电解铝 电解槽
2017-06-06 17:49:53
我国电解铝电解槽在改革开放以来的电解铝行业中有着突飞猛进的发展。电解铝电解槽作为铝行业的设备和技术也随着铝业产量的增长而活得了同步发展。预焙电解铝电解槽从无到有,从小到大;大型预焙槽的操作和控制系统以及一系列重要技术经济指标达到或接近了世界先进水平。但从全国电解铝行业整体而言,还存在不少差距。我们认为主要有以下几个问题:一是发展很不平衡,大部分工厂装备水平差,电解铝电解槽型落后的自焙槽占有很大比例;槽子小,劳动生产率低,经济技术指标落后;环境污染严重。二是规模结构不合理,小厂多,规模效益差,资源浪费严重。三是电解铝电解槽种类太多,不利于电解铝电解槽结构材料和备件的标准化、规范化,阻碍全行业走向现代化。四是技术水平落后,电流效率、电解铝电解槽寿命等指标与国际先进水平还有一定差距。目前自焙槽的改造已引起业界的普遍重视,呼吁借自焙槽改造之机,对其他相关问题也给予广泛关注,更周密地进行规划。不管怎么样,电解铝电解槽的问题是一门技术问题,目标始终要与国际接轨,更要关注环保问题和要求。在这一方面,我国还是相当落后的。
电解铝电解槽
2017-06-06 17:49:51
目前电解铝行业生产的耐酸、耐腐蚀电解槽销售基本稳定。从目前国内的铝产能看,根据SMM的调研数据显示,2009年年底中国电解铝的总产能已经达到2000万吨/年(当前国内运行总产能超过1800万吨/年)。而根据目前了解到的新建项目,至2010年年底中国氧化铝产能将达到4200万吨/年,同时未来三年仍将有超过500万吨/年的电解铝项目和800万吨/年的氧化铝项目建成投产,因此控制产能的任务非常严峻。SMM认为落实此规划的关键是调结构。调结构是转变中国经济增长方式、实现中国经济持续稳定增长的需要。调结构势必要淘汰落后产能。以电解铝为例,根据之前发改委要求淘汰100KA及以下电解槽的要求,2010、2011年中国将有接近160万吨/年的产能淘汰,而这对于产能控制效果相当有限,因此预计国家将更加严格的执行铝行业的落后产能淘汰计划,例如扩大落后产能的范围,将电解槽淘汰的电解强度提高至160KA或者200KA,将增加110万吨/年或者200万吨/年的淘汰产能。 更多电解铝电解槽资讯请登陆上海有色网查询。
我国开发出新型阴极结构铝电解槽成套技术
2019-01-10 09:44:13
东北大学、中国铝业股份有限公司等自2007年起开始对铝电解重大节能技术进行系统研究,并成功开发出新型阴极结构铝电解槽成套技术。
该成果建立了高效节能新型阴极结构电解槽的基础理论,攻破了铝电解电耗难于大幅度降低的技术难题,提出了铝电解生产大幅度节电的技术路线,引领了当代世界铝电解节能技术的一场重要变革。项目组在世界上首创了具有减波功能、提高电解槽内铝液面稳定性的新型阴极结构,解决了大型电解槽铝液磁流体波动幅度大、难于稳定运行的技术难题,将铝电解槽内的铝液面波幅降低了 1cm以上,从而在保持电流效率的基础上,将槽电压降低 0.3伏以上,使铝电解的吨铝电耗大幅度降低 900~1100 kWh;首创了保温型铝电解槽内衬结构设计技术,打破了大型铝电解槽必须强制散热的传统设计理念,解决了新型阴极结构铝电解槽在低槽电压运行状态下保持热电平衡的技术难题;还创新开发了与新型铝电解槽阴极结构相适应的低污染、低能耗、防早期破损的沟槽绝缘焦粒焙烧启动技术和火焰——铝液焙烧启动技术,解决了阴极表面具有沟槽的新型阴极结构电解槽焙烧启动的技术难题,降低了焙烧启动能耗,提高了铝电解槽运行的稳定性。
新型阴极结构铝电解槽技术在世界著名的海德鲁铝业公司等国内外30多家大型铝电解厂进行了大规模产业化应用,总规模达到416万吨/年。与推广前的2008年相比,新型阴极结构铝电解槽平均吨铝电耗降低了900~1100kWh,实现年节电约41亿kWh,减排当量CO2达380余万吨,年创经济效益20亿元,经济社会效益十分显著。
电解槽槽壳发红的分析及对策
2019-01-09 09:34:01
电解槽槽壳发红主要是由于热平衡不合理造成的,判断热平衡是否合理的标准是炉帮形状,而调节铝水平和保温料是工艺管理者调整电解槽热平衡的主要手段。
1:槽壳发红的危害
槽壳发红是一个非常危险的信号。根据我们对槽壳发红部位炉帮的测量发现,正常生产条件下,槽壳发红部位钢板温度高于500℃,侧部基本没有上口炉帮或伸腿,侧部碳块的厚度在5cm以内,说明电解槽不但没有形成炉帮,而且发红部位的侧部碳块已被严重腐蚀,电解槽随时存在侧部击穿漏炉的危险。为了防止发生漏炉事故,操作人员被迫采取扎边部、吹风等强制降温的治标措施,但吹风会造成很高的压缩空气成本,扎边部既增加工人劳动强度又破坏电解槽的物料平衡。处理槽壳发红问题,必须通过现象看本质,认清槽壳发红的根源,从源头上治理,才能长治久安。
2:槽壳发红的分析
槽壳发红主要有两种情况:一种是电解槽侧部极距高度部位槽壳发红,这种现象主要表现在大型电解槽强化电流初期或由冷槽向热槽变化时期,诱因是电解质过热度高、流速快;另一种是电解槽侧部铝液高度部位发红,这种现象主要出现在窄加工面的特大型电解槽或低铝水电解槽中,诱因是热平衡不合理导致电解质凝固等温线外移,电解槽没有伸腿。
在冷槽向热槽变化的过程中,由于冷槽的炉底状况较差,水平电流大,常常伴随电压摆现象,电压摆不但剧烈冲刷炉帮还降低电流效率,产生附加电压,增加热收入,破坏电解槽的热平衡。长期冷槽形成的大伸腿在铝液的保护下熔化较慢,而且障碍热量散失,加剧上口炉帮的散热压力,电解槽侧部极距部位受流体剧烈冲刷和热趋势的双重作用,炉帮被首先破坏。如果电解槽的冷热形成反复进行,侧部碳块将长期被铝水和电解质交替腐蚀、磨损而造成槽壳发红。
3:侧部发红的对策
针对电解槽侧部发红问题,国内许多铝厂主要采取了以下措施:
(1)提高铝水平,增加溶池深度,提高电解槽溶池侧部散热能力,使电解槽槽体的等温线合理分布。提高铝水平还有利于降低电解质过热度,减弱铝液内部水平电流和铝液隆起,从而有利于伸腿和炉帮形成。从表面上看提高铝水平是为了增加散热,而从生产角度分析,提高铝水平的实质是降低电解质过热度。如果没有掌握过热度控制,结果又会出现炉膛畸形----伸腿长、炉帮空,还会出现炉帮发红问题。
(2)适当提高分子比是提高铝水平的前期准备工作。保持适中的分子比,增强电解质对氧化铝的溶解度和溶解速度,弥补高铝水平低过热度电解质对炉底的负面因素,有利于兼顾热平衡变化和电耗变化,很少同比例提升设定电压,从而一定程度的压缩了极距,而在电解槽磁场没有改变的前提下,压缩极距就是影响电解槽稳定的大患。适宜的分子比还有利于使电解质凝固等温线内移,围炉帮形成储备碱性成分,创造适应提高铝水平生产的热平衡环境,以促进炉帮连续性成长。因此,保持适宜的分子比是适应高铝水工艺和保持极距的需要。
(3)极上保温料是调节热平衡较机动灵活的因素。
由于极上保温料的调整过程根据换极周期变化,在操作上容易掌握。极上保温料主要是以结壳块的形式存在,而不是以粉状形式存在,因此实际上保温料每增加1cm只相当10mv左右的热收入。同时大型电解槽由于单位散热面积缩小,而筑炉材料的导热系数并没有相应提高,增加的热收入只有依靠调整工艺技术条件来解决。降低极上保温料是调节电解槽热平衡的简单易行的措施。由于电解槽的热平衡影响因素复杂,保温料的厚度要依据生产实际情况而定,关键要有利于炉帮和伸腿的形成。
铝电解槽装炉方法
2019-01-10 13:40:34
本发明是一种选用电解法出产金属铝的办法。其特征在于装炉进程依次为:先装CaF2,再装NaF、电解质粉和纯碱混合物,然后用电解质粉掩盖装炉料外表和阳极中缝,较终用电解质粉掩盖阳极外表。本发明有用减少了冰晶石用量,减少了取电解质液所带走的能耗,减少了冰晶石蒸发丢失,减少了环境污染,减轻了职工劳动强度,降低了发动槽成本费且,改进了物料平衡,减少了电解质块(粉)的积压糟蹋,改进了新槽电解质成分,使新槽坚持了正常出产槽的某些合理的成分,进一步稳定了电解槽出产。
新型阴极结构铝电解槽系列生产工艺工程通过鉴定
2018-12-11 09:57:52
日前,有色金属工业协会对“新型阴极结构铝电解槽系列生产工艺系统重大节电示范工程”进行了鉴定。来自中国工程院、有色金属工业协会等部门的专家认为该技术达到国际领先水平。 该项目采用东北大学冯乃祥教授发明的新型阴极结构铝电解槽专利技术和重庆天泰铝业的经验,并根据华东铝业200kA系列电解槽的特点进行了优化改进。新型阴极结构电解槽在华东铝业投产以后运行稳定,根据对新型阴极结构电解槽和普通电解槽的热平衡测试结果表明,新型阴极结构电解槽的能量利用率较普通电解槽提高了4%,节电效果明显。 试验结果表明,新型阴极结构电解槽技术已成熟,如果我国目前电解铝生产全部应用该技术,在现有的电耗基础上,降低1000kWh/t.Al,按目前电解铝年产量1500万吨计,则每年可节电150亿kWh,电价按0.4元/kWh计,每年经济效益60亿元;可节标煤525万吨,电厂可减排CO21500万吨,社会效益十分巨大。
电解槽槽底平衡铝母线修复经验总结
2019-02-28 10:19:46
135#槽3月31日因槽壳熔穿漏铝构成铝水冲断一根槽底平衡铝母线,如选用焊接修正方法则需进行系列停电,一切电解槽都有必要停电,用16块10mm厚的铝板一块叠一块地把断口焊接起来,因为在现场受磁场的影响,焊接4块铝板所需时刻在1小时以上,以此核算修补好断口所需时刻在4-6小时刻之间,为保证系列电解槽正常出产,不受较大影响,每次停电时刻应控制在1小时刻左右,所以要悉数修补好断面,系列电解槽有必要停电在4-6次左右,且不能会集到一两天内进行,所以对电网和出产影响很大,单从产值来考虑:
停电1小时后,系列电解槽至少需求8小时核算,其影响力相当大,因停电构成产铝量削减测算如下算:
A)1小时刻少产铝:
S=166×0.3355×303/1000=16.87 吨
(在产槽166台)
B)4~6小时总少产铝:
S总=16.87×(4~6)=67.5~101.2吨
停电送电后系列电解槽要赶快树立能量平衡,电解槽只能突发效应将增多,依据以往停送电解对电解槽的影响,每次停送电后电解槽效应系数将到达0.35以上,以日常效应控制在0.2为方针,添加效应个数将到达:
N=166×(0.35~0.2)×(4-6)=100~149个
每个效应控制在均匀3分钟,电压在20V的情况下,则糟蹋电量为:
Q=(100~149)×303×20×3/60=(3.03~4.5)万度
以0.3元/度.电核算,折合人民币为
¥=(3.03~4.5)×0.3=0.91~1.35万元
所以单从上述两组数据来看,经过焊接的方法对系列电解槽影响较大,不可取。学习平果铝、包头铝厂成功经验,为了防止系列停电,削减经济损失,经修前专题会研究决定于4月24日选用带电浇铸修正方法进行修正。
一、修前情况:
被冲断的铝母线截面尺度160×220mm,断口长度300~350mm,见下图。
二、修正工艺
1、断口打磨,整理氧化皮,用钻在断口两头铝母线上钻孔呈蜂窝状,以利于浇铸铝块与母线咬合,进步导电功能。
2、装置浇铸铁模,用烤预热,将铝母线断口处加热到500~600℃,然后进行浇铸。
三、浇铸进程
1、预备作业,我们重视的焦点。
2、
倒铝,用拼装车间铁水小抬包装铝水约100Kg。
3、查看铝水,扒渣、去掉氧化膜等渣皮。
4、预备浇铸,因施工单位人员对铝水浇铸不熟悉,由电解车间一区工区长陈谦与陈东担任浇铸。
5、开端浇铸 。
