4460.584.435.2215.0914.9473.45图631.2046.6649.8258.187.208.4114.3714.9174.50图731.2045.8050.6659.475.306.2214.8114.7574.38图831.2045.8350.8259.225.025.9215.1914.6074.65
由表3可以看出:
(一)与模拟流程(图2)相比,6种优化流程(图3~图8)的精矿铁品位均有较大幅度的提高,精矿Si02含量则有较大幅度的降低,铁品位提高了2.14~3.84个百分点,Si02含量降低2.66~5.43个百分点,提质降杂效果显著。
(二)3种强磁粗选不得精矿优化流程(图3~图5)的选别指标好于与之流程结构相对应的强磁粗选得部分精矿优化流程的选别指标。在回收率相当的情况下,强磁粗选不得精矿流程的精矿铁品位总体上较高,尤其是精矿Si02含量低0.44~0.79个百分点。因此,强磁粗选不得精矿流程较强磁粗选得部分精矿流程结构合理。 (三)相同强磁粗选精矿处理方式下,磁-浮流程较全磁选流程精矿铁品位高1.57~1.70和0.84~1.00个百分点,精矿Si02含量低2.25~2.33和1.90~2.18个百分点。因此,磁一浮流程较全磁选流程提质降杂效果好。
(四)相同强磁粗选精矿处理方式下,两种磁-浮流程指标相比较,磁-浮流程2均比磁-浮流程1的提质降杂效果更显著,且磁-浮流程2结构更简单。
(五)强磁粗选不得精矿的磁-浮流程2具有精矿铁品位高,SiO2含量低的优点,但浮选矿量较大;强磁粗选得部分精矿的磁-浮流程2可提前获取一部分合格精矿,使浮选矿量大大降低,但精矿质量较前者差。
根据以上分析比较认为,应采用强磁粗选不得精矿的磁-浮流程2和强磁粗选得部分精矿的磁-浮流程2进行扩大试验,通过扩大试验验证实验室试验指标,并进行技术经济评价,以确定提高酒钢粉矿系统精矿质量的合理工艺流程。
五、结论
(一)酒钢粉矿系统精矿的铁品位仅为47.5%左右,杂质Si02+A1203含量达11.5%左右,影响了高炉冶炼系数的进一步提高和焦比的进一步降低,因而迫切需要通过流程优化实现精矿质量的提高。
(二)本试验所研究的6种酒钢粉矿优化选别工艺流程均可取得较显著的精矿提质降杂效果,与现场模拟流程试验结果相比,在精矿铁回收率相当的情况下,精矿铁品位可提高2.14~3.84个百分点,Si02含量可降低2.66~5.43个百分点。
(三)根据6种优化工艺流程结构及指标的对比,结合现场实际,建议对其中的强磁粗选不得精矿的磁一浮流程2和强磁粗选得部分精矿的磁-浮流程2进行进一步的扩大试验。
纳米碳酸钙粉体表面改性研究进展
2019-03-06 10:10:51
导读纳米碳酸钙因为具有较大的比表面积和很高的表面能, 在有机基体中极易发作聚会, 且其表面有许多羟基和表面亲水疏油, 与非极性或弱极性物质的亲和性较差, 致使有机基体和无机填料之间的相容性较差, 纳米材料的优势得不到应有的发挥。一般来说, 纳米材料的表面改性或许复合能够从3 个方面衍生基底材料特性: 1) 相容性, 不管何种改性, 有必要有利于改进材料的物理、化学或许生物运用方面的相容性: 如表面的亲水亲油性或疏水疏油性, 生物相容性等; 2) 调控材料表界面的物理化学特性, 如改进表面的吸附、键合偶联、催化等方面的特征; 调理材料在光、电、磁、热等方面的特性等; 3) 改进或附加延伸材料的运用特性,如机械强度、延展性、阻隔性等特性。近年来, 国内一些学者如盖国胜等针对纳米碳酸钙等粉体改性提出了新的观念, 粉体改性本质是在微观上构成复合材料内部的应力会集与损坏的棱角钝化。对纳米碳酸钙进行改性, 表面尖利棱角被包覆的纳米颗粒层钝化, 平坦润滑的解理面也因纳米颗粒层的堆积而变得粗糙。其表面既具有纳米颗粒的优异特性, 又改变了微米级矿藏颗粒的表面特征。经过对纳米碳酸体改性一则能够下降成本, 二则能够改进其原有功能, 如进步刚度、拉伸强度、导热性等。