您所在的位置:
上海有色 >
有色金属产品库 >
二碲化钼溶液
二碲化钼溶液
碲化镉
2017-06-02 16:18:18
金属
碲是地壳中的稀散元素,全球探明储量仅4-5 万吨,在冶金,半导体,航天航空,以及太阳能领域有巨大用途,是一种战略金属。碲化镉的性质 棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。 密度:6.20 熔点:1041℃ 碲化镉的用途 光谱分析。也用于制作太阳能
电池
,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。全球碲年产量约为300-400吨,随着碲在半导体行业的应用和CdTe 在太阳能薄膜电池中的大规模应用,碲的供应远不能满足快速增长的需求。碲化镉太阳能电池的优缺点碲化镉薄膜太阳能电池在工业规模上成本大大优于晶体硅和其他材料的太阳能电池技术,生产成本仅为0.87美元/W。其次它和太阳的光谱最一致,可吸收95%以上的阳光。工艺相对简单,标准工艺,低能耗,无污染,生命周期结束后,可回收,强弱光均可发电,温度越高表现越好。目前实验室转换效率16.5%,目前工业化转换效率10.7%。理论效率应为28%。发展空间大。然而碲化镉太阳能电池自身也有一些缺点。第一,碲原料稀缺,无法保证碲化镉太阳能电池的不断增产的需求。过去碲是以铜,铅,锌等矿山的伴生矿副产品形式,也就是矿渣,以及冶炼厂的阳极泥等废料的形式存在。碲化镉太阳能电池的不断成长的市场需求,无法得到原料的保证。第二,镉作为重金属是有毒的。碲化镉太阳能电池在生产和使用过程中的万一有排放和污染,会影响环境。碲化镉太阳能电池继续发展的可能性中国四川发现了世界上唯一的、独立存在的碲矿,目前已探明的储藏量为 2000多吨,已经可供全球可用50年。太阳能级高纯碲化镉是由高纯碲和镉在高温密闭的惰性气体,还原性气体和真空 环境中反应得到的。反应容器为石英管,在这一反应过程中,通过回收清洗液中的碲和镉,回收使用过的碲化镉太阳能电池,可实现零排放。美国国家实验室做过碲化镉高温燃烧试验,温度为760-1100度,试验发现,在火灾发生时每100万千瓦,释放的镉总量极限为0.01克。目前的火力发电厂排放的镉大大高于碲化镉电池。生产一节镍镉电池需用10克镉,而峰值功率100瓦的一平米太阳能电池,仅用7克镉。每产生一度电,镍镉电池需消耗3265毫克金属镉,而碲化镉太阳能电池仅需1.3毫克。二者相差2000倍。碲化镉不是镉元素。碲化镉是稳定的,同镉在其他方面的应用相比,镉在碲化镉太阳能电池中的应用是最安全和环保的,所以对环境危害性很小。此外,政府支持发展碲化镉电池。碲化镉太阳能电池技术以他特有的优势,得到了多国政府支持。美国政府开放市场,建多个发电厂。德国政府由欧盟资助,有多个建设项目。中国政府支持建设世界最大的电站。更多关于碲化镉的信息请登入上海
有色网www.smm.cn
。我们会为您提供最为详细的相关资讯。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。
从钨酸盐溶液中除钼
2019-03-05 09:04:34
现在许多用户对钨制品中钼含量约束十分严苛,我国GB 10116-88规则0级APT含钼量应不超越20×10-6,因而钨冶金中除钼为重要的工序之一。
在钨冶金中,视原猜中钼含量的不同以及详细工艺流程的不同,除钼可能是从Na2WO4溶液或净化转型所得的(NH4)2WO4港液或APT结晶母液中除掉(当原猜中钼含量很少时)。现在研讨的除钼办法甚多,但在工业中使用最广的都是根据钨、钼对硫的亲和力的不同,首要在pH=7.5~8的条件下(对(NH4)2WO4溶液面言,pH值提至pH=10~11)向溶液中参加S2-,此刻,MoO42-与S2-作用:而WO42-根本不变,因而使溶液中钨和钼别离以WO42-、MoO4-nSn2-形状存在,然后使用两者性质的差异进行别离,现在已工业化的别离工艺为:
一、选择性沉积法从钨酸盐溶液中除钼、砷、锡、锑
作者首要用量子化学核算的办法开始找出WO42-与MoO4-nSn2-在微观性质上的差异,再用分子规划办法定向寻觅,发现参加M115对MoS42-有特殊的亲和力,构成沉积进入渣相,而WO42-不反响,保留在溶液中,经过滤后,钨钼到达高效别离。与此一起发现SnO32-、AsO43-、SbO43-等亲硫元素的含氧阴离子都能被硫化成硫代酸根离子,因而也能一起除掉。本工艺的特点是:
(一)适用性广,能从各种钨酸盐溶液(包含Na2WO4溶液、(NH4)2WO4溶液及APT结晶母液等)中一次性除掉上述多种杂质。
(二)除钼率高,对原始溶液中钼含量根本上没有约束,工业条件下其除钼作用如表1所示。
(三)WO3回收率高,沉钼渣中含Mo15%~20%,WO32%~4%,相当于除掉1kg Mo丢失0.2~0.3kgWO3,对含1g∕L Mo、200g∕L WO3的溶液而言,回收率达99.8%~99.90%。
本工艺在我国钨冶金技术市场中占有率已达72%。
表1 选择性沉积法除钼的工业生产成果二、离子改换法
根据强碱性阴离子交流树脂上的胺功用团对MoO4-nSn2-的亲和力比WO42-大,故将WO42-、MoO42-混合液加S2-转化后,用凝胶型或大孔型强碱性阴离子交流树脂吸附,钼优先吸附在树脂相,改换后液则为含钼很少的钨溶液。对吸附有MoO4-nSn2-的树脂则加氧化剂如NaClO、H2O2等进行解吸,其反响为:因而MoO4-nSn2-变成MoO42-解吸。其首要参数和目标如下:
(一)料液制备进程
对(NH4)2WO4料液含WO3∶100~250g∕L,pH=9~10,S2-参加量按生成MoS42-计过量0.57~1.43g/L,40~90℃保温1~2.5h。再在室温保温10-16h。
(二)除钼进程
当除钼进程在离子交流柱进步行时:吸附流速2~8cm∕min,至钼穿透停止。淋洗钨溶液含NH4Cl 1~3mol∕L,pH=8.5~1.3,流速2~8cm∕min。解吸钼选用NaClO+NaCl溶液(其间NaCl浓度为0.5~3.5mol∕L,NaClO浓度为含有效氯1~15g∕L)或H2O2的碱性液,pH=11~14。
使用上述氧化剂将树脂上吸附的MnO4-nSn2-氧化为MoO42-和SO42-,然后完成将其解吸的意图。
(三)除钼作用
当溶液中Mo∕WO3=0.05%左右,交流后液Mo∕WO3约为0.005%。
(四)回收率
当溶液中Mo∕WO3=0.05%左右,钨进入交流后液的回收率为85%~90%,进入淋洗液为7%~8%。钼进入解吸液回收率为87%~96%。
因为在离子交流柱进步行时,交流容量小,一起解吸进程氧化速度很慢。因而,肖连生等进行了改善,将除钼的吸附进程在移动床中进行,而将氧化解吸在流化床内进行,大幅度提高了交流容量和解吸速度,交流容量达Mo 70kg∕m3树脂,WO3的丢失相当于1kg WO3∕kg Mo。
三、MoS3沉积法
(一)根本原理
上述硫化后的溶液加HCl中和到pH=2.5~3,则MoS42-。成MoS3沉积,然后与钨别离,反响为:(二)工业实践
MoS3沉积法除钼的操作进程、设备及首要操控条件、净化目标综合于表2中。
表2 三硫化钼沉积法除钼的工业实践操作进程及设备首要操控条件净化目标在耐酸珐琅反响锅中将Na2WO4溶液加热至70~80℃,参加理论量125%~150%的NaHS,拌和2~2.5h,用3~5mol∕L的HCl(若除钼后直接用萃取法则用2~3mol∕L H2SO4)中和至pH=2.5~3,煮沸1.5~2h后用耐酸真空抽滤器过滤MOS42-转化阶段:pH=7.2~7.3,温度为70~75℃,时刻为2~2.5h,NaHS加量为确保转化后溶液中游离S2-浓度1.5~3g∕L;MoS3沉积阶段:pH=2.5~3,煮沸时刻1.5~2h除钼率98%~99%,或除钼后的溶液中Mo∕W=0.01%~0.05%;钨的回收率大于98%