5、铝水飞溅:开端浇铸之后,意想不到的作业发生了:因为电流与电磁场的作用发生电磁力,构成铝水向上飞溅溢出如铝水爆破一般(如果躲闪不及,熔融的铝水必然会烫坏人员),后续局面非常触目惊心,在场每个人的心都悬着,笔者在躲闪进程中因为磁场对相机影响无法拍下这些局面,下图是溅铝之初的局面。
6、再次浇铸:飞溅的铝水使人员心有余悸,卢厂长亲身操刀进行操作,所幸前二次浇铸铝水已将断口铝母线凝聚在一起之后构成导电通路,再次浇铸铝水已不发生飞溅现象,
7、
完结浇铸
8、
修正作用(从预备铝水到完结浇铸整个作业历时约20分钟)
四、作用点评
1、修后135#槽槽底平衡母线检测数据。日期
母线温度(℃)
500mm等距压降mv
断口处压降mv4-24
50
17
684-25
92
21
504-26
91
21
48
2、比照没有损坏的105#槽槽底平衡母线检测数据:母线温度98℃,500mm等距压降22mv。阐明修正之后的135号槽槽底平衡母线等距压降与正常槽共同。
3、因模具不需求拆下,不便于丈量断面处压降,依据断口模具长500mm,两头压降48mv,以50mm测距测算断面处压降=48/(500/50)=4.8mv<5mv(5mv为专题会评论拟定标准,压降越低越好),到达预期作用。
五、经验总结
1、本次浇铸作业因为属初次,预备作业稍欠缺乏,如预热用烤需不需预备心里没谱,为了预备这些烤糟蹋一些时刻,较后拿来的烤还不适用,幸亏施工单位有一把适宜的烤和可代替运用的大型割炬。
2、浇铸之初没有考虑到电流和磁场的影响所构成的铝水飞溅,操作稍有不小心可能会烫坏人员,事前应加强导电办法,先用铝线杆导通或采纳其他有用旁通办法,一方面加速导电,另一方面防止大电流经过铝水以减轻铝液飞溅。
3、安全办法做得还不行充沛,槽底铝母线长时间通电,母线温度挨近100℃,为了防止触电和烫坏,竹跳板应多预备一些并铺设好。其他安全预备作业也要做到位,如绝缘防热材料、防烫服、面罩等。
4、本次修正到达了预期作用,主张完善各项作业程序后推行运用,作为往后冲断铝母线修正的优选工艺。而且今后面临相同的问题时,要充沛做好各项数据的收集作业,如母线温度(浇铸前后)以及浇铸母线相邻母线温度和压降,以采纳恰当处置办法保证电解槽长时间出产。
铝电解槽焙烧方法的优劣比较
2019-02-14 10:39:39
一般来讲,焦床法具有简洁、不需求杂乱设备、不需求燃料、基本上不存在阴极炭块烧损问题、焙烧时刻短和一次能够焙烧多个电解槽等长处。燃气法具有温度散布均匀、升温速度的可控性好、笔直温度梯度小、发动后不需求铲除焦粒、不存在电流散布问题和对同系列出产槽的运转无影响等长处。铝水法的最大长处是简洁和烟气量较小。但因为其有灌铝时发生大的热冲击、熔点低粘度小的铝水优先进入内衬裂纹中以及填缝糊的焙烧缺陷无法在焙烧完毕后检测到并及时加以弥补等缺陷,国外大多数铝厂早已不必此法焙烧新槽或大修槽内衬,而仅限于二次发动槽的焙烧。因为焦床法是运用广泛的老办法,它具有很多的熟练工人和技术人员,具有多年的经历,这是它相对于燃料法的另一大长处。别的,选用细颗粒焦床时,焦粒可在电解槽发动后较短的时刻里烧尽,而不需求人工铲除。焦床法的最大缺点是对升温速度的操控不如燃气法好及温度散布不行均匀。选用分流器和阳极软带后,这些缺点有较大改善,但仍比不上燃气法。别的,分流器要耗费约20%的电能,增大了焙烧的本钱。还有一点需求指出的是,焙烧前应细心肠整理阴极炭块和阳极炭块表面、严格操控焦粒粒度、细心均匀地铺焦、小心肠放置阳极及周边细心均匀的铺放满足量的经破碎的电解质块和冰晶石粉等,。这些对取得好的焙烧成果也是很重要的一环,应予以注重。燃气法在推行过程中的第一道关卡是须经安悉数分的检查同意。这在有些区域需求适当长的一段时刻。虽然到现在为止,燃气焙烧没有发生过任何安全事故。但不少铝电解厂在挑选焙烧办法时,对燃气焙烧的安全仍有顾忌。选用液化为燃料时,需求大型高压容器,这增大了安全隐患,对有些铝电解厂来说也是不方便的,选用油为燃料可革除高压容器问题,但惋惜的是以油为燃料的焙烧设备,其操作和操控不如以气为燃料的焙烧设备简洁。改善燃油焙烧法的实验现在仍在进行中。有天然气直销的铝电解厂,选用燃气法较为便当。对预焙槽来说,怎么掩盖好电解槽以保温及防氧化是燃气法遇到的另一个难题。而自焙槽的掩盖则要简单得多,这也是为什么燃气法更适合自焙槽的原因。别的,购买燃气焙烧设备和人员培训等需求时刻和出资。虽然有上述困难,近年来选用选用燃气法的铝电解厂仍呈上升趋势。现在国外铝公司/铝厂中悉数或部分选用燃气法的计有Alcoa/Reynolds,Elkem,Alusaf等。应当指出,选用何种焙烧发动办法与电解槽炭素内衬的结构和材料是有相关的。选用燃气焙烧法时,周边填缝糊在焙烧阶段已被烧结。灌电解质和发动电解槽所发生的很多热量和胀大应力能够经过侧部传给槽壳。假如槽壳的强度满足大(这也是现代电解槽槽壳的规划要求,即槽壳的变形应保持在弹性范围内),将有或许在炭素内衬内构成满足大的压应力。因为选用燃气焙烧法时焙烧后填缝糊的强度一般比选用其他焙烧办法时要大,并有或许超越阴极炭块的强度。当遇到大的应力时,炭块有或许开裂而构成电解槽破损。因而,选用燃气法和抗热震性较差的阴极炭块时,应适当调整填缝糊的配方,以减小其焙烧后的强度。选用焦床焙烧法时,周边糊一般要在灌电解质发动电解槽后才被烧结。填缝糊的塑性和烧结时的缩短能够平缓适当大一部分胀大应力,因而在相同条件下内衬中所构成的压应力要比选用燃气焙烧法时要小。
迪拜铝业公司-DX电解槽技术
2019-01-14 11:16:06
2006年以来,迪拜铝业公司(Dubal)一直在开发自己的专利电解槽设计——DX技术,现在已经对360kA的电解槽试车投产,产能达2.78吨/槽/日,电流效率超过95%,能源消耗12.95千瓦时/公斤。 从1979年开始,迪拜铝业公司一直在铝冶炼工艺上不断创新以生产世界上较佳质量铝产品并获得较大工作效率。公司的研究开发重点放在高电流还原电解槽技术上,这一技术可以在保持环境保护的较高标准的同时改进劳动生产率、产能和效率。 近年来,在迪拜阿里山(JebelAl)的迪拜铝业公司电解铝联合企业的每一个扩建项目都采用了比从前更为先进的技术。公司自主的电解槽技术的开发和工艺上的应用,在单位能耗方面具有特殊的优势,现有八条电解生产线总共1573个电解槽,平均电耗为14.65千瓦时/公斤铝。 近年来,迪拜铝业公司研究开发活动的重点是新建电解铝厂项目的高电流电解槽的开发,这和迪拜铝业公司到2015年成为世界五大原铝生产商的雄心状态同步,其在新建电解铝厂开发的核心业务中部分实现,可以重复提供迪拜铝业公司的工业专长和先进技术。 DX技术 迪拜铝业公司的努力促进了公司注册专利的DX技术的发展,2006年开始DX技术工作电流为340kA,靠前代DX电解槽作为样板电解槽在迪拜铝业公司的五台电解槽中间试验生产线上试车。铝工业三位全球专家对中间试验DX技术的生产能力进行综合研究后确认这些电解槽运行稳定且坚实。2007年随着对电解槽设计、部件、阳极结构、槽壳、工艺控制、母线汇流排槽上部结构和生产操作实践的一系列改进,引进了第二代DX电解槽。2008年2月,迪拜铝业公司在阿里山电解铝厂第8条电解生产线上,对40个经过改进的DX电解槽在工业化生产条件下进行试车。第二代DX电解槽在350kA和360kA电流下运行非常成功(在360kA电流下效率为95.7%,单位能耗为12.95千瓦时/公斤铝),有效表明了在工业规模下DX技术的优异效能,并使DX技术成为可提供的较佳技术水平。目前正在试验370kA电流,可以提供较佳级别净单位能耗低于13.05千瓦时/公斤铝,长期电流效率高于95.2%。迪拜铝业公司的总目标是继续提高工作电流。 DX技术还有其他几个优势:DX技术改进了能源效率,使电解铝生产降低了对环境的影响,碳消耗较低,低于0.408公斤/公斤铝,DX技术产生阳极效应较少,(0.01阳极效应/槽/日,平均值),明显减少高氟化碳排放数量,这使DX技术成为市场上可提供的较清洁的技术之一。DX电解槽还提高了劳动生产率,在365kA电流下生产能力为2.81吨/槽/日,在360kA电流下为2.78吨/槽/日,优异的蠕变潜力显示每台电解槽更多的能量。另外,建设采用DX技术的电解铝厂,每吨铝成本明显低于采用其他技术建设的电解铝厂的吨铝成本,建设周期明显短一些,所以采用DX技术的电解铝厂的总成本远远低于与之竞争的电解铝技术应用的电解铝厂的总成本。 一揽子交易 重要的是迪拜铝业公司有能力提供一整套完整的终端——终端服务方案,利用DX技术作为一个平台,这一揽子交易包括下述服务:先进的银行技术,工程,项目开发,资金,长期原材料供应,全球市场销售和销售网络,培训和获奖生产实践。提供一套综合工程作为技术特许协议的一部分内容(包括说明书,图纸,培训等)为每一项目安排有经验的支持小组,支持DX技术应用实施。这包括派第二个专家小组去新建电解铝厂现场和安排迪拜铝业公司专业技术人员去不同的项目现场指导工作,迪拜铝业公司的DCCU电解槽控制系统和DX技术一起安装在电解槽上,从而有效解决了用户对其他技术供应商的依赖。 新建电解铝厂 DX技术已经确定用于新建电解铝厂的开发,并且已通过其与穆巴达拉开发公司的联盟承诺,这些新建电解铝厂项目的靠前个是阿布扎比Al Taweelah的Emal电解铝厂项目,分两阶段建设产能140万吨/年电解铝厂,靠前阶段建设756个电解槽,产能70万吨/年,于2009年12月开始建设。 2007年10月,迪拜铝业公司和Emal签订了DX技术特许协议,迪拜铝业公司还原电解槽技术特许协议提供通过综合工程和生产文件资料采用迪拜铝业公司较现代化技术使用的特许,通过试车起动和生产的服务,全面培训和技术开发还有不断来自迪拜铝业公司的技术支持作为特许服务。到2008年4月,迪拜铝业公司已经向Emal电解铝厂开发和管理小组交付了一个综合技术一揽子方案。该方案详细介绍了如何运行、实施和起动DX技术电解生产线。这一方案包括有约600张图纸,技术规范、表格和规程。运行一座电解铝联合企业在所有方面的培训工作已经由迪拜铝业公司在迪拜向约2000名Emal员工提供。
铝电解槽漏槽事故(漏炉事故)应急预案
2019-01-02 14:54:42
为了保证员工的生命和财产安全,杜绝安全事故的发生,尽可能的减少经济损失,出台本操作细则:
漏槽是指电解槽在运行期间侧部炉帮造到破坏,电解质、铝液熔化槽壳后漏出或电解槽炉底出现破损,铝液熔化阴极钢棒后漏出的一种现象。前者称为侧部漏炉,后者叫底部漏炉。 1、发现漏炉事故人员应立即报告当班班长,当班班长立即通知车间主任或副主任,并指派一名电解工专门看事故槽电压,保持槽电压不超过5V,手动操作槽控箱控制阳极升降,同时对其他人员进行分工,比如,一人看电压,一人到其它厂房找人,两人用镦子处理,天车工开机组。 2、电解槽发生漏槽后,要用挡板挡住漏出的铝水或电解液(如300KA电解槽易冲断阴极回路母线),避免冲断母线而造成系列停电。
侧部漏槽操作: 第一步;揭开槽罩板,在安排天车工开机组的同时人工用镦子打漏槽部位(先从靠阳极部位加工)。
第二步;以最快的速度将面壳块运到槽前。
第三步;指挥天车工打开边部后用面壳块砸住漏洞。 注: (1)要使用直径大约为10-15cm的面壳块。 (2)不能用冰晶石。 4、炉底漏槽操作:
第一步;揭开漏炉对应处的槽罩板。
第二步;指挥天车工拔出阳极。
第三步;用测尺找出具体漏铝的位置。
第四步;用破碎料(直径不超过8cm)将漏洞堵上。
第五步;用机组将漏铝处砸实。 5、在整个过程当中的注意事项:
(1)听从上级领导统一指挥;
(2)不能慌乱;
(3)争分夺秒;
(4)做到“三不伤害”。
漏炉事故如何处理?