图1 给出了不同改性剂改性纳米碳酸钙的原理结构示意图。图1不同改性剂改性纳米碳酸钙结构图纳米碳酸钙的改性途径一般首要选用接枝、偶联反响, 即在纳米碳酸钙表面接上必定的有机基团(如羧基等), 偶联剂、表面活性剂等, 可改进碳酸钙的亲水亲油性, 或许在其表面包覆必定的细密层或膜层(如聚合物, 无机物, 氧化物等), 改性后的纳米碳酸钙往往均匀粒径变小, 散布变窄, 有利于促进聚会粒子的涣散和细化, 下降其表面能, 接触角增大, 使其表面具有亲油性, 可进步其在油性介质中的涣散性。改进其与有机基料之间的潮湿性和结合力, 最大极限地进步材料的功能和填充量。常用于碳酸钙表面处理的改性剂首要有无机物、表面活性剂、偶联剂、聚合物等。图2 罗列出了比较典型的不同改性剂对纳米碳酸钙改性后的SEM 图。图2 不同的纳米碳酸钙改性后的SEM 图1无机物改性纳米碳酸钙呈弱碱性, 耐酸性较差, 必定程度上约束了其运用范围, 选用无机物对纳米碳酸钙进行表面改性, 可将其表面包覆构成完好而细密的包覆层, 强度较大, 因为表面包覆层的空间位阻效果和朝向外侧基团的憎水效果使得氢离子无法接触到内层的碳酸钙粒子。一方面能够改进纳米碳酸钙的涣散性, 且活化度进步, 简直可接近100%, 另一方面能够明显进步其耐酸性, 扩展运用范围。常运用的这类无机物有无机盐、铝酸、铝酸盐、明矾、盐、酸碱、无机粒子等。Wu 等用铝盐(包含硫酸铝、硫酸按铝、轻基、聚合及其水合物或混合物) 处理碳酸钙, 改性后的碳酸钙具有较好的耐酸性, 可在中性或酸性造纸中用作填料。杨金鑫等以简略的机械法和表面化学修饰相结合, 成功地制备除了具有“草莓” 结构且疏水功能杰出的纳米碳酸钙/二氧化硅复合粒子, 粒径散布均匀, 聚会粒子削减, 有效地进步了其涣散功能。Kim 等用水合(H2SiF6) 改性碳酸钙, 因为碳酸钙呈弱碱性,改性后碳酸钙表面掩盖有无定形硅(Si) 和氟化钙(CaF2) 的混合物, 构成强度较大的细密膜层, 比较未改性前, 极大地增强了碳酸钙的抗酸性, 有望用于pH 值为6.0 左右的弱酸性阳极电泳漆。2表面活性剂表面活性剂包含脂肪酸、树脂酸及其盐类,阴 阳离子、非离子型表面活性剂及高分子表面活性剂等。其分子的一端为长链烷基, 结构与聚合物分子类似, 因此和聚合物烯烃等有机高聚物有必定的相容性。分子的另一端为羧基、醚基等极性基团, 能够与碳酸钙粒子表面发作物理化学吸附或化学反响, 掩盖于填料粒子表面, 构成一层亲油性结构, 与填料和树脂有杰出的相容性, 大幅度下降了聚合物粘度, 改进涣散性和进步添加量。现在运用较多的表面活性剂有脂肪酸(盐) 和磷酸酯(盐)。Jea 等用硬脂酸改性碳酸钙, 调查了其对聚复合物流变性的影响。结果表明: 硬脂酸可下降填料表面与树脂间的界面效果力。改性后的碳酸钙进步了聚的冲击韧性和拉伸强度。3偶联剂偶联剂分子中的一部分基团可与矿藏表面的各种官能团反响, 构成强有力的化学键, 另一部分基团可与有机高分子材料发作化学反响或物理环绕,借助于这一偶联剂的单分子层的“架桥” 效果, 从而将矿藏与有机体两种差异很大的材料牢固地结合起来。现在用于纳米碳酸钙的偶联剂首要有硅烷偶联剂、钛酸酯偶联剂及铝酸酯偶联剂。Domka等选用四异十八烷酰钛酸酯改性碳酸钙, 改性后的碳酸钙可使丁二烯-乙烯橡胶的拉伸强度添加近100%。进步了复合材料的归纳功能。刘立华等用铝酸酷偶联剂湿法改性纳米碳酸钙, 改性后其比表面积增大, 亲油性和在有机相中的涣散性明显进步, 添加于有机硅密封胶中可增强其流变功能。近年来, 跟着高分子材料的开展, 大分子偶联剂又成为一大研讨热门。它是一种新式高效的偶联剂, 国内外对此研讨报导也接二连三。徐伟相等为进一步改进HDPE /纳米碳酸钙系统的功能, 选用一种大分子偶联剂(聚合物型涣散剂) 对纳米碳酸钙进行表面处理, 处理使得填充系统有杰出的归纳功能, 且开裂伸长率明显进步, 加工功能也得到极大改进, 必将引起更多的重视。
钙粉改性不再难——超细碳酸钙专用改性剂来帮您!