硫化钼沉积法除钼的缺陷是除钼作用欠佳,钨的回收率较低,一起放出有毒气体H2S,因而只适宜于含钼较低的Na2WO4溶液,故在我国已被筛选。
四、有机溶剂萃取法除钼
现在用萃取法除钼的计划繁复,其间较老练的为季铵盐萃取,其实质是先参加S2-使溶液中MoO42-转化为MoS42-后,以季铵盐作萃取剂萃取钼,其反响为:富钼的有机相用次溶液反萃,使MoS42-氧化成MoO42-;进入溶液(与离子交流法除钼的解吸进程类似),反萃后有机相回来萃取。
黄蔚庄等处理的料液成分为WO3 75~85g∕L、Mo 0.03~0.17g∕L、pH=8.2~8.4,经硫化后萃取,有机相为1.2% N263+20%TBP,其他为火油,反萃剂为0.3 mol∕L NaOH和30g/L NaCl的次溶液,选用6级逆流萃取,二级逆流反萃,萃余液中Mo∕WO3≤0.01%,进程中WO3丢践约0.5%,有机相丢践约3L∕WO3。除上述办法外,现在研讨的钨钼别离办法繁复,详细可参看参考文献。
碲常识
2019-03-14 09:02:01
碲 碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。 碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。 碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
碲知识
2019-03-08 09:05:26
碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。
碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。
碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。
镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。
稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。
稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。
我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
二硫化钼粉的胶体化
2019-01-29 10:09:51
作为固体润滑剂,不仅要求纯度,而且对产品细度要求也很严格(见表1及表2)。
表1 国际二硫化钼粒度标准
标 准等级粒径(μm)筛析(目)+30-20
+20-20
+10-10
+5-5
+2-2+100-100
+200-200
+325-325国际贸易标准非微粉50201783.81.2052075微粉 204733 克莱麦克斯
1971年标准非微粉 2 051085微粉平均粒度0.55~0.85μm(产品为0.70μm)
表2a 国产MoS2粒度标准
粒径
含量(%)
产品标准粒 径(μm)<2<4<7.5<10>325目沪Q/HG0050#≥955 ≤0.51# ≥955 ≤0.52# ≥95≤0.5西北有色金属研究院微粉≥80 平均<0.5μm超<1μm平均<0.3μm微粉≥97μm
表2b 国产MoS2粒度标准
粒径
含量(%)
产品标准粒 径(μm)<1<23~56~7>7沪Q240/80080107.0301 907.220.82 5525155
要达到平均粒度为1μm左右,常规胶体磨已难完成此重任。通常要采用超音速气流式粉碎机。它的工作过程是:由空压机产生的0.8~1.2MPa气流由喷嘴送入破碎腔,由高速气流按射流原理将二硫化钼粉由给料口吸入,送进破碎腔。在Laval喷嘴口,气流流速已达2~3马赫(约2.625~780m/s),二硫化钼颗粒在喷嘴口、破碎腔里受到撞击、剪切、摩擦、压缩等作用而粉碎。粉碎后产品在分级腔分级。不合格粗颗粒自动返回喷嘴及破碎腔。磨成胶体的合格产品随气流排出粉碎机,经多级旋风收尘器和布袋收尘器分离,几乎不含固体粉末的废气排空,收集到的固体已分级成不同细度的二硫化钼胶体。气流粉碎是一种新兴技术,除了二硫化钼的胶体化,在石墨等要求加工成极细粒径产品时也不失为一种最佳选择。只是系统的密封、收尘要千万注意。