答:发生漏炉时,应立即打开漏炉侧地沟盖板查明漏炉部位。
(1)如果是炉底漏炉,应立即:①吊开漏炉处地沟盖板,保护大母线,利用3~5毫米厚的长方型铁板等物挡住阴极大母线,防止把地沟母线冲断。②把阳极坐到炉底上,防止断路。③组织人力尽力抢救,如确实严重可紧急停槽。
(2)如果是侧部漏炉,应立即:①降阳极,专人看管电压,不能超过5v。②要迅速打下漏出侧面壳及用电解质块、氧化铝等物料沿槽周边捣固扎实,直至不漏为止。⑧万不得已的情况下,方可停槽处理漏炉部位,然后尽快恢复生产。 (3)在抢救漏炉过程中应注意的问题:①在下降阳极时以座到槽底或结壳上为限,不要强行下降,以免将槽上部结构顶坏。②加强统一指挥,注意安全,防止发生人身事故。③同时要做好单槽断电的准备。事故抢救完毕,应立即确定是否停槽大修,如果槽龄已久,破损严重,则应立即进行单槽断电。如果槽龄短,破损面积小,经填补有恢复生产的可能,可用镁砂、氟化钙、沉淀等物填补好破损处,再恢复生产。
黄金选矿专用设备-金电解槽
2019-01-29 10:09:24
该电解槽是中国有色院参考国内外资料并总结现场生产实践经验而研制的,目前主要由内机和乳机生产。其用途是将金从含金溶液中用电解法提取出来,是炭浆厂的主要设备之一。
该电解槽的特点是:①结构简单,体积小,回收率高;②槽体全部由聚乙烯塑料板制成,重量轻,耐高温,耐腐蚀;③封闭性好,不污染环境;④操作方便。
该电解槽的技术参数列于下表,外形和安装尺寸示于下图。
表 图
预防铝电解槽碳渣的产生
2019-01-15 14:10:21
铝电解槽产生的碳渣严重时可降低电效3~5%,致使吨铝电耗增加400~700度,所以对电解槽十分不利,200kA电解槽采取人工捞碳渣每日每槽可捞出碳渣20多公斤,吨铝13公斤,占吨铝碳耗在2.5%左右。为了更好地采取有效措施预防碳渣大量产生,可相应采取以下技术措施。
一、 保持适当厚度的保温料
实践证明,保温料过薄易使空气与阳极表面接触,使碳块表面氧化掉渣;过厚则可导致远槽温度一般应保持在14~18cm之间。另外,粉碎的面壳块粒度是越细越好,如果多数粒度直径超过5cm以上,易造成透气氧化掉渣的现象。
二、 保持适当的电解质水平 电解质水平的高低是决定碳块氧化掉渣的主要因素之一。电解质水平过低会使电解槽蓄热量减少,不利于槽况稳定,但电解质过高,特别是超过残极(指两天内要换的极)平面,且950度左右的电解质溶液循环流淌在碳块的表面时,致使固态保温料溶化变成流体,使碳块表面会加剧氧化,碳渣量激增。所以,电解质水平保持高度一般在19~21cm之间,
三、 采用无下棱抗冲刷阳极碳块
无下棱碳块是将碳块的侧面与底面的过渡角由90度改造成倒角状或圆弧状。停槽后细心观察前两天换上的新极,新极基本不导电,但下棱却由直角变成了圆弧状,这说明此时的圆弧角形成的主要原因是由电解质冲刷阳极碳块,来减少无用下棱变成的碳渣,据悉,挪威的一家铝厂已应了该方案,过渡角为圆弧状。无下棱碳块主要优点是抗冲刷力强,能有效减少槽中碳渣,从而提高电效。
经计算,200kA电解槽上使用的1450×660×570mm的阳极碳块,下棱由直角改为50450的倒角,单块重量减轻12公斤,吨铝碳耗可降低8公斤,每吨按2500元计算,吨铝成本降低20元。由于碳渣减少,槽电阻减少,因而可降低槽电压,从而可提高电效0.5%以上,降低吨铝电耗75度,按每度0.4元计算可降低吨铝成本30元。两项成果合计可使吨铝生产成本降低50元。以我国中小规模的年产10万吨铝锭企业为例,年可净增利润500万元。
如何控制好电解槽的热平衡
2019-01-02 16:33:41
众所周知,电解槽赖依平稳运行的两大条件是热平衡和物料平衡。如两大平衡遭到破坏则电解槽难以正常运行,可见控制好热平衡对电解槽有多么的重要。热平衡是综合技术条件的反映,如控制得当,则槽子炉底比较干净;炉膛规整;槽子运行平稳,经济指标就会较好,物料消耗也会降低,物料平衡和技术条件平稳控制也能得到有力的保障。 如热平衡控制不好则一 、如果温度偏低,铝的二次反映就会减少,电效短期内会有所提高,可是长期运行炉底出现沉淀、结壳、伸腿肥大,造成铝水平上涨假象;电解质水平变低槽子走冷趋势;突发效应较多,因电解质水平低槽子冷,常有来效应时电压较高、难以熄灭,并伴随着闪烁等现象。这样的槽子如不及时控制,就会出现电压波动变成病槽,由于铝水平高发热区上移,容易化上口,出现侧部发红、漏炉等恶性事故。二如果温度高铝的二次反映加剧,炉膛变大,槽子电效就会降低,电解质流速大,槽子上口容易变大,部份氧化铝来不及及时溶解沉到炉底,增加炉底沉淀;等待效应失败;电解质上涨继续化炉膛,铝水平下降,电解槽出现针振现象,如不及时调整,有可能演变成为大病槽。如何控制好电解槽的热平衡,因各个工段的实际情况不同,控制的方法也有所不同。因热平衡就是热收入和热支出之间谁大谁小的关系,就看你如何调节利用的能力。我个人认为因温度是综合技术条件的反映,不能直接对其调整,只有通过别的技术条件对它调整,所以其它条件平稳性决定着热平衡的平稳性。
热收入: 一、电压。电压是调节电解草槽能量平衡最重要最易实现的因素之一。它是保证电解槽能够正常运行的最低电压值。电压调整实质就是改变极距。如频繁的调整电压热收入不稳定;极距变化大,发热区来回移动,炉膛变的较大,热平衡不容易 掌握,电效也不会高。要保证有规整的炉膛,电压尽量保持恒定的一个值(除非槽子闹病)以求得一个稳定的热收入。 二、效应。效应对电解槽的负面影响越来越引起人们的注意,它对电解槽的破坏远远大于对电解利处。电解槽应尽量减少来效应的次数。电解槽来效应后电解温度会上升5-10度,融化侧部炉帮,破坏炉膛,槽温在1-2小时甚至更长的时间才降到正常值,在这段时间里槽子电效较低,融体电解质温度高,破坏热平衡。但是在槽子走冷行程,温度较低和氧化铝浓度控制与温度不匹配的情况下应利用效应的好处,对槽子进行调整。槽子应杜绝来闪烁效应。凡是来闪烁效应的槽子,应引起我们的注意,尽快查明原因。
热支出: 一、铝水平。铝水平是支配槽子散热的重要因素,也是调整热平衡首当其冲采取的手段。只要槽子不发热,电压不摆动,铝水尽量降低。在规整炉膛控制冷态引发的突发效应,降低铝水平是最有效的管理途径。若长时间铝水平保持较高,不仅增加槽子散热,氧化铝溶解不良,沉淀增加,突发效应多而且会使伸腿增大,电压大幅度针振而产生病槽。所以我们应根据槽子的实际情况和槽子的不同年限而保持合适的铝水平,防止过高和过低,使槽内在产铝量保持大体一致,以保持槽子的热平衡。二、电解质水平。电解质在电解中起者储存热量、导电和溶解氧化铝的作用。如电解质水平高,则电解糟的热稳定性就强,可在较低的温度下运行。可是电解质量大,特别是老龄槽,容易使侧部钢板发红。就我们工段来说大部分槽子的炉帮都是低分子比建立的,电解质水平更不能过高,保持在19----22之间。如超出这个范围热平衡状态就会破坏,槽子将会恶化。 三、操作质量。操作质量对电解槽的干扰也不能忽视。为求得高电效电解温度本来就不高如果敞开槽罩过多,换极时间过长就会增加恶化这种趋势造成槽子波动。换极过程中如碳渣捞不干净、阳极设置不准、面壳快捞不干净,操作质量粗犷都会使槽子异常电压高,碳渣还会使槽子电阻增加,氧化铝溶解减少来突发效应。而这些都会影响电解槽的热平衡。阳极上的保温料也是维持电解槽热平衡的重要因素。极上保温料主要起保持槽子热量的作用,但它也可作为调节热支出的手段。通过增减极上保温料厚度,调节电解槽热支出。极上保温料为160~180mm,如果有过剩的热量输入,可通过减薄极上保温料来增大散热,避免槽温升高。冬季还可加厚极上保温料来加强槽子保温。全极每减薄10mm极上保温料,多放出的热量相当于0.06~0.09V电压所产生的热量。正常槽极上保温料加得不足,自然会导致槽子走向冷态,不然,必须升高槽电压来维持热平衡,势必造成高耗电能。当出现输入热量不平衡时,可适当增减厚度,作为调节的手段之一。保持电解成份的稳定性,如分子比不稳定忽高忽低,电解质的过热度变化无常,电解质的温度变化量就大,电解槽的热平衡就会难以维持。 总之,电解槽热平衡的保持,必须要有合理的生产技术条件做为基础,结合现实槽子的运行状况、炉帮情况、两个水平搭配情况合理地保持分子比、调整极上保温料以最大限度的保持电解槽热平衡的稳定性。电解槽热平衡与技术条件的合理保持以及操作质量的优劣相辅相成,相互作用,相互影响,必须保持高度的统一性,以求得更好的经济价值。
氧化铝是怎样跑到电解槽的
2018-12-28 09:57:22
铝电解厂将购进的氧化铝储存于料仓,通过管道将其输送到电解车间的电解槽。将氧化铝输送到电解槽的方式有三种:稀相输送,浓相输送,超浓相输送。也就是说,氧化铝以空气为载体,在外力作用下,从管道“跑到”电解槽里。
稀相输送
稀相输送时,固气体比很低,即质量比一般为5~10。目前,中国一些小铝厂仍有用此法输送氧化铝的。此法输送系统主要由压力泵和输送管道组成,输送距离约为400m,采用0.6~0.8N/mm2的压缩空气作为动力源,通过仓式泵直接从储存仓将氧化铝压送到下一个系统的高位储仓内,气流速度往往大于30m/s。
稀相输送能耗高,固气比很低,管道磨损严重,氧化铝粉化厉害,对电解生产极为不利,将逐渐被浓相和超浓相输送所取代。稀相输送又称悬浮输送。
浓相输送
此法是一种较新的氧化铝输送方式,它克服了稀相输送的缺点,仍以压缩空气作为动力源,系统由压力容器、控制系统和管网组成,具有输送配置灵活、自动化程度高,耗气量小,氧化铝流动速度低和破碎小等特点。
通常,浓相输送又称为流态化输送,气流速度小于15m/s,固气比大于20,此时物料(氧化铝)在管道中已不再均匀分布,而是呈现密集状态,但也不堵塞管道。该方法仍然是依靠空气动能输送的。
在浓相输送中,栓流式输送获得广泛应用。该输送系统主要由压力容器装置、控制管网、带有内管及调节部件的输送管道、带除湿系统的压缩空气系统、卸料及除尘系统、各种阀门、检测仪器仪表、PLC控制设备、过程控制软件等组成。
中国研发的栓流式浓相输送技术已经跻身国际先进水平,有诸多新亮点:压力容器物料计量系统,管道物料快速成栓新技术、压力容器无磨损内排气技术,压力/时间参数控制料位技术,新型内管调节机构和相应配套的过程控制软、硬件系统、计算软件等。单套设备氧化铝输送能力大于36t/h,动力指数0.0102kWh/(t·m)。输送线具有工艺新颖、技术先进、自动化程度高、计量方法准确、运转稳定、输送能力大、氧化铝物料磨损小、能耗低、投资省、环保友好等特点,已经在一些大型新建和改扩建项目中获得有效地应用。
超浓相输送
超浓相输送是相对浓相输送而言的,该方法采用低压风机供风和风动流槽输送,仅适宜长距离水平输送氧化铝,且应是粉状的。该技术的特点是:氧化铝在风动流槽中呈流态化向前运动,固气比大于100,运动速度低,物料不易破碎,系统全密封,所需风压低、风量小,自动化程度高等,是一种先进的氧化铝粉输送技术,被大多数电解铝厂采用,用于贮仓对各电解槽输送净化返回的载氟的氧化铝。
超浓相输送不需要压缩空气作为输送动力,只需要较低压力的空气使氧化铝浮动,固气比值高达500,空气压力仅需0.005N/mm2左右,采用一般的离心风机即可满足要求。
超浓相输送系统的主要装备为风动溜槽和离心风机,前者不含运动机械零部件,维修工作量小;输送速度低,管件磨损小,气体对物料粒子的破损小;输送压力低,使用普通风机即可,完全可实现自动化操作;控制元件少,控制操作过程也相当简单,但与浓相输送相比,在配置方面有较大的制约,灵活性差一些。超浓相输送系统特别适合于沿电解厂房两侧的日耗仓对各电解槽返回的载氟氧化铝的输送。
输送方式的选择
当代大型电解铝厂大都采用大型预焙槽,横向配置,采用如下的氧化铝输送模式是一种投资少、自动化程度高、维修量小、能耗低、无污染的最佳方式,即从贮仓或仓库至日耗仓采用管道式浓相输送,从日耗仓至电解槽采用风动溜槽超浓相输送,集中了两种输送方式的优点。
铝电解槽焙烧启动方法和发展动向
2019-03-08 12:00:43