2019-03-08 09:05:26
产品名称:钛酸酯偶联剂TSG-0901
首要化学组份:异丙氧基三羧酰基钛酸酯
首要技术指标:
1、 外观:微黄、白色块状物
2、 密度D(30℃):0.910-0.935g/ml
3、 熔点>:42℃
4、 溶解性:溶于、、矿物油等溶剂
5、 分化温度>:200℃
改性机理:
偶联剂分子中的一部分基团可与粉体表面的各种官能团反响,构成强有力的化学键合,另一部分基团与有机高聚物基料发作化学反响或物理环绕,从而将两种性质差异很大的材料牢固地结合起来。
首要用途:
关于超细碳酸钙,纳米碳酸钙有杰出的改性作用,改性今后,适用于聚乙烯、聚、聚氯乙烯、聚乙烯、环氧树脂、聚酯树脂等系统中。关于其他非金属产品:高岭土、滑石、硫酸、二氧化硅等相同具有杰出的改性作用。
使用功能:
1、能显着下降聚合物填充系统的粘度,增加填充量。
2、改进制品的表面光泽,进步尺度稳定性。
3、进步制品的抗张强度、冲击强度、柔韧性、挠曲强度等机械功能。
用法与用量:
偶联剂在80C°以上融化成液态,用计量泵依照配比打进改性机内。1250目重钙增加份额~0.8%左右,不同描摹的粉体有所不同,最佳用量由实验断定。从理论上讲,系统粘度下降最大点就是较合适的用量。
注意事项:
常温密封贮存二年有用。
钛矿浮选的常用方法简介
2019-02-26 09:00:22
常见的含钛矿藏有钛铁矿、金红石、钙钛矿和榍石。它们的可浮性如下。
钛铁矿(FeTiO3)和金红石(Ti02)用羧酸及胺类捕收剂都能浮游。但用羧酸类捕收时,脉石矿藏不易浮游,故羧酸类用得较多。工业上常用的详细药剂有油酸、塔尔油和环烷酸及其皂。并且常用火油为辅佐捕收剂。钛铁矿和金红石浮选之前,先用硫酸洗刷矿藏表面,能够进步它们的可浮性,下降捕收剂的用量。
用羧酸捕收钛铁矿和金红石时,pH=6~8,两种矿藏都浮游得比较好。在pH
钠和能够阻止十三酸和油酸钠在钛铁矿的表面固着,下降它们在钛铁矿表面的固着量,因而能按捺钛铁矿,硅酸钠关于钛铁矿也有必定的按捺作用。
钛铁矿浮选的回收率与调整时矿粒的絮凝和涣散状况有关。假如作调整槽传动轴的净功耗与调整时刻的联系曲线,可按其功耗的大小将调整时刻分红五个阶段,即感应阶段、絮凝阶段、絮凝高峰阶段、絮凝损坏阶段和涣散阶段。
矿浆开端絮凝时(絮凝阶段),净功耗、钛铁矿回收率和脉石回收率都上升;抵达絮凝高峰阶段,矿浆充沛絮凝,净功耗、钛铁矿回收率和脉石回收率都达到了极点;抵达絮凝损坏阶段,钛铁矿的回收率不变,精矿档次添加,净功耗和絮凝程度下降;抵达涣散阶段,精矿档次下降,回收率最小。
升高矿浆温度,捕收剂膜的疏水性增大,钛铁矿的回收率添加而精矿档次下降。充气对钛、锆矿藏有显着的影响。充空气60~120S,金红石和钛铁矿的回收率都上升而锆英石的回收率下降。若只充入氮气,则两种钛矿藏遭到按捺而锆英石能照旧浮游。
钙钛矿(CaTi03)能够先用硫酸处理,经冲刷后用油酸或其他脂肪酸浮游。苏打和水玻璃能够按捺它,而铬酸盐和重铬酸盐能够活化它。当矿石中方解石多时,会使酸洗的耗酸量增大。为了削减酸的用量,在浮钙钛矿之前能够先浮方解石。
榍石CaTiSi05能够用火油乳化的油酸捕收,能够被水玻璃按捺。其可浮性较其他含钛矿藏差,更比磷灰石等碱土金属盐类矿藏差,假如伴生的磷灰石多能够先浮磷灰石。
钛锆矿的选别办法及实例
钛铅矿的选别办法钛铁矿、金红石和锆英石常常伴生,密度都在4.0~4.7g/cm3之间,用重选法选别时,它们一起进入重砂中。它们的可浮性也很挨近,用乳化油酸浮选时,它们一起进入混合精矿中。它们的混合精矿准则上有两种别离办法:
(1)先用磁选法分出钛铁矿(磁选也能够放在浮选之后),其非磁性部分用钠按捺锆英石,用乳化油酸在pH=3.8~4.6的介质中浮选金红石。
(2)用硫酸按捺金红石,用乳化油酸或阳离子捕收剂浮选锆英石。
世界各地钛矿分布状况
2018-12-12 09:37:47