粗铋的碱性碲渣回收碲
2019-01-31 11:06:04
粗铋碱性精粹产出的碱性碲渣,其成分已列于下表,其间含Te6~30%,是收回碲质料。
一、工艺流程
出产碲的流程如图1。图1 碲出产工艺流程图
二、首要技能条件
(一)球磨与浸出。碲渣装入湿式球磨机磨至100~120目,液固比为1∶1,每批球磨4小时,然后将球磨液泵至浸出罐,用水稀释至原体积的三倍,加温至80~95℃,拌和6小时后弄清。上清液成分为(克/升):Te30~32,Se2~3,Bi<0.1,Pb0.01~0.03,Fe<0.1,As0.1~0.3,Sb0.1~0.2,Ca<0.1,Zn<0.1,游离NaOH30~32。
(二)净化。净化的意图是除掉重金属杂质和SiO2。加Na2S使重金属杂质变成硫化物沉积,每升溶液参加Na2S量一般为1.5~2.5克,反应为:
Na2PbO2+Na2S+2H2O=PbS↓+4NaOH
参加适量CnCl2,使SiO2生成硅酸钙沉积,其反应为:
Na2SiO8+CaCl2=CaSiO8↓+2NaCl
操控溶液含NaOH量为25~35克/升,液温85℃以上,当滤纸呈棕灰色即为结尾。
(三)中和。中和的意图是使转化为TeO2,一起为了脱硒,加温至60~80℃,用稀硫酸(酸∶水=1∶4)中和至pH4.5~6,生成TeO2沉积,反应为:
Na2TeO3+H2SO4=TeO2+Na2SO4+H2O
鼓风拌和、过滤、TeO2沉积用沸水洗刷后,其化学成分为(%):Te70~75,Se<0.1,Cu<0.1,Pb0.5~1.5,SiO24~5,Bi0.2~0.4,Sb0.2~0.3。
(四)煅烧。煅烧的意图是为了进一步脱硒。煅烧温度300~450℃,恒温1~3小时,当TeO2呈黄白色即为合格品。
(五)造液。TeO2能溶于NaOH溶液,反应为:
TeO2+2NaOH=Na2TeO3+H2O
每千克TeO2参加0.55~0.65千克NaOH,液固比为5∶1,液温90℃,溶液密度大于1.36克/厘米3,静置两天后运用。
(六)电积。电解液为净化后的溶液。其化学成分为(克/升):Te180~220,NaOH80~100,Se<0.3,Pb<0.003,Cu<0.003。室温下电积,电流密度40~60安/米2;同极距为50~110毫米;槽电压1.5~2.8伏;电解液循环补加新液,使溶液含碲大于100克/升;阳极选用铁板,阴极选用不锈钢板;电解周期5~12天。
通直流电后,碲在不锈钢阴极板上分出,阳极开释氧气。
(七)铸型。出槽后,用木锤轻敲阴极,将分出碲敲碎落入不锈钢桶内煮洗,可先加少数草酸,煮洗36小时后,再用蒸馏水煮洗48小时。将洗净的分出碲烘干,坩埚熔铸,铸型温度为480~600℃可加少数硼砂扒渣,铸锭表面吹风冷却。
三、首要设备
(一)球磨机。φ600×1000毫米,转速45转/分。
(二)浸出罐,中和罐,净化罐。各一个,选用夹套式珐琅反应釜(φ1000×1500毫米),机械拌和。
(三)真空泵。SZ-2二台。
(四)电解槽。六个,钢板衬胶,790×600×640毫米。
(五)硅整流器。GZH3-40型一台,100安,50伏。
四、产品用处
碲用于半导体工业温差发电与温差致冷;作冶金添加剂,改进钢铁和铜,铅及其合金的功能;还用于有机化工组成作催化剂,用于玻璃、陶瓷工业作染色剂。
五、产品质量
一号精碲的化学成分(%):Te≥99.99,Cu≤0.001,Pb≤0.002,Al≤0.001,Bi≤0.001,As≤0.0005,Fe≤0.001,Na≤0.003,Si≤0.001,S≤0.001,Se≤0.002,Mg≤0.001。