铝电解槽焙烧发动方法和开展意向 廖贤安 张明凯概要:介绍并分析了铝电解槽焙烧发动方法和开展趋势。方法单一落后、热冲击大和检测记载不行是我国铝电解焙烧发动的首要问题。焙烧发动的方法不妥和质量偏低是我国铝电解槽寿数短功率低的首要原因之一。跟着我国铝电解厂向预焙化和大型化的方向开展,改善焙烧发动方法已成为我国铝电解厂的一项急迫课题。依据我国铝电解工业现状,提出了五点主张。要害词:铝电解槽 焙烧发动方法 趋势一. 导言 新铝电解槽和大修槽需经焙烧、发动和初期出产阶段后,才干转入正常出产。一般将电解槽温度从室温升至600 °C(指阴极炭块表面温度,下同)以上这一过 程称为焙烧;参加电解质并随后通电进行电解这一进程称为发动;发动后调整电解槽温度和电解质成分、树立槽帮这一阶段称为初期出产阶段。焙烧的意图是使电解槽能平稳地从室温转入高温出产,防止热冲击对内衬的损坏,使填缝糊得到杰出的焙烧而取得恰当的强度,并驱除内衬中的水分。很多研讨标明电解槽内衬的缺陷绝大大都都是在焙烧发动阶段发作的,因此焙烧发动对铝电解槽的正常出产和电解槽寿数影响极大。近年来跟着铝电解槽容量的不断增大,铝业界对焙烧发动方法愈来愈注重。焙烧发动方法已有较大改善。我国铝电解槽的均匀寿数短,出产功率较低,焙烧发动的方法不妥和质量偏低乃是重要原因之一。我国铝厂自70年代以来,简直全都选用铝水焙烧法。近年来我国铝厂对焙烧发动方法愈来愈注重,焙烧方法向多样化开展。已有不少预焙槽铝厂改用焦床焙烧法(又称焦粒法、焦层法),平果铝还自行开发了燃气焙烧法(又称燃料法、热法、火焰法)。这些都是可喜的改变。本文介绍并分析了近年来国外铝电解槽焙烧发动方法及其开展动态,并依据我国铝电解工业现状,提出了五点主张,供我国铝电解工程技能人员和科研人员参阅。二. 焙烧方法 依照热量的来历,一般可将焙烧方法分为电阻法和燃料法两大类。其间电阻法中最常用的是焦床法和铝水法。燃料法中现在最常用的燃料是液化和天然气,故常称之为燃气法。焦床法常用于预焙槽,也用于自焙槽。用于自焙槽时,阳极的工作面有必要磨平。铝水法现只用于二次发动槽。燃气法适用于一切槽型,但用于自焙槽比用于预焙槽要便当一些。直接灌电解质发动电解槽并一起开端焙烧内衬、自焙槽在焙烧阳极的一起焙烧内衬、以及选用电热元件(电阻丝/棒)焙烧内衬等方法极为少用,本文未予评论。 现在在西方国家中,最常用和最有竞争力的焙烧方法实践上只要焦床法和燃气法。其间焦床法中,大多运用分流器和阳极软带,前者是为了能逐渐增大焙烧电流,后者是使阳极大母线(横梁)和阳极导杆间的衔接具有挠性。本文首要评论焦床法和燃气法。三. 点评标准 从技能视点讲,一般可从下面六个方面临焙烧方法进行点评: 1. 升温速度的可控性。均匀升温速度一般不该超越20 °C /小时,最大升温速度 不该超越50 °C /小时。在焙烧温度300-600 °C 范围内,升温速度应操控在10 °C /小时或更小。 2. 焙烧进程中阴极表面的温度散布。明显,温度散布愈均匀愈好。一般要求其相对标准偏差小于10%。焙烧完毕时阴极表面没有温度超越1000 °C的“热区”。 3. 焙烧进程中的笔直温度梯度(从阴极炭块表面直到保温层中)。现在缺少定量 数据。一般要求焙烧完毕时这一温度梯度应尽量挨近电解槽正常出产时的温度梯度。 4. 焙烧完毕时阴极表面的均匀温度。抱负状况是这一温度应尽或许挨近电解槽正常出产时电解质的温度(950-970 °C),以防止灌电解质时发作热冲击。 5. 阳极电流散布。这是用焦床法焙烧预焙槽时的一个重要考察方针。一般要求阳极电流散布的相对标准偏差小于15%,最好小于10%。 6. 阴极电流散布。这是用焦床法焙烧电解槽时的另一个重要考察方针。其要求与阳极电流散布相同,即其相对标准偏差应小于15%,最好小于10%。 从操作和经济视点来讲,当然是以简洁和本钱低为好。其间简单易行仍是现在大都铝厂在挑选焙烧方法时所考虑的最重要的要素之一。 焙烧的升温曲线应首要依据填缝糊的特性来制定。这是因为填缝糊在焙烧进程中发作大的化学和物理改变(首要由粘结剂煤沥青的炭化引起),罢了经过高温处理的阴极炭块和侧块只要较小的物理改变。影响填缝糊烧结质量的要害温度区间为200-500 °C,在这一温度范围内的升温速度有必要缓慢。升温速度过快,沥青 的分化和蒸发速度也加速,分化和蒸发量添加,填缝糊的裂纹增多增大,机械强度下降。这是导致电解槽寿数短和操作困难的首要原因之一。因为焙烧进程的升温曲线是以阴极炭块的表面温度为准,而填缝糊的温度滞后于阴极炭块的温度,故实践焙烧进程一般从300-350 °C 开端才下降升温速度。应当指出的是,一般来 说填缝糊的温度滞后于炭块的温度是有利的。因为这意味着填缝糊能较长时刻地坚持塑性,然后有利于消除焙烧进程中发作的胀大应力。
四.好坏比较
一般来讲,焦床法具有简洁、不需求杂乱设备、不需求燃料、基本上不存在阴极炭块烧损问题、焙烧时刻短和一次能够焙烧多个电解槽等长处。燃气法具有温度散布均匀、升温速度的可控性好、笔直温度梯度小、发动后不需求铲除焦粒、不存在电流散布问题和对同系列出产槽的运转无影响等长处。铝水法的最大长处是简洁和烟气量较小。但因为其有灌铝时发作大的热冲击、熔点低粘度小的铝水优先进入内衬裂纹中以及填缝糊的焙烧缺陷无法在焙烧完毕后检测到并及时加以弥补等缺陷,国外大大都铝厂早已不必此法焙烧新槽或大修槽内衬,而仅限于二次发动槽的焙烧。
于焦床法是运用广泛的老方法,它具有很多的熟练工人和技能人员,具有多年的经历,这是它相对于燃料法的另一大长处。别的,选用细颗粒焦床时,焦粒可在电解槽发动后较短的时刻里烧尽,而不需求人工铲除。焦床法的最大缺点是对升温速度的操控不如燃气法好及温度散布不行均匀。选用分流器和阳极软带后,这些缺点有较大改善,但仍比不上燃气法。别的,分流器要耗费约20%的电能,增大了焙烧的本钱。
燃气法在推行进程中的第一道关卡是须经安悉数分的检查同意。这在有些区域需求恰当长的一段时刻。虽然到现在为止,燃气焙烧没有发作过任何安全事故。但不少铝电解厂在挑选焙烧方法时,对燃气焙烧的安全仍有顾忌。选用液化为燃料时,需求大型高压容器,这增大了安全隐患,对有些铝电解厂来说也是不方便的。选用油为燃料可革除高压容器问题,但惋惜的是以油为燃料的焙烧设备,其操作和操控不如以气为燃料的焙烧设备简洁。改善燃油焙烧法的实验现在仍在进行中。有天然气直销的铝电解厂,选用燃气法较为便当。对预焙槽来说,怎么掩盖好电解槽以保温及防氧化是燃气法遇到的另一个难题。而自焙槽的掩盖则要简单得多,这也是为什幺燃气法更合适自焙槽的原因。别的,购买燃气焙烧设备和人员培训等需求时刻和出资。
虽然有上述困难,近年来选用燃气法的铝电解厂仍呈上升趋势。现在国外铝公司/铝厂中悉数或部分选用燃气法的计有Alcoa/Reynolds, Elkem, Alusaf, Hydro, Alusuisse, Sor-Norge和Kubal等。 应当指出,焙烧发动方法与电解槽炭素内衬材料是有相关的。选用燃气法时,焙烧后填缝糊的强度比选用其他焙烧方法时要大,并有或许超越阴极炭块的强度。当遇到较大的热冲击时,炭块有或许开裂而形成电解槽破损。因此,选用燃气法和抗震性较差的阴极炭块时,应恰当调整填缝糊的配方,以减小其焙烧后的强度。
五.开展意向
近年来,铝电解槽焙烧发动方法的开展意向就是加强对升温速度的操控、进步焙烧温度散布的均匀性和完成无效应发动。意图是尽或许减小对内衬的热冲击,使电解槽能赶快转入正常出产。 选用焦床法时,为加强对升温速度的操控,各铝公司纷繁开发分流技能,并选用阳极软带衔接阳极大母线和各阳极导杆。例如,法铝各型电解槽都开发了相应的标准分流器。焙烧电流一般分四步以上,在不少于24小时内逐渐增大到系列全电流。软带衔接也是一项十分重要的技能。实践证明,它具有如下效果:改善了阳极和阴极的电流散布、削减了阴极表面发作“热门”的或许性、使阳极与焦层一向坚持杰出的触摸和省去了重复松紧阳极夹具的操作等。
选用燃气法时,为更好地操控升温速度和监测焙烧状况,近年来引入了计算机操控技能。经过调理燃料流量,能够按预先设定的升温曲线比较精确地操控升温速度。在监测室里能够看到各点的实践升温状况,经过调整各喷的流量和喷嘴的方向,能够调整各点的升温速度。焙烧进程中的设定升温曲线、各点的实践升温曲线和异常状况都在计算机屏幕上显示出来并记载下来,便于监控、分析和改善。而这些是焦床法难以做到的。这是因为选用焦床法时,人对焙烧功率的操控手法是有限的,即焙烧功率不能依照人的志愿而便当地随时加以调理。假定焙烧功率在一段时刻内坚持不变,跟着温度的上升,电解槽的热损失和炭素材料的比热是添加的,因此升温速度会渐渐下降。焙烧进程中焦床的电阻会大起伏减小,而分流器电阻会有所增大,故焙烧电流会增大。其增大起伏首要取决于电解槽电阻(含焦层电阻)与分流器电阻的相对改变。焙烧电压和焙烧功率也会随电阻和电流的改变而改变。其具体改变与所挑选的分流器材料、尺度、焦床材料、焦层厚度、焦粒粒度、阴极炭块类型和温度等要素有关。一切这些改变都无法在焙烧进程中加以调控。关于分流器材料,一般选用钢、铝或镍铬合金。关于焦床材料,近年来一些铝电解公司/厂弃用石油焦而改用石墨。
为进步焙烧温度散布的均匀性(即减小水平温度梯度和笔直温度梯度),除加强对升温速度的操控外,还须加强对内衬各部位温度改变的监测。为此应在阴极炭块的表层(离表面约2厘米)和阴极炭块与耐火砖之间的垫层中别离埋设不少于四支热电偶,在耐火砖层下及保温层中别离埋设不少于两支热电偶。焙烧开端后,应具体记载和分析各热电偶的温度改变和寿数,为及时调整焙烧进程及日后改善焙烧方法和分析内衬破损机理供给第一手资料。选用焦床法时,还有必要加强对阳极电流散布和阴极电流散布的监测。
因为阳极效应期间电解槽排出很多强温室气体CF4和C2F6和其他有毒气体,近年来西方各铝公司都想方设法削减阳极效应的次数和持续时刻。完成电解槽无效应发动以削减有毒气体的排放就成为铝业界寻求的方针之一。为完成无效应发动,应做到如下几点: 1.进步焙烧温度。终究焙烧温度(炭块表面)应到达920°C或更高。 2.下降笔直温度梯度。一般要求焙烧完毕时阴极炭块底面的温度到达800 °C。为到达上述两项要求,需恰当延伸焙烧时刻。选用焦床法时,焙烧时刻不该少于48小时。选用燃气法时,焙烧时刻为72小时左右。 3.发动时应防止内衬冷却。为此一般不铲除焙烧时用的保温材料,并将极距下降至1-2厘米。 4.灌电解质和通电应尽或许快。应有满足量的热电解质,且电解质中不该有铝。 5.应十分缓慢地进步极距。 电解槽焙烧温度进步后,电解槽运转初期的槽电压减小,槽电压的动摇也减小,电解槽能较快地转入正常出产。
六.几点主张
1. 鉴于我国铝电解槽炭素内衬材料的抗热震性较差,减小焙烧发动时的热冲击显得尤为重要。下降焙烧时的升温速度,尤其是下降焙烧温度300-600°C (对应的填缝糊温度约200-500°C)范围内的升温速度,应是咱们改善焙烧发动方法的要点。
2.规划院(所)在规划铝电解槽时,应与铝电解厂协作,一起规划出相应的分流器和阳极软带。对分流器材料的挑选、分流器的安置和分流器在运用进程中的行为应有具体的记载和分析,以便改善和标准化。
3.铝电解厂应加强对焙烧进程中的温度和电流散布等参数的监测和记载,树立电解槽焙烧发动档案,为改善焙烧方法和分析内衬破损机理供给第一手资料。 4.有天然气直销和接近炼油厂的铝电解厂,应活跃试用燃气法。可考虑选用引入成套设备和技能与自行开发相结合的方法来开展合适我国国情的燃气焙烧法。
5.加强对电解槽破损机理的研讨。应常常对破损槽进行干式解剖,具体记载其破损部位和分析其破损原因。
Preheating and start-up methods and their development trends of aluminium electrolysis cells
Liao Xianan, Zhang Mingkai
Abstract
Preheating and start-up methods and their development trends of aluminium electrolysis cells are described and analysed. The lack of multiple and advanced methods, producing large thermal shock and lacking sufficient monitoring and recording have been the main problems encountered in the aluminium smelting industry of our country. Use of improper method and low quality of preheating and start-up procedures is one of the main reasons responsible for the short cell life and low efficiency of aluminium electrolysis cells in our country. With the development towards prebaking and large scale of aluminium cells in our country, improving the preheating and start-up method has become an urgent task of the aluminium industry of our country. Five proposals have been put forward according to the existing situation of the aluminium industry in our country.