钛在地球上储量十分丰富,在地壳中含钛矿物有140多种,但现具有开采价值的仅十余种。已开采的钛矿物矿床可分为岩矿床和砂矿床两大类,岩矿床为火成岩矿,具有矿床集中、贮量大的特点,FeO(相对于Fe2O3)含量高,脉石含量多,结构致密,且多是共生矿,这类矿床的主要矿物有钛铁矿、钛磁铁矿等,矿石选矿分离较为困难,产出的钛精矿TiO2含量一般不超过50%。
砂钛矿床是次生矿床,由岩矿床经风化剥离再经水流冲刷富集而成,主要集中在海岸、河滩、稻田等地,矿物有金红石、砂状钛铁矿、板钛矿、白钛矿等,该矿物的特点是:Fe2O3(相对于FeO)含量较高、结构疏松、杂质易分离,选出的大部分精矿含Tio2达50%以上。(见表1)。
表1 世界各地钛铁矿精矿的化学组成(%)
────────────────────────────────
国别及地区 矿床类型 TiO2 FeO Fe2O3 SiO2 Al2O3 P2O5
────────────────────────────────
佛吉尼亚(美) 岩矿 44.3 35.9 13.8 2.00 1.21 1.01
阿拉德(加) 岩矿 34.30 27.50 25.20 4.30 3.50 0.015
挪威 岩矿 43.90 36.00 11.10 3.28 0.85 0.03
乌拉尔(俄) 岩矿 48.07 12.21 24.59 1.54 4.66 0.16
乌克兰 岩矿 58.46 - 27.80 0.34 4.04 0.19
攀枝花(中国) 岩矿 47.0 34.27 5.55 2.89 1.34 0.01
印度喀拉邦 砂矿 54.20 26.60 14.20 0.40 1.25 0.12
斯里兰卡 砂矿 53.13 19.11 22.95 0.86 0.61 0.05
马来西亚 砂矿 55.30 26.70 13.00 0.70 0.59 0.19
卡伯尔(澳) 砂矿 54.57 25.15 16.34 0.53 0.10 0.13
巴西 砂矿 61.90 1.90 30.20 1.60 0.25 -
新西兰 砂矿 46.50 37.60 3.30 4.10 2.80 0.22
佛罗里达(美) 砂矿 64.10 4.70 25.60 0.30 1.50 0.21
广西(中国) 砂矿 50.94 28.61 16.68 2.27 1.07 0.071
云南(中国) 砂矿 48.93 32.37 14.86 0.81 0.97 0.03 国别及地区 矿床类型 ZrO2 MgO MnO CaO V2O5 Cr2O3
────────────────────────────────
佛吉尼亚(美) 岩矿 0.55 0.07 0.52 0.16 0.27
阿拉德(加) 岩矿 - 3.10 0.16 0.90 0.27 0.10
挪威 岩矿 1.09 3.69 0.33 0.18 0.20 0.03
乌拉尔(俄) 岩矿 - 0.75 2.25 0.62 0.084 3.25
乌克兰 岩矿 - 0.98 0.86 0.20 - 3.58
攀枝花(中国) 岩矿 0.80 6.12 0.65 0.75 0.095
印度喀拉邦 砂矿 - 1.03 0.40 0.40 0.16 0.07
斯里兰卡 砂矿 0.10 0.92 0.94 0.26 0.19 0.09
马来西亚 砂矿 - 0.02 0.70 0.50 0.07 0.03
卡伯尔(澳) 砂矿 0.07 0.32 1.67 0.30 1.18 0.04
巴西 砂矿 - 0.30 0.30 0.10 0.20 0.10
新西兰 砂矿 - 1.20 1.20 1.40 0.03 0.03
佛罗里达(美) 砂矿 0.35 1.35 0.13 0.13 0.10
广西(中国) 砂矿 0.6 2.57 0.07
云南(中国) 砂矿 1.15 0.62 0.23 0.84