六、其它办法收回碲
(一)还原法。还原法是将TeO2粉末配入面粉作还原剂,在坩埚内还原熔炼,待白色蒸气挥发完后,加硼砂扒渣。所产出之碲锭含碲99%,可用作冶金添加剂和玻陶染色剂。
(二)可溶阳极电解。阳极板由含碲99%的粗碲铸成,阴极选用不锈钢板,选用电解液,含NaOH 80~100克/升,Te 90~100克/升,室温,电流密度50~100安/米2,槽电压1.5~2伏。可产出1号精碲。
碲铜
2017-06-06 17:50:05
碲铜,即碲和铜的合金。 碲铜常用的有两种:含1%碲的碲铜具有良好的切削加工性能;含50%碲和50%铜的碲铜用作中间合金。 碲铜常应用于:具有优良的导电、导热、耐腐蚀、抗高温性,广氾应用於电气插件、端子、电气元件、汽车零件、弹性元件、焊接电极、炉内组件等。 碲铜是一种高导、高强度、高灭弧的碲铜合金材料,涉及电器电子
行业
中使用的高导合金材料。高导、高强度、高灭弧的碲铜合金材料按以下组分构成(百分含量比):铜98.6~99.3%,碲0.5~1%,稀有元素0.2~0.4%。除具备高导电性和高灭弧性外,还具有高强度,高塑性和高起晕电压和击穿电压等优良特性。碲铜合金材料可替代现有的银铜合金使用,还是大型发电机组导线、固体微波管底座热层和18GH2的PIN管的特选材料,同时也是电线、电缆的新型基本材料。 以下是碲铜的产品标准、化学成分以及机械性能的指标:
二硫化钼的润滑特性
2019-01-29 10:09:51
二硫化钼——天然或合成的辉钼矿,以润滑油脂及其他固体润滑剂难比拟的优点,被誉为“固体润滑之王”而被广泛应用。
作为润滑剂要必备两个条件,即材料内部具良好滑移面,材料与基材有很强的附着力。
二硫化钼以S—Mo—S的三明治式夹层相迭加。层内,S—Mo间以极性键紧密相连。层间,S—S间以分子键相连,范德华-伦敦力的键合力太弱,当受到很小的剪切应力后即能断裂产生滑移。而这样的滑移面在每两个夹心层间就有一个。也就是在1μM厚的二硫化钼薄层内就有399个良好的滑移面。
二硫化钼与基材强烈粘附,这也是其他润滑剂,比如石墨也难比拟的。
除此外,它还具备有许多良好的润滑特性。
(1)温度适应范围宽:高温航空硅油能耐250℃高温,冷冻机油耐-45℃低温,这在润滑油脂中已属姣姣者。而二硫化钼在空气中应用,可在349℃下长期使用,或399℃下短期使用;在真空中,二硫化钼可在1093℃下工作;在氩气等惰性气体中,二硫化钼可在1427℃下工作。除能在高温下工作,二硫化钼还能在-184℃或更低温度下工作。
(2)耐重负荷:在重负荷下油脂润滑膜会因变薄甚至消失而使润滑失效。但厚度仅为2.5μm的二硫化钼润滑膜在2800MPa、40m/s的重负荷、高速度下润滑性能良好。即使负荷加大到3200MPa超过了钢铁屈服强度,二硫化钼的润滑效能依旧存在。这是其他任何液体和固体润滑剂所难达到的。因此,全世界所产二硫化钼的大部份都被当作“极性添加剂”与油脂合用,比如市面常见的二硫化钼锂基脂、二硫化钼钙基脂、各种二硫化钼齿轮成膜膏等等。
(3)耐真空:航天器在500km以上高空飞行,太空的真空度已达1.3×10-2μPa以上:此时,油脂润滑剂的蒸发已超过它的极限蒸发率。这不仅会使润滑失效,而且挥发气体还会污染仪表和环境,在真空中连石墨润滑剂的润滑性能也会大幅度下降,而二硫化钼在真空条件下的润滑性能比在空气中的润滑性能还要好。在1.3×10-2μPa真空度下,二硫化钼擦涂膜的摩擦系数降至0.0016,比在空气中的0.1低了很多。在1.3μPa真空、8000r/min、0.2MPa条件下工作的二硫化钼溅射膜轴承,其工作寿命已超过1500h。
(4)抗辐射:油脂在放射性辐照下会因分子交联而失效。而二硫化钼膜在7×108伦琴强辐射辐照后,比辐照前润滑性能几乎没受影响。二硫化钼在辐照前,静摩擦系数为0.13~0.14,动摩擦系数为0.11~0.12,磨损为306.1×10-3cm3;在辐照后则分别为:0.13,0.11和382.3×10-3cm3。这是二硫化钼在原子工业中被广泛应用的主要原因。