Key words: Aluminium electrolysis cell, preheating and start-up, method, trend
铝电解槽焙烧方法的评价标准
2019-01-08 09:52:44
任何从技术角度对焙烧方法进行评价,目前并无统一的标准和指标,一般可从以下六个方面进行评价:
一、升温速度的可控性。平均升温速度一般不应超过20℃/小时,最大升温速度不应超过50℃/小时。在焙烧温度300-600℃范围内,升温速度应控制在10℃/小时或更小。
二、焙烧过程中阴极表面的温度分布。显然,温度分布愈均匀愈好。一般要求其相对标准偏差小于10%。焙烧结束时阴极表面没有温度超过1000℃的“热点”。
三、焙烧过程中的垂直温度梯度(从阴极炭块表面直到保温层中)。目前缺乏定量数据。一般要求焙烧结束时这一温度梯度应尽量接近电解槽正常生产时的温度梯度。
四、焙烧结束时阴极表面的平均温度。理想情况是这一温度应尽可能接近电解槽正常生产时电解质的温度(950-970℃),以避免灌电解质时产生热冲击。
五、阳极电流分布。这是用焦床法焙烧预焙槽时的一个重要考查指标。一般要求阳极电流分布的相对标准偏差小于15%,最好小于10%。
六、阴极电流分布。这是用焦床法焙烧电解槽时的另一个重要考查指标。其对预焙槽的要求与阳极电流分布一样,即其相对标准偏差应小于15%,最好小于10%。对自焙槽来说,阴极电流分布的相对标准偏差应小于20%。
从操作和经济角度来讲,当然是以简便和成本低为好。其中简单易行仍是目前多数铝厂在选择焙烧方法时所考虑的最重要的因素之一。
焙烧的升温曲线应主要根据填缝糊的特性来制订。这是因为填缝糊在焙烧过程中发生大的化学和物理变化(主要由粘结剂煤沥青的炭化引起),而已经过高温处理的阴极炭块和侧块只有较小的物理变化。影响填缝糊烧结质量的关键温度区间为200-500℃,在这一温度范围内的升温速度必须缓慢。升温速度过快,沥青的分解和挥发速度也加快,分解和挥发量增加,填缝糊的裂纹增多增大,机械强度下降。这是导致电解槽寿命短和操作困难的主要原因之一。由于焙烧过程的升温曲线通常是以阴极炭块的表面温度为准,而填缝糊的温度滞后于阴极炭块的温度,故实际焙烧过程一般从300-350℃开始才降低升温速度。应当指出的是,一般来说填缝糊的温度滞后于炭块的温度是有利的。因为这意味着填缝糊能较长时间地保持塑性,从而有利于消除焙烧过程中产生的膨胀应力。
这有一点需要指出的是,阴极炭素材料虽属脆性材料,但如缓慢施加应力(负载),却呈现出相当大的韧性,这也是应控制升温速度的一个重要原因。
影响铝电解槽寿命关键技术研究
2019-02-28 09:01:36
铝电解槽寿数是受多种要素影响的一项归纳目标,是铝电解出产技能水平的重要标志。现在我国电解铝技能属国际中上等水平,但与国外先进水平比较,电解槽寿数相差500~1000天,怎么延伸铝电解槽寿数已成为我国铝工业开展亟待研讨和处理的大问题。 该项目在全面研讨我国电解槽寿数现状及首要影响要素的基础上,提出了根绝前期破损、坚持中期运转安稳、晚期加强监护的三大系统关键技能的研讨方向及相应的技能措施。 该项目技能创新点如下: 1、一次成型大规格硼钛复合层可湿润阴极、石墨含量大于30%的高石墨质阴极、氮化硅结合碳化硅―炭复合侧块系列产品的配套运用,显着进步了电解槽运转的安稳性,降低了炉底压降。 2、焦粒焙烧发动技能的优化与推广应用,有利于进步槽寿数。 3、研讨并提出了不同类型电解槽内衬材料系统,为优化电解槽结构设计供给了根据。 该项目将研讨的新技能、新工艺、新材料进行系统研讨集成,全体在我国铝业股份有限公司的部分不同类型的大型预焙槽进步行了工业实验和推广应用。经过该项意图施行,使中铝公司电解槽的平均寿数进步了300天,发明的效益为5607万元。 目前我国电解铝工业正处在工业结构调整时期,本项目为我国铝工业进步铝电解槽寿数供给了不可或缺的技能,推动了我国电解铝工业的全体技能水入国际先进队伍,产生了明显的经济效益和社会效益。
G中孚铝电解槽节能技术获突破
2019-01-16 09:34:53
G中孚(600595)、华中科技大学等单位联合承担的国家重大产业技术开发专项“300KA级大型铝电解槽综合节能技术开发”课题组近日传来喜讯,经过近两年零两个月的技术攻关,通过数十次的实验室测试和九次现场试验,河南中孚实业股份有限公司铝电解系列大修槽上首次采用全电流不停电技术启动成功,标志着这项困扰世界电解铝行业的技术难题彻底告破。
该课题是2005年国家重大产业技术开发专项“300KA级大 型铝电解槽综合节能技术开发”中的六大课题之一,由河南中孚实业股份有限公司、华中科技大学、郑州中实赛尔科技有限公司等单位联合承担。到目前为止,课题组已取得了不停电停槽、不停电开槽和电解槽大修不停电焊接三项重大成果,并已申报四项国家专利,实现了大型铝电解系列非事故条件下的不停电生产。该项成果的取得对该公司而言,将达到年节电2250多万度、增产铝2500余吨,还大大减少了电解铝停电对电网及自备电厂造成的影响,直接经济效益达2000余万元。
铝电解槽用新型轻质散状保温材料
2019-01-16 09:34:53
本项目是以赤泥为主要原料,采用轻质骨料和耐火细粉复合配料,优化选取了q=0.24的6级粒度级配方案,研制开发的一种新型轻质保温材料,适用于做铝电解槽底部保温材料。
研究内容、技术特点和技术经济优势如下: 1、无缝隙,保温性与整体性好。原来粘土质隔热砖铺砌两层,上、下层错缝铺砌,一般留有1~2mm的砖缝,需以大量工业Al2O3粉做灌缝处理,采用的新型轻质散状保温料属不定形耐火材料,施工后整体性好,无缝隙,有利于保证电解槽运行过程中底部的保温效果,同时可节约大量工业Al2O3粉。
新型散状保温料导热系数为?0.172w/m·k,因而同原保温材料结构相比,具有更好的保温效果。
2、施工便捷。从材料性状看,新型轻质散状保温料与干式防渗料非常相似,因而可以采用相同的施工工艺和器具,无需再对工人进行复杂的操作培训。
3、有利于电解槽的稳定高效运行。从改进后槽底部结构看,新型散状保温料与干式防渗料配套使用相得益彰,既有利于槽底保温,又有利于防止电解质渗透,同时轻质散状保温料与干式防渗料一样具有一定的可塑性,能有效防止槽底部隆起,减少槽壳变形,延长电解槽的运行寿命。
铝电解槽用新型轻质散状保温材料同原保温砖加硅酸钙板的保温层结构相比。在整体结构、施工性能和保温效果等方面具有良好的性能,并能大幅度降低保温材料成本,同时可有效利用山东分公司的赤泥废渣,生产质优价廉的材料,替代外购保温材料,为企业降本增效,具有明显的技术经济效果。
山铝电解铝厂目前共计有196台预焙电解槽全部大修完成后可节约资金84.12万元。
中铝国际印度BALCO项目电解槽通过性能考核
2019-01-16 09:34:47
近日,由中铝国际工程有限责任公司承担印度BALCO工程项目再传捷报,经过贵阳铝镁设计研究院、中铝广西分公司等单位现场专家们近两年来精诚团结、奋力拼搏,印度BALCO项目电解槽于近日顺利通过性能考核,并且达到了电流效率94.18%、直流电耗13413千瓦时/吨铝、金属纯度99.74%的优良指标。
400kA大型预焙阳极铝电解槽技术特点
2019-03-08 12:00:43
1、优化规划了合理的母线装备,进步了大型槽磁流体安稳性;
2、选用5段上烟道结构规划,有利于进步集气功率和改进环境;
3、选用电解厂房通风和电解槽全体热平衡相结合、摇篮架与槽壳全体焊接、槽壳外部焊接散热片、电解槽小面选用摇篮架与槽壳焊接、电解槽槽壳和内衬全体坐落操作面劣等技能,确保了大型电解槽的热安稳性,改进了劳作环境;
4、选用阴极炭块与阳极炭块投影相对应的技能,有利于阳极和阴极的电流散布均匀;
5、选用了电解槽全面操控和标准化操作系统,有用操控电解槽热平衡与物料平衡,开发了习惯大型槽安稳、安全的焙烧发动技能,形成了400kA电解槽出产操作办理技能;
6、本项目选用四种不同质量阴极炭块进行工业实验,均达到了400kA电解槽实验方针。运用30%石墨质阴极炭块的电解槽,阳极电流密度也达到了0.82A/cm2,石墨化阴极炭块的电解槽还有进一步进步电流强度的潜力。
大型预焙铝电解槽二次启动探讨
2019-01-02 16:38:58
项目背景
山西华圣铝业有限公司电解铝工程采用的是沈阳铝镁设计研究院设计的SY300KA电解槽,系列设计年产能22万吨。公司共有300KA电解槽276台,分6个区,每区46台槽。其中2003年11月24日曾对1、4区电解槽6台电解槽通电焙烧,至同年12月31日系列停电,期间电解槽没有启动,后又于2004年10月16日开始对1、4区第二次通电投产,92台电解槽全部启动,后因氧化铝和电力问题于11月30日全部停槽。
这批电解槽要进行二次焙烧启动所面临的现状是:92台启动后停运的电解槽,其中有61台槽阳极坐入铝液中,31台槽停槽时阳极拉起、铝液基本抽干;92台电解槽每台槽阳极上部覆盖有20余吨冰晶石保温料;多数电解槽各部位绝缘不良,槽上部机构和其他附属设备存在较多问题。
针对这比电解槽的实际情况,我们制定了合理的清槽、补槽和焙烧启动方案。在总体思路上把握以成功启动为前提,以安全节能环保为原则,结合其放置时间长,且大部分槽有20吨固体铝的情况,采取保护性清炉、低成本补槽,低电压焦粒焙烧启动法和低效应、低氧化铝浓度控制策略。
清理电解槽
在确定清槽方案时,以保护阴极及上部结构为原则,采用核心技术将铝块分割后取出,并采取阴极表面防氧化措施保护阴极。主要考虑了以下几点:
1、由于停槽加冰晶石覆盖料时,阳极上有一定量的氧化铝,因此在清理极上料时,要将冰晶石与氧化铝尽量分开盛装,以备将来物料更好的利用。
2、在清理槽膛四周的结壳时,要避免碰伤侧部碳块。
3、槽膛内的铝块是一个大整体,厚度在10cm以上,重量达10余吨,而铝块的边部紧贴电解槽侧部,清理时各种工具很难施展,因此在清理时一定要谨慎,严禁碰坏侧部、拉伤阴极碳块。
修补电解槽
电解槽覆盖料、结壳、阳极和铝块被清出后,电解槽侧部和阴极部分破损比较严重,主要表现在:人造伸腿断裂、起层、渗铝严重;侧部碳块断裂、被浸蚀氧化、掉块;阴极碳块风化、断裂、起层、掉块;阴极碳块间缝开裂、渗铝等。鉴于以上情况的普遍存在,为保证电解槽的顺利启动,电解槽在清槽后必须经过修补才能进行投产。
在确定修补方案时,主要以阻止形成铝液通道为原则,采用热捣糊扎固需修补的炭间缝及人造伸腿,扎固时糊料温度控制在90℃-120℃、阴极表面温度加热到80℃-100℃,侧块基本不更换。针对电解槽不同的破损情况,我们采取了针对性的修补方法:
1、针对人造伸腿出现裂缝、起层、剥落、渗铝的现象,要求对人造伸腿清除掉2-4层并重新进行扎固。
2、针对阴极碳块间缝开裂、渗铝的现象,要求将碳块间的糊料挖开10cm,渗铝部位最多20cm,重新进行扎固。
3、对阴极碳块起层、掉块的地方,要经过清理后用糊料进行填补扎固。
4、对阴极碳块本体所有可见缝隙,要求从缝隙处凿开1cm-2cm左右宽,用糊料进行填补。
5、对于有裂缝的侧块,要求用砂轮片将缝隙扩大,然后用糊料填抹修补。
电解槽的二次焙烧启动
1、焙烧启动方法的选择。考虑到本批二次启动槽运行时间短,炉底表面比较平整,我们采用焦粒焙烧法,可以在灌入铝液之前用高分子比电解质液体堵塞因焙烧形成的裂缝及通道。启动时采取低电压、低阳极效应系数,高分子比环保性启动方法,达到保护阴极、延长槽寿命、减少环境污染的目的。为了防止对槽边部和角部强烈的热冲击,造成槽边部和角部出现裂缝,采用湿法无效应启动。焙烧时间我们确定为96小时。二次焙烧送电很关键,电流上升梯度我们以120KA 、180KA、240KA、300KA为基准,电流送至240KA测量电流分布,确认无异常且冲击电压不大于5V后,再送下一个级别,停送电时间控制在30分钟内。
2、装炉操作及软连接的安装。由于电解槽启动后要求电解质分子比在2.8以上,如果装槽时使用普通的酸性冰晶石,就需要投入大量的纯碱来提高分子比,因此装炉时选用高分子比冰晶石,从而使纯碱的使用量大大减少。并在装炉时加入一定量的氟化镁来保护伸腿。为了加强电电解槽焙烧时槽中间的热对流,使焙烧温度分布均匀,防止中缝阴极表面氧化,同时启动前槽内有少量的液体电解质,我们采取中空装炉法。通电前在阳极导杆与阳极大母线之间安装软带连接母线。软连接与阳极导杆及阳极大母线接触的各部位安装前要打磨、清洗干净,各部位螺栓紧固好,确保软连接有足够的弯度,以防止接触不良发生打火现象或焙烧时阳极上升把软连接母线拉断。
3、安装的拆除分流器。由于1、4区电解槽阴极不平整度和焦粒厚度增加,电解槽通电时的冲击电压将上升,对电解槽的热冲击加剧。为了减小这种不利,我们采取在原分流器的基础上加焊分流片的方法,来增加分流量,原电解槽分流器为5套/槽,每套分2组,每组8片,即在每组8片的基础上加焊1到9片。送全电流6小时后电压在3V以下先拆除第一组分流器和第五组分流器,12小时后拆除剩余分流器,若电压急剧上升应停止拆除工作,电压稳定后再继续拆除。
4、启动及启动后期管理。焙烧96小时以后,确认具备启动条件时,可进行电解槽启动;启动前必须同时具备下列条件:
(1)中缝冰晶石大部分化开,温度高于900℃。
(2)槽四周局部开始融化,TAP端及DE端温度在750℃以上。
(3)中缝液体电解质不小于15cm。电解槽启动灌铝后24小时内电压由计算机控制从4.8V均匀降至4.5V以下;48小时内电压由计算机控制均匀降至4.3V以下;72小时内电压由计算机控制均匀降至4.2V以下;96小时内电压由计算机控制均匀降至4.18V以下;120小时电压保持4.16V以下进入后期管理。电解槽启动初期,氧化铝的添加是定时自动加工,半个月以后,自动转入模糊控制加料即正常生产加料。因此,启动初期的NB加工间隔为110-130秒,伴随槽温等工艺技术条件的正常,逐渐缩短NB间隔。在电解槽二次启动初期,修补后的人造伸腿等边部扎糊还未充分焦化,为了使边部扎糊良好焦化烧结为一体、防止修补后的扎糊层分层剥离,要求边部温度上升不宜太快。电解槽启动初期,灌铝后槽温下降较多,边部物料熔化减慢,同时液体电解质在边部不断凝固,形成可逆过程。在此过程中控制好各项工艺技术条件,减缓边部电解质的熔化,使边部升温缓慢,得以使边部扎糊良好焦化,不至造成人造伸腿扎糊层分层剥离和侧炭早期裂纹、破损、且有助于形成规整的炉膛内型。
5、实施效果。目前这批电解槽已启动7个多月,运行状况良好,技术条件稳定,槽电压稳定在4.12V,效应系数达0.3次/槽日以下,电流效率达93%,和其它正常槽没有差距。
6、结语。通过保护性低成本的清槽和补槽工作,选择低电压环保性的焙烧启动方法,以及在启动后期低氧化铝浓度和低效应的管理措施,不但节约了50%的焙烧启动电量,而且解决了300KA大型预焙槽侧部用75mm厚的碳化硅大面积发红的技术难题,大大减少了启动期间的环境污染和工人的劳动强度,启动后各项经济技术指标达到了很好的启动效果,节约焙烧启动耗电量10万度/槽;铝液质量达到AL99.70以上平均时间为16槽日;在全国同行业大面积二次启动电解槽史上可以说是一个奇迹,为我国铝行业大型预焙槽二次启动探索出了宝贵经验,具有现实的指导意义和应用价值。
阴极电解铜
2017-06-06 17:50:06
阴极电解铜2010/9/7 14:20:12A类等级的阴极电解铜,产品描述: A类等级的阴极电解铜,纯度为99.99% 每片重量:125kgs公斤 +/-1% Chemical Composition化学成分:ppm百万分之一ELEMENTS元素 VALUE数值 ELEMENTS元素 VALUE数值 COPPER铜 (min %age) 99.99% SILICA 硅(SI/ppm) 0.3 IRON 铁(Fe/ppm) 2 COBALT 钴(CO/ppm) 0.2 SULPHUR硫 (S/ppm) 4ARSENIC砷 (AS/ppm) 0.1 OXYGEN 氧(2/ppm) nil无 BISMUTH铋(BI/ppm) 0.1 ARGENT 银(AG/ppm) 10 MANGANESE锰(MN/ppm) 0.1 LEAD石墨 (PB/ppm) 0.2 TELEURIUM 碲(TE/ppm) 0.05 NICKEL 镍(NI /ppm) 0.2 ALUMINIUM铝(AL/ppm) 0.5 SELENIUM 硒(SE/ppm) 0.3 MAGNESIUM镁(MG/ppm) 0.4 ANTIMONY 锑(SB/ppm) 0.1
影响铝电解槽寿命关键技术的研究应用
2019-02-28 10:19:46
铝电解槽寿数是受多种要素影响的一项归纳目标,是铝电解出产技能水平的重要标志。现在我国电解铝技能属国际中上等水平,但与国外先进水平比较,电解槽寿数相差500~1000天,怎么延伸铝电解槽寿数已成为我国铝工业开展亟待研讨和处理的大问题。 该项目在全面研讨我国电解槽寿数现状及首要影响要素的基础上,提出了根绝前期破损、坚持中期运转安稳、晚期加强监护的三大系统关键技能的研讨方向及相应的技能措施。 该项目技能创新点如下: 1、一次成型大规格硼钛复合层可湿润阴极、石墨含量大于30%的高石墨质阴极、氮化硅结合碳化硅―炭复合侧块系列产品的配套运用,显着进步了电解槽运转的安稳性,降低了炉底压降。 2、焦粒焙烧发动技能的优化与推广应用,有利于进步槽寿数。 3、研讨并提出了不同类型电解槽内衬材料系统,为优化电解槽结构设计供给了根据。 该项目将研讨的新技能、新工艺、新材料进行系统研讨集成,全体在我国铝业股份有限公司的部分不同类型的大型预焙槽进步行了工业实验和推广应用。经过该项意图施行,使中铝公司电解槽的平均寿数进步了300天,发明的效益为5607万元。 目前我国电解铝工业正处在工业结构调整时期,本项目为我国铝工业进步铝电解槽寿数供给了不可或缺的技能,推动了我国电解铝工业的全体技能水入国际先进队伍,产生了明显的经济效益和社会效益。
铝电解槽新型筑炉材料的开发和应用
2019-01-02 16:33:43
作为电解槽上重要构件之一的阴极碳块,其主要功能是作为电解槽内衬材料和用于传导电流。因此,其在铝电解过程中对电解槽寿命及运行状态至关重要。目前我国预焙电解槽的平均槽寿命只能达到1200天左右,这与国外先进的平均槽寿命3000天相比,具有明显的差距,并且由于我国的电解槽普遍存在电流密度过低(国内0.65~0.72A/cm2),因此同样大小的电解槽也要比国外先进水平少产铝10%以上(国际先进水平约0.75~0.9A/cm2)。究其主要原因是所使用阴极碳块的性能不佳所致。因此,提高阴极碳块档次和使用高品质的阴极碳块,是今后我国铝工业和碳素工业的发展方向和必然趋势。
本文是近年来中铝贵州分公司碳素厂根据铝电解的发展方向和市场需要,所进行高石墨质系列阴极碳块的开发过程和在铝电解槽上进行工业性应用情况的介绍。 研制过程 2000年公司在此基础上,参照法国沙瓦公司HC系列阴极碳块指标,重新对技术路线和研制目标进行了调整,在高起点上重新开展高石墨质系列阴极碳块的研制和开发工作。在数年的时间里,经过对二十多个配方进行研究和改进并在对煅烧、混捏成型和焙烧工艺进行反复的研究和探索基础上,作了三十多次小规模试验和十余次较大规模的工业化生产试验后获得了成功。各种产品的理化性能均达到了目标要求。
(1)研制目标
高石墨质系列阴极碳块的各项理化性能指标参照法国沙瓦公司同类系列产品的典型值进行制定。
(2)研制方案及技术手段
①主要原料:无烟煤、人造石墨、改质沥青。
②最大粒级的确定:如果粒径过大,虽然能提高制品的抗震能力和减少制品的热膨胀系数,但是从另一个角度上来说又会提高制品的气孔率,降低制品的机械强度和密度,反过来又影响了制品在电解过程中的抗钠浸蚀能力和抗熔盐机械磨损和冲刷能力,最终确定了各型阴极碳块的最大粒径。
③配方的制定:在对国外阴极碳块配方进行研究及结合我们长期的工作经验,确定了配方的粒级和大致的配合比例。经过二十多次的工艺性验证、探索和优化后,确定了高石墨质系列阴极碳块工业性试验用配方。
④工艺参数优化:在研制前期,对主要和关键的工艺技术参数进行了优化和改进,使之能适应和满足研制要求。
⑤对无烟煤进行超高温处理:通常情况下原料的煅烧一般温度在1350℃左右,在该种状态下进行煅烧,其煅后煤的粉末比电阻在1100~1300μΩm之间,不适宜用于高石墨质系列阴极碳块的生产。
⑥适当提高焙烧温度,提升制品的导电性能:常规的阴极碳块在进行焙烧时,其温度一般控制在1250~1300℃之间,但为了提高碳块导电能力,可采用适当提高碳块的焙烧温度和延长焙烧时间的技术手段。
⑦工艺流程的确定:高石墨质系列阴极炭块的开发及生产,是在原半石墨质阴极炭块生产流程上进行的,根据高石墨质阴极炭块开发及生产工艺需要做了局部的改造。
⑧研制用主要设备:双轴Z型搅刀间断式热媒加热混捏机;滚筒式凉料机;3000 t 立卧式挤压成型机;32室带盖式环型焙烧炉。 高石墨质系列阴极碳块在铝电解生产中的应用情况 (1)试验结果对比
试验槽在寿命期内运行状况良好,阴极碳块工作正常,没有出现早期破损现象,三台高石墨质阴极碳块槽槽寿命平均1817天,比三台半石墨质阴极碳块槽的平均寿命1439天长378天。
在寿命期内,三台高石墨质阴极碳块槽的炉底压降平均为404.57mV,三台半石墨质阴极碳块槽的炉底压降平均为430mV。GS-1高石墨质阴极碳块槽的炉底压降比半石墨质阴极碳块对比槽平均低25.43mV,有利于电解槽的节能。
(2)在贵州分公司230KA电解槽上的使用情况
2000年10月在230KA电解槽上进行了对比试验,1#、2#、3#槽采用30%石墨含量的高石墨质阴极碳块,4#、5#、6#槽采用半石墨质阴极碳块,焙烧启动后的前8个月测试数据表明:
通过对阴极碳块的摸底检查,使用30%石墨含量的高石墨质阴极碳块的槽炉底平整,吸钠膨胀变形很小。而使用半石墨质阴极碳块的槽炉底不平整,且有一定的膨胀变形。
(3)在其它电解槽上的应用情况
2002年3月17日在广西分公司电解厂160KA电解槽和云南铝业l86KA电解槽上分别砌筑了两台30%石墨含量的高石墨质阴极碳块槽进行试验,至今工艺状况稳定、运行情况良好。
(4)产业化推广应用
2005年电解铝厂在57台铝电解槽上投入了高石墨质阴极碳生产;
2006年到8月1日为止,又有20台高石墨质阴极碳投入生产。