(5)耐腐蚀:二硫化钼稳定的化学性能使它具备了耐酸、耐碱、耐腐蚀的优点,这为二硫化钼与其他润滑剂合用创造了条件。[next]
(6)速度适应范围宽:二硫化钼在很低或很高转速下,都具良好润滑效能。而油脂润滑剂在低速下会出现“粘-滑”或“冷焊”;高转速下,又会因润滑膜破裂而失效。
鉴于二硫化钼这些良好的润滑特性,从1940年开始应用至今,发展迅猛。美国和前苏联的研究起步早,应用广泛;而日本也已有七个生产和推销二硫化钼的公司。我国对二硫化钼的研究起步较晚,1958年开始研究,1963年上海井岗山化工厂开始生产,截至1986年,我国每年生产二硫化钼粉150t,而年需要量已达400t。西北有色金属研究院研究成的“二硫化钼润滑剂制备新工艺”于1987年已通过中国有色金属工业总公司主持的鉴定,按此工艺1987年在栾川县钼业公司和1992年在西北有色金属研究院分别新建的,年生产能力为l00t的生产线已正式投入了生产,它将缓解我国对二硫化钼供不应求的局面。其标准见下表。
表 二硫化钼(润滑级)质量标准
生产厂家等级主要成份含量(%)MoS2
≥酸不溶物Fe
≤MoS3
≤水
≤油
≤C
≤酸度中国专业标准
ZBG12022-90一级品981.50①0.30 0.50 5合格品962.50①0.70 0.50 5西北有色金属研究院企业标准0#990.10②0.100.10 0.21#980.20②0.150.10 0.2国际贸易标准非微粉98.00.40①0.130.05微0.031.100.5微粉98.00.40①0.130.200.150.201.103.0克莱迈克斯(Climax)化工产品标准
CC-3D72年非微粉产品98.20.35①0.150.010.00.031.000.01标准98.20.50①0.200.050.050.051.500.05微粉产品98.00.35①0.150.030.00.251.200.55标准98.00.50①0.200.050.050.401.500.59沪Q/HG11-85-820#98 1#97 2#96 辽Q240/800#990.02①0.06 1#990.02①0.04 2#980.05①0.1 栾川钼业公司企业标准0#990.100.200.050.201.000.2 1#980.200.300.10.451.000.5 2#970.400.400.10.501.501.0 3#960.500.400.10.501.501.0
①不溶物;②SiO2。
二硫化钼不仅是“固体润滑之王”而且还是石油产品精炼加工中的良好脱硫催化剂。
不管作润滑剂或催化剂,对产品所含MoS2纯度要求都很高。
由含MoS2纯度较低的钼精矿,生产成高纯度的二硫化钼粉,其生产工艺繁多,各工厂都有各自的特色,不尽相同,其研究归类也互不统一。笔者将它们归纳进两个大类:合成法与天然法进行介绍。
合成法生产二硫化钼
2019-02-12 10:08:00
所谓合成法,是损坏钼精矿里辉钼矿的结构和组成,经从头组合、结晶生成人工晶格二硫化钼。
明显,合成法里的钼阅历了Mo4+→Mo6+→Mo4+的两次氧化复原反响,经过了由辉钼矿转化生成钼酸铵或高纯三氧化钼到三硫化钼等中间产品,终究从头转化成人工合成的辉钼矿的一系列物相转化(图1、图2)。工艺以辉钼矿为目标,从钼的物相转变来除杂。常见的出产实践如下:
图1 合成法(一)出产流程
图2 全成法(二)出产流程
1、湿法硫化工艺
该工艺经钼酸铵、三硫化钼中间产品,选用H2S作钼酸铵的硫化剂来出产高纯二硫化钼。
出产钼酸铵的工艺许多,只需获高纯钼酸铵溶液,选用哪种办法都行。
此工艺出产、净化钼酸铵的进程已在第二节作过介绍,经净化后的钼酸铵溶液不经结晶、分出,直接通入气体进行硫化。很多H2S的通入,溶液中将发作如下反响:
(NH4)2MoO4+3H2S=MoS3↓+2NH3↑+4H2O