(5)国外企业大规模应用高石墨质阴极碳块(30%人造石墨含量)状况
2004年6月印度BALOCO铝业公司向我分公司订购了2600吨高石墨质阴极碳块在其250KA铝电解槽上进行使用,充分体现了其在抗热震性能方面的优越特性。因此,2006年年初印方又向我分公司紧急订购了3000吨同类型产品用于破损槽的大修。 分析与讨论 工业性试验和铝电解槽上生产性应用的结果表明:通过对煅烧工序、混捏成型工序和焙烧工序工艺参数以及配方进行研究和改进后,利用现有流程完全能生产出理化指标符合研制方案要求的高石墨质系列阴极碳块,并且在电解槽上使用时能取得节电、降耗、提高产能和延长寿命的功效。
(9)高石质系列阴极碳块的导电性能分析
从理论上说,阴极碳块的导电性能与其所使用原料的石墨化度有关,而所用原料的石墨化程度又与其粉末比电阻值的关系较为密切,基本上是呈线性关系。若配方中主要原料的石墨化度越高,粉末比电阻值越低,则碳块的电阻率也越低。反之亦然。为了提高各型高石墨质阴极碳块的导电能力,在研制方案中采用了提高阴极碳块整体石墨化度的技术手段,主要通过下述环节加以实现。
由于织金无烟煤本身具有强度高、致密性好特点,将其放入电煅炉中进行煅烧,通常情况下煅烧温度控制在1600~1800℃时,能将煅后煤粉未比电阻值控制在650±l00μΩm之间,基本能满足常规产品的生产。但其在该范围内所得到的高温处理,使用于高石墨质系列阴极制品的生产,不足以使各类制品的导电性能发生明显变化。只有采用高温调控技术将煅烧温度进一步升至1800~2100℃左右,在该温度下无烟煤得到了近似石墨化过程的工艺处理,使其六角碳原子的平面网格从无序的二维空间排列转为有序的三维空间排列;从无定型结构转化为具有石墨的晶格结构。因此,使煅后煤的粉末比电阻值有了明显的降低。试验数据证明,在配方中用过煅煤替代普通煅后煤而不改变各种原料比例的情况下,可以降低碳块的电阻率,就是用提高煅烧度后的原料进行试验和生产的配方,用其试制碳块的电阻率在36μΩm左右,比使用普通温度煅烧无烟煤生产碳块的电阻率降低3~4μΩm,能降低9.2个百分点。由此可见,降低原料无烟煤的粉末比电阻值能有效提高碳块导电能力性能。
(2)高石墨质系列阴极碳块抗钠浸蚀性能分析
从理论上说电解槽提前破损就其阴极碳块方面所引起的原因,主要是抗钠浸蚀差,孔隙度高和膨胀率高所致。
在电解过程中如果阴极块材料的选择不当,抗钠浸蚀能力弱,那么钠离子容易渗透到碳块里,从而引起高温膨胀,它远大于从室温到1000℃膨胀。椐报导:在冰晶石分子比为4的熔盐中,普通碳块的膨胀率1.0%~3.0%。而含有较多石墨材料的总膨胀率为0.5%~0.7%。而全部石墨化的碳块在相同的情况下仅有0.25%。
从国内外众多厂家对电解槽进行干刨后,分析其破损的机理来看,结论大都是因为钠的渗透导致阴极碳块膨胀,使阴极碳块破裂,中间隆起及槽壳变形所致。因此,提高电解糟使用寿命的主要手段之一,是整体提高阴极碳块的石墨化度。
(3)高石墨质系列阴极碳块抗热震性能分析
所谓抗热震性能是指阴极碳块在经受高温剧变时不被破坏的性能。当温度发生剧变时,若材料不能及时把热传出,那么在碳块内部和表面就会产生温度梯度,由此因膨胀和收缩不均而产生热应力的现象,当热应力达到极限后,阴极碳块就被破坏。因此,要提高阴极碳块的抗热震性,必须从减小热应力的产生、缓冲热应力的发展和增强抵抗热应力的能力等方面进行考虑。而在阴极碳块的诸多指标中,热膨胀率、导热系数、杨氏摸量、机械强度等指标,是衡量其抗热震性能是否优异的综合体现。
(4)高石墨质系列阴极碳块其它指标状况
①真密度、体积密度、气孔率
从常规指标比较表所统计的数据可看出,我分公司所开发的各型高石墨质阴极碳块的试验块最终真密度、体积密度和气孔率的典型值均比法国沙瓦公司HC系列中同类产品的真密度、体积密度和气孔率的典型值在数值上更优。这说明了本高石墨质系列制品在碳质颗粒的结构和排列更为规则和有序,致密度更高。因此在电解过程中,被钠离子浸蚀的速度就更加缓慢,从而进一步提高了本系列产品的抗钠浸蚀能力。
②抗压强度
本公司所开发的各型高石墨质阴极制品的抗压强度典型值同样也优于法国沙挖公司HC系列的同类产品。这说明本系列制品在抗机械磨损和抗融盐冲刷方面的能力更强,有助于提高电解槽寿命。
(5)高石墨质系列阴极碳块对电解槽的正常运行产生良好的效果
根据上述分析和工业性应用后的效果可看出,由于高石墨质系列阴极碳块具有良好的致密性、导电、导热和抗钠浸蚀性能,因而在使用过程中能保证电解槽有较好的热平衡和槽膛规整,并能使阴极电流的分布更加均匀。这对于电解槽正常、稳定运行,改善电解工艺技术指标,延长槽寿命、提高电流效率都将产生积极的影响。 阴极碳块应用铝电解槽生产后的经济分析
高石墨质阴极碳块是一种全新的铝电解槽用阴极碳块,就目前我分公司数次应用的结果来看,使用该系列阴极碳块和使用半石墨质阴极碳块相比,具有如下优势:
(1)电阻率降低:能大幅降低炉底压降,降低电解电耗
高石墨质系列阴极碳块具有良好的导电性能,其电阻率比半石墨质阴极碳块低10~20μΩm,能在较大程度上降低电解槽炉底压降,因此为降低铝电解电耗创造了条件。从我分公司在产业化推广应用过程中所测试和统计的数据中可得到如下结论:
高石墨质阴极碳块比半石墨质阴极碳块的槽电压要低5~10mv。按照吨铝节约7.5mv,每吨电解铝可降低电耗24.2kwh/t—Al,电的单价按0.32元/kwh计,贵州公司电解铝产能按34万吨/年计,如用高石墨质阴极碳块代替半石墨质阴极碳块,一年节约电能为82.28万KWH,合人民币263.3万元。
(2)延长槽寿命,节约制造费用
l60KA电解槽大修费34万元,启动费17.7万元,用半石墨质阴极碳块合计费用51.7万元。使用寿命按1439天计,每吨铝的大修启动费均摊为:
若用高石墨质阴极碳块(其价格比半石墨质阴极碳块大约高2200元)替代半石墨质阴极碳块:每台槽大修费增加16×1.205×2200=42416,使用寿命按1817天计,每吨铝的大修启动费均摊为:
(3)因电流效率的提高所产生的效益 在高石墨质阴极碳块(30%人造石墨)和全石墨质阴极碳块进行产业化应用时,电流效率平均分别提高0.13和0.39个百分点,按照这个结论将其推广到全厂842台槽进行使用,高石墨质阴极碳块一年可以多产铝:34万吨×0.13%=442吨。按吨铝利润3000元计算,一年可以多创造利润397.8万元。 结论 (1)工业性试验后的结果说明在不进行石墨化处理的条件下,通过改变配方和工艺技术条件,生产高石墨质系列阴极碳块的技术方案和技术路线是可行的。各类制品的理化性能均达到了目标要求,并总体优于法国沙瓦公司HC系列产品。
(2)各类制品的导电性能、抗钠浸蚀性能和抗热震性能与半石墨质阴极碳块相比上了一个档次,可大幅度提高电解槽寿命。
(3)GS系列产品在铝电解槽上时,能提高电流效率、降低能耗和延长电解槽寿命。
铝电解槽新技术回收50%废热 增产20%
2018-12-27 15:51:50
挪威GOODTECH下属的能源回收技术公司近期开发了独特的电解槽主动冷却和热回收技术,已经在铝厂实现规模化应用,并开始广泛的技术设备推广。这将为电解铝行业节能减排做出重大贡献。 该技术以热管技术为基础,以油为导热介质,其导热性能是铜的1000倍,而且不存在热应力。 众所周知,电解铝生产过程中,每吨铝大约耗电13000度,其所产生的热量中有大约50%用于反应过程,另外50%则以废热的形式散发。GOODTECH的工艺可以回收大约50%的废热(也就是总热量的大约25%),所回收的热量相当于每吨铝节省3000度电。 电解铝技术 此外,通过主动冷却,可以控制电解槽槽帮厚度,从而可以强化电流,将每台电解槽的产量提高20%。控制槽帮厚度,对电解铝的生产有诸多好处:确保生产稳定,提高效率。 该工艺通过两级系统对电解槽的废热进行回收。第一级是对电解槽顶部的废气进行冷却,对热量进行回收。这样能降低废气温度,提高除尘袋寿命,降低风机负载;第二级是对电解槽侧壁的冷却和热量回收。 所回收的热量有很多用途。如果用于火电厂发电,则可提高发电效率,减少二氧化碳排放,同时节省燃煤约10%。 在安全性方面,GOODTECH也有充分的考虑。首先电解槽侧壁的热交换器有保护装置。此外,每块热交换器都可以旁通,这样一块热交换器出了问题的时候,不会对其它热交换器和整体运行造成影响。 该技术已经在迪拜铝业的一条电解铝生产线上运行超过1年时间,客户设定的各项指标也均已实现。 关于Goodtech 总部位于挪威奥斯陆的GOODTECH公司成立于1913年。该公司有1500名员工,年销售额约24亿挪威克朗(3亿美元)。 该公司致力于为能源、基建、石油、公共设施以及水处理方面提供创新工艺和交钥匙工程。 在铝工业领域,GOODTECH主要提供电气工程、设计和控制系统,客户主要包括海德鲁铝业、阿联酋铝业、巴林铝业以及俄铝。 关于海蓝前景 北京海蓝前景金属贸易有限公司成立于2011年,是由行业资深人士创办的专注于铝、镁轻金属行业技术服务、贸易服务的公司。已经是主要的铝电解质等有价资源全球配送服务商。目前,公司正依托行业技术和市场专家顾问团队,发挥业内广泛的信息和联络优势,以全球视野和前瞻理念致力于行业蓝海业务的开发,积极引进国外成熟的铝镁工业节能减排和废物处理新技术新装备,推动行业环保和可持续发展。
铝电解槽产生的过氟化炭是温室气体
2018-12-06 10:04:49
电解槽发生阳极效应是产生一种气体叫过氟化炭,英文简称PFC 或PFCs,包含两个 化学成分:CF4 和C2F6,在阳极效应是时发生的量虽然极少,但因为它全球变暖趋势是一 般CO2 的6500 倍(CF4)和9200 倍(C2F6),在大气中生存万年以上,所以,被国际上作 为一种严重的温室气体对待。 计算方法: BE(t CO2e / t Al)={EFCF4×GWP CF4+ EFC2F6×GWP C2F6÷1000 式中:BC(t CO2e / t Al)是每吨铝产生的基准排放量(t CO2e 表示吨当量二氧化碳= 即相当于一般性二氧化碳的吨数)。2003 年IAI(国际铝协)提出的点式下料电解槽为0.65 t CO2e / t Al(此数据每年都有 变化,它是随着技术进步而修订的)。 EFCF4(过氟化炭中的CF4 因子),单位是( kg CF4 / t Al ),设定在PFC 中占90% EFC2F6(过氟化炭中的C2F6 因子),单位是( kg C2F6 / t Al )=1/10 CF4 GWP CF4 是全球温室气体中CF4 气体的影响因素=一般CO2 的6500 倍。 GWP C2F6 是全球温室气体中C2F6 气体的影响因素=一般CO2 的9200 倍。国际上有三种计算方法,IAI(国际铝协)法,ALCOA 法, PECHINEY 法。 PECHINEY 法.太严,我们也缺乏测定设备;ALCOA 法只有美国人承认。所以一般采 用IAI(国际铝协法。例题:设一台350KA 电解槽的阳极效应系数(英文叫AE)=X 次/槽天;效应时间持 续3 分钟, 试算在X 等于多少的情况下可以小于2003 年IAI 的基准。采用IAI 法: EF(kg CF4 / t Al 或kg C2F6 / t Al)=斜率(IAI 基准数=0.14)×AE(分钟) / 槽.天 EFCF4=(0.14×X×3)×90%=0.378X kg CF4 / t Al EFC2F6=(0.14×X×3)×10%=0.042kg C2F6 / t Al BE(t CO2e / t Al)={EFCF4×GWP CF4+ EFC2F6×GWP C2F6÷1000 0.65(tCO2e / t Al)=( 0.378X×6500+0.042X×9200)/1000 0.65(tCO2e / t Al)=(2457X+386.4X) / 1000 650=2483.4X X=0.228 次/槽天 低于2003 年IAI 基准0.65 t CO2e / t Al 的阳极效应系数是0.228 次/槽天 如果将AE 时间修改为1.5 分钟,则BE(t CO2e / t Al)=0.60 (t CO2e / t Al)
350kA特大型预焙阳极铝电解槽研制
2019-01-16 09:34:57
该课题于2002年立项研究,2003年3月至2004年4月施工建设,2004年8月开始启动前半个系列即78台电解槽,至11月一次启动成功,顺利投产。2005年2月启动后78台槽,至5月全部顺利启动完毕,现在整个系列(156台槽)投入生产,运行稳定。目前,本工程是应用350kA电解槽技术实际投入生产运行中规模较大(140kt/a)的。首期启动的78台槽在2005年3~5月份的平均电流效率94.15%、直流电耗13474kWh/t.Al。综合技术达到国际先进水平。 该项成果在研制过程中,申请了11项专利,其中有6项获得授权书,5项获得受理。 该项成果主要内容及创新点是:母线采用非对称六端进电;进行了磁场优化设计,使电解槽运行平稳;应用电解槽本体热平衡仿真与厂房通风模拟相结合的“系统热平衡”设计新方法,获得了良好的电解槽热平衡和厂房通风设计效果;采用窄加工面、槽壳增设散热片、大间距摇篮架结构,获得了材料用量省、结构紧凑、槽壳变形小、热工状况稳定的良好效果;开发出三段抽风技术,有利于提高集气效率和改善环境。 该项成果建设投资省,技术经济指标好,具有显著的经济效益和社会效益。 该项成果已经用于兰州铝业股份有限公司268kt/a新建工程上,而且用此技术在沙特阿拉伯和伊朗等多个电解铝工程上进行投标。具有很好的推广和使用价值。
铝电解槽炉帮的形成与节能降耗
2018-12-20 09:35:36
1.炉帮的作用 电解槽生产指标的好坏,完全取决于炉膛的规整与否。炉帮空、炉底不平的电解槽相对而言,电压的稳定性要差,槽内铝液的镜面波动较大,加剧了铝的二次反应,降低了电流效率,要维持正常运行,需保持较高的电压,加大了生产成本。较好的炉帮,能起到电解槽的保温,降低电解槽的热损,减少能量的输入,从而降低电压,能减少侧部水平电流的走向,降低电流空耗,电解槽的生产应紧紧围绕炉帮的变化进行参数调整,确保指标的稳定和电解槽的平稳运行。 2.如何形成炉帮 电解质的初晶温度特性表明:当炉帮处的温度低于初晶温度时,电解质中的冰晶石就会在此处结晶形成侧部结壳,形成炉帮,当炉帮处的温度高于初晶温度时,电解质中的冰晶石很难在侧部形成结壳,并且在磁场的作用下,持续地对侧部炭块进行冲涮致使电解槽壳散热钢窗温度逐步升高,危及安全生产。 2.1调整分子比 在同一系列电流、电压不变的情况下,电解质分子比低的时候,它的初晶温度低,过热度变大,形成的炉帮薄,以利于散热,维持电解槽的热平衡;而当分子比高的时候,它的初晶温度高,过热度变小,在电压产生热量不变的情况下,薄炉帮的散热明显过大,打破了电解槽原有的热平衡,电解质中的高分子物质持续不断的向炉帮处偏析,从而形成较厚的炉帮,减少散热量,重新建立了一个新的热平衡。这种分子比、初晶温度、过热度、炉帮薄厚、炉帮散热、形成了电解槽一个微妙的热平衡关系。从这点可以得出一个结论:电解槽炉帮形成的厚薄与分子比的高低有一定关系。在同系列电流内,相同的电压,分子比低的时候,形成的炉帮薄,分子比高的时候,形成的炉帮厚。但是过低的分子比形成的炉帮薄,容易形成侧部导电,溶解氧化铝的能力降低,在定容下料状况下,一部分料溶入电解质,一部分料沉入炉底成为稀沉淀,变硬后形成结壳,增加炉底压降,形成更多的侧部电流,影响电效。过高的分子比形成的炉帮厚,既绝热,又绝缘,垂直电流集中,升高炉底温度,熔化结壳,降低炉底压降,提高电效。 2.2调整槽电压 通常情况下,一个系列内电解槽都是串联的,每台电解槽的电流相等的,控制电解槽热收入的主要参数就是电压。根据公式W=IVT可知,槽电压越高,热收入越多;槽电压偏低,热收入就偏低。在电流、分子比基本稳定的情况下,要想形成理想的炉帮,必须逐步降低槽电压,减少电解槽的热收入,促使电解质的高分子物质在侧部结晶析出。因为电解槽的温度越高,电解质的过热度越大,而炉帮的形成是在温度接近电解质的初晶温度时,才会在侧壁析出形成结晶,逐步形成炉帮。如果炉帮过厚时,容易熔化伸腿,化瘫铝水平,而使电流效率降低,遇到这种情况时,应适当的抬高电压,增加热收入,融化过厚的炉帮,增加侧部散热,降低炉底温度,促使伸发育形成。 2.3参数调整对极距的影响 在系列生产的电解槽中,除了电流所有的电解槽是一样的外,其余的参数,如槽电压、分子比、铝水平、电解质水平、效应系数、炉底压降、保温料等,因人为操作的原因和机械挥发,以及微机控制的设计误差等因素,使各槽互不相同,就需要生产操作管理人员对每台电解槽的参数进行细致对比分析。降低槽电压可以减少电解槽热收入,但降低槽电压是以压缩极距为代价的。极距是阳极底掌到铝液镜面的距离,它既是电解槽的热源产生的中心,又是电解生产电化学反应的区域。从表面上看电解槽的热收入是减少了,但是降低极距后,电解槽的铝液层二次反应会增加,生成的氧化铝在高温下进行燃烧,释放出大量的能量,形成热槽。但这和新启动的电解槽相比不一样,新启槽电压偏高,极距偏高,虽然它的槽温高,但铝液二次反应少。那么我们既想降低电压,又不想影响极距,最有效的办法就是改变电解质的成份,提高电解质的导电率。在出铝的时候,我们观察大母线的下降3㎜,电压下降0.1V,由此可以得出,极距降低1㎜,电压降低0.03V;如保持相同电压做试验,分子比为2.2时,测量其极距为41㎜,调整分子比为2.4时,再测量其极距为45㎜,由此可以得出,极距提高1㎜,分子比提高0.05;根据我们的试验结果和日常测量数据,就可以对参数做出正确的调整,保证电解槽的平稳运行。 2.4铝水平和保温料对炉帮形成的影响 电解槽的保温和散热是一个对立而矛盾的关系,它既需要侧部散热,又需要极上保温,还需要在侧部形成既保温又绝缘的炉帮。有资料报道,极上保温料每增减1㎝,相当于影响60mV电压产生的热量。在电压不变的情况下,增加极上保温料,相当于增加了电解槽的极距,降低了铝的二次反应。同样调整铝水平也可改变电解槽的热收入,调整1㎝铝水平影响70mV电压产生的热量,并且铝水平越高,槽内铝液镜面的波动越小,流动越平稳,析出的铝液参与二次反应的机会减少,在降低槽温及电解质的过热度方面都有很大的好处,这些都是形成炉帮的先决条件。通过降低槽电压,调整电解质的成份,减少热收入,提高初晶温度,降低过热度,促使炉帮形成。相应提高电解质的电导率及极距,减少铝的二次反应,随着炉帮的增厚,电解槽的炉膛进一步得到了规整,节能降耗成绩显著。 3.结语 电解槽的运行是一个动态平衡的关系,能否平稳生产,完全取决于生产运行中各项参数是否合理调配,先期形成的长伸腿、薄炉帮,只要参数调整得当,在后期完全可以重建,为了保证取得良好的经济效益,应做好以下几点: 3.1对各项数据要多测量,以多次的数据平均值来减少测量误差。 3.2对各项运行参数进行比较分析,根据需要调整的方向确定哪个参数需要调整。 3.3避免单一的调整某个参数给其它参数带来的影响,在调整一个参数时,其它的也应作微观的调整。 3.4参数的合理搭配和操作质量是电解生产的根本保证。科铝电解槽炉帮的形成与节能降耗
电解槽电压波动不稳定的因素与解决措施
2019-01-02 14:54:46
通过电解槽运行过程中在计算机上采集的电压、电阻特征曲线作为对象,结合生产作业特点,探索电解槽电压摆动现象的特征值和基本规律及其与稳定性的关系。在实测中,对电解槽上出现电压摆动期间所采集得到的电压与电阻曲线组加以分类,并找出几种具有代表性的电压摆动波形曲线:
1.小摆波形小摆波形的波幅在20~40mv范围,波动周期约为60秒。一般来说,小摆波形的出现反映了电解槽不稳定性产生的前兆,且具有一定的潜在危害性。若在小摆期间进行100mv以上的降阳极动作或有扰动铝液界面的操作如效应处理、更换阳极、掉入块状物料进入熔体等,会促使电压摆动的加剧,尤其当槽距保持较低,炉膛不规整或沉淀分布不均时,扰动易引起电压摆动现象的恶化。
2.中摆波形中摆波形的波幅在70~170mv范围,波动周期约为60~90秒。一般这种波形有较为明显的影响因素,有较稳定的发展过程。主要反映在: a.小摆中有降阳极幅度较大的操作,使之加剧而发展为中摆波形; b.小摆期间极距保持不合适或较低,使小摆波形逐步自动升级,若此时有扰动铝液或引起阴、阳极电流分布改变的因素,则易形成中摆波形甚至大摆波形; c.由于槽底分布的不均匀沉淀,铝液运动时其地层区流动易于受阻,会形成不规则的低频下摆波形。一般由小摆波形发展到中摆波形的稳定期约需要15~50分钟。试验表明,此期间若电压摆动能得到有效的处理,如采取小幅度升阳极调整,则可能很快的阻止其发展,使之逐步减弱并稳定或消除。 3.大摆波形大摆波形一般发生在小摆尤其是中摆过程期间,人为进行多次或大幅度阳极升降动作,严重加剧了铝液界面的振动而导致电压摆动的进一步恶化。大摆波形的波幅约为180~2800mv范围,波动周期约为60~120秒。而且在大摆波形中一般明显含有中小摆波形在内的多种波形的叠加现象,说明这种电压摆动的复杂性和危害性是很大的。
4.剧摆波形剧摆波形反映了电解槽内阴、阳极间产生瞬时的局部短路即一定程度上的滚铝现象。剧摆波形的波幅可在300~1000mv范围,波动规律极不明显,波形的稳定性也较差。产生剧摆波形与槽况密切相关,如炉膛极不规整、阳极病变、沉淀多且极不均匀、槽内局部偏流或有漂浮异物等,造成金属液面严重隆起变形,金属液面受阻产生剧烈振动,当外力作用扰动了液面时,易使摆动状况恶化而突发形成剧摆波形。由于剧摆波形的稳定性较差,一般可通过适当抬高极距的方法很快给以减弱或消除,但若其主要引发的原因仍未得到彻底消除,摆动减弱的同时又会容易再次诱发电压剧摆的发生。因此,对现场槽况的巡视和处理工作极为重要。
5.其它波形除上述按摆幅画分的四种摆动波形外,还有不少有规律的电压摆动波形,主要有: a.叠加波形大、中、小摆波形同时产生的叠加波形。其稳定性不如单一波形,当出现将电流或升阳极作业时,其不稳定性波形会很快减弱或消失,从而转化为稳定性较好的中小波形。 b.球状波形球状波形由频率较低的大摆波形和频率较高的中小摆波形组成,其规律性强,但稳定性较弱。 c.跳动波形与波形转化当槽底沉淀不均,局部有块状物料以及块状物会随熔体环流发生相应的起伏运动时,会形成所谓的跳动状的波形以及波形的不断变化现象。