根据Б.B.涅克拉索夫(Hexpacos)论说,反响机理是:首要,钼酸铵溶液通入H2S后发作硫逐一替代氧的一系列中间反响:
(NH4)2Mo+H2S(NH4)4MoSO3+H2S(NH4)2MoS3O→→+H2S(NH4)MoS3O→(NH4)2MoS4 →+H2S
[next]
这一系列硫代钼酸铵均可溶于水而无法分出。反响后,再对溶液酸化,将发作如下反响,生成沉积:
(NH4)2MoS4+2H+→2NH+4 +H2MoS4 酸分化 MoS3↓H2S↑ 终究发生MoS3的深褐色沉积。将MoS3热解可产MoS2:
MoS3△MoS2+S↑=
工业实践中,要留意阻隔空气,尤其是氧气。不然即便进入了极少量的氧气,也会发作如下反响:
2MoS3+9O2=2MoO3+6SO2↑
工业实践中还须留意,焙烧进程要尽量能使S得到充沛提高,不然,游离硫与三氧化钼混入二硫化钼后,将会大大添加产品酸值、阻碍其使用。
2、火法(焙烧)硫化工艺
该工艺从钼精矿作质料,先制成高纯三氧化钼,高纯三氧化钼与硫化钙在焙烧中反响,硫化是本工艺特色。出产高纯三氧化钼的进程也已在第四节作过介绍。MoO3与CaS反响如下:
MoO3+3CaS△MoS3+3CaO=
在发生此置换反响的一起,MoS3也会发生自氧化复原反响。焙烧完毕后,可通过水溶别离出CaO,碱溶或酸溶以脱除未充沛反响,残留的MoO3或CaS。但MoS3因自氧化复原反响所应留意的事项要求相同。
综上所述,合成法可在钼的物相转化进程里最大极限脱除杂质,出产出MoS2纯度很高的产品。可是,它也存在着以下的几点缺乏:
(1)工艺冗长、钼回收率低、加工费高、本钱高。
(2)三硫化钼自氧化复原后,产品往往呈现游离硫和三氧化钼。而这些物质是二硫化钼的主杂质,对使用影响很大。
(3)普遍认为,人工晶格的二硫化钼,不如天然晶格二硫化钼的光滑性能好。
天然法生产二硫化钼
2019-01-29 10:09:51
所谓天然法,指在不破坏钼精矿里辉钼矿的结构与组成,仅脱除精矿中混入的杂质矿物,获得天然晶格二硫化钼产品的工艺。由于除杂方式不同,又可分选矿法,浸出法、选矿加浸出法。
1、选矿法
选矿法不仅辉钼矿没经物相转化,杂质矿物也不须经物相转化。常见的实践有:
单一浮选工艺:它利用辉钼矿与杂质矿物间天然可浮性的巨大差异,通过多次精选工艺提纯,生产出含MoS2≥97%的高纯钼精矿。例如:北京天河化工厂采用浮选柱,钼精矿经过七次开路浮选,获得含MoS297%、钼回收率37%的二硫化钼产品。又如智利的萨尔瓦多(Salvador)采用九次浮选工艺,获得含MoS297%左右、钼回收率约65%的二硫化钼产品。
控制磨矿-分级工艺:它利用辉钼矿各向异性的力学特征,与杂质矿物通常为各向同性的力学性能差异,通过控制磨矿和分级,杂质矿物破磨细进入筛下,而片状辉钼矿却难以粉碎留在筛上得到纯化。例如,加拿大钼有限公司采用四辊磨机加分级,获得少量MoS2含量>97%的高纯产品和大量中矿供冶炼。又如,肯尼柯特公司采用三段控制磨矿工艺,获得MoS2含量97%、钼回收率30.1%的产品。
上述的两种选矿法尽管工艺简单、加工费低廉,但钼产品的回收率太低(如前述,最高的萨尔瓦多也仅达65%),导致二硫化钼成本偏高。笔者研究出脱活强浮新工艺,基本解决了选矿法钼回收率低的不足。
脱活-强浮工艺:鉴于钼选矿所采用烃油类非极性捕收剂选择性很差,而且,过程中所加油量的3/4左右富集在产率仅0.2%~0.8%的钼精矿的表面。当大剂量、选择性差的烃油随钼精矿进入生产二硫化钼的再精选工艺,势必造成:(1)一些杂质矿物因吸附有烃油捕收剂而被选进高纯精矿。(2)因油大泡粘,一些杂质矿物又因机械夹杂混进高纯精矿,构成纯化的困难。笔者自行研制出TL药剂[T-脱(To),L-林(Lin)],并采用TL脱活剂强化钼精矿再精选,在工业试验中获得MoS2含量>97%,钼回收率>97%的高纯钼精矿。在发挥选矿法工艺简单、加工费低廉优势的同时,又取得高回收率。TL药剂脱油效果见下表。
表 强浮过程脱油效果
试验序号含油量(%)脱油率(%)试 料产 品闭路试验1.530.4579.59验证试验2.110.6569.19
对钼精矿再精选的影响见图1。
图1 TL用量对MoS2品位及回收率的影响
2、浸出法
此法虽然不改变钼精矿里辉钼矿的结构(与合成法不同),但须改变杂质矿物的物相,通过杂质的物相转变与固液分离来纯化。常见的实践有:
单一氟化浸出工艺:采用HF加HCI(或H2SO4)在50~90℃温度下,将钼精矿浸出4~24h,使其中的硅类杂质和部分可溶于酸的矿物转化进液相或气相而脱除,主要反应式为:[next]
SiO2+6HF=H2SiF6+4H2O
Fe2O3+6HCl=FeCl2+3H2O
FeS+2HCl=FeCl2+H2S↑
CaCO4+2HCl=CaCl2+CO2↑+H2O
HF是一个中等强度一元酸,电离度很低,即使在0.01~0.lmol/L的低浓度下,电离度也仅8.5%,电离常数Ka=3.53×10-4或PKa=3.45。而H2SiF6是一个强二元酸,电离度很高,即使在蒸汽状态中,也有50%以上的分子已电离。SiF2-6很稳定,SiF2-6←→SiF4+2F-的解离常数很小,Ka= 7×10-7。HF溶SiO2反应机理是:
SiO2+4HF=SiF4↑+2H2O
SiF4+2HF=H2SiF6
在气相中SiF4会逸出;在液相中SiF4不待逸出就会与溶液中F-反应,形成H2SiF6。
浸液中HF用量取决钼精矿中SiO2的重量。笔者对浸出时间、HF用量与SiO2含量间的研究结果见图2。显然,HF耗量为SiO2重量4倍以上为佳。
图2 HF用量对SiO2浸出率的影响
浸液中HCI或(H2SO4)用量在原则上,只需保证足够的酸度(PH≤2),但生产中所加30%HCl或(H2SO4)量往往达到钼精矿重量的1~2.5倍。例如国内某厂浸出工艺中,每产1tMoS2粉,须加入50%的HF350kg,30%的HCl 2t,几乎不再需要添加清水。这样高酸耗有否必要值得考虑。
经浸除硅类及可溶于酸的杂质后,料浆经固液分离、洗滤等,可获高质量二硫化钼滤饼。但该产品往往还夹杂有滤液而含游离酸,最好再用碱液(NaOH、KOH或NH4OH均可,以KOH为佳)洗滤以中和游离酸。净化后的滤饼再经干燥、细磨,即成最终二硫化钼粉。
此法可最大限度脱除硅类杂质,但却无法脱除黄铁矿(FeS2)、黄铜矿(CuFeS2)…等难溶于HCI、H2SO4的硫化杂质。而莫氏硬度高达6.5的黄铁矿对产品润滑性能影响很大。为此。对含FeS2较高的钼精矿往往采用以下两种工艺:
(1)焙烧-浸出工艺:钼精矿在常规氟化浸出前,先在有氮气或惰性气氛保护下,经650~800℃焙烧1~2h。此时,黄铁矿将转化为硬度小(3.5)、易溶于HCI(或H2SO4)的磁黄铁矿(FeSx 1<x<2)。或者,将钼精矿掺入H2SO4,在惰性气氛焙烧,黄铁矿转化成可溶的硫酸亚铁(FeSO4)。焙烧后的钼精矿再经上述氟化浸出,就既可除硅又可除去黄铁矿。
(2)两段浸出工艺:钼精矿先经氯化浸出(——布伦达法)-脱除硫化杂质(布伦达法见第二章有关章节)。经除去了硫化杂质的钼精矿再给入常规氟化浸出以脱硅类杂质。
浸出法以杂质矿物的物相转化为手段来纯化钼精矿,钼损耗少、回收率高。但药耗大,成本高,尤其在钼精矿中黄铁矿等硫化杂质偏高时,焙烧-浸出工艺难控制,二次浸出工艺成本太高,困难较大。
3、选矿+浸出法
该法分别吸收选矿和浸出的特点,先经选矿法获得含FeS2少的高纯钼精矿,再经氟化浸出脱硅类杂质,可获高质量的天然晶格的二硫化钼产品。用高纯钼精矿作浸出原料,药耗也会大幅度降低。
西北有色金属研究院研究出的新工艺,就是选矿+浸出法:采用TL脱活强化浮选,获得MoS2含量≥97%、钼回收率≥97%的高纯钼精矿;再经液固比1:1每吨产品添加50%HF150kg,30%HCl 30kg,在50~800℃浸出3h,获得MoS2含量≥99%SiO2含量0.0275%的高质量二硫化钼粉。