您所在的位置: 上海有色 > 有色金属产品库 > 二硫化钒厂家

二硫化钒厂家

抱歉!您想要的信息未找到。

二硫化钒厂家百科

更多

五氧化二钒简介

2019-03-07 11:06:31

控制信息 五氧化二钒(剧毒)   本品依据《易制毒化学品管理条例》受公安部门控制。 称号 中文称号:五氧化二钒   中文别号:五氧化钒,无水钒酸,氧化钒(V)   英文别号:Vinylchloroformate,Vanadic acidanhydride,Vanadium pentoxide 化学式 V2O5 相对分子质量 181.880 性状 液体。对湿灵敏。相对密度(d?25)1.160。沸点67~69℃。折光率(n?20D)1.4100。闪点-4℃。易燃。有刺激性和催泪性。有毒。产品常加0.05%2,6-二叔丁基对或0.02%对二酚一甲酯作稳定剂。 五氧化二钒原矿石 贮存 充氩密封4℃枯燥保存。 用处 基和羟基的维护试剂。工业上硫氧化法制硫酸工艺中SO2转变为SO3过程地催化剂。

钒矿石无盐焙烧提取五氧化二钒试验

2019-02-20 11:03:19

一、导言 钒在地壳中的均匀含量为0.015%,比铜、镍、锌 、锡 、钴 、铅等都多,但因为自然界中的钒首要以三价形状存在,而三价钒的离子半径与三价铝、三价铁的离子半径很挨近,因而,三价钒几乎不生成自身的矿藏 ,而是以类质同象部分替代三价铁和三价铝存在于一些铁及铝的矿藏中,如钒钛磁铁矿和硅铝酸盐,这也是钒在自然界高度涣散的首要原因。传统提钒办法为了损坏钒矿藏的结构,都有一道添加钠盐为转化剂的焙烧工序,绝大部分添加NaCI。因为添加NaCI后在焙烧进程中发生很多含HCI、CI2等强腐蚀性气体的尾气,管理难度大,对工厂周边环境形成严峻污染,损害人们的生命及产业安全。 2005年以来国家环保总局加大了对小钒厂的整治力度,封闭、炸毁了选用NaCI为添加剂的小钒冶炼厂,仅湖南 2005年6月以来就封闭和整治小炼钒厂近100家。湖北、河南、陕西等省也相继展开了相似整治举动。但是,钒作为钢铁工业不行短少的添加剂以及在石化、电子、玻璃与陶瓷等职业的运用日益广泛,其在世界市场上的报价稳步攀升,如档次为98%的五氧化二钒从2003年头的1.5美元/磅涨至2005年4月底的30美元/磅,上涨了20倍。尔后虽有回落,但至2005年10月稳定在10美元/磅 ,比2003年头仍要高出6倍。其不菲的经济价值,对我国许多蕴藏有钒矿床的贫穷偏僻山区来讲,钒矿床就是一座财库。近年来,国内一些科研、生产部门,为进步矿石中V2O5的总回收率、简化工艺流程、下降钒生产成本、削减“三废”对环境的污染,做了很多的实验研讨工作,提出了石煤直接酸浸一溶剂萃取、石煤氧化焙烧一碱浸、钙化焙烧一碳酸化浸出、空白焙烧一酸浸等新的工艺。近两年来,湖南有色金属研讨院冶金所在对全国各地托付的十几个钒矿样进行探究实验或小型实验研讨时,发现有一类钒矿石选用无盐焙烧一硫酸漫出一溶剂萃取工艺提取五氧化二钒,其焙烧一浸出段钒回收率可达90%以上,全流程钒回收率到达85%,大大超越一般钒生产厂50%回收率的水平。因为是无盐焙烧,焙烧进程中无HCI、C12等强腐蚀性气体发生,废气、废水与废渣稍加管理即可合格排放,因而是一项有出路的清洁生产工艺。笔者对该工艺的焙烧、浸出与萃取进程进行了较为具体的小型实验研讨,并进行了2.5 kg级的扩展闭路循环实验。 二、实验质料 (一)矿样该钒矿样首要矿藏组成有玉髓、石英、粘土矿藏类,少数长石、褐铁矿、赤铁矿、方解石。钒首要赋存于粘土矿藏类,以高岭石、伊利石为主。钒矿石多元素化学分析成果见表1,物相分析成果见表2。表2的物相分析成果标明,钒首要以V3类质同象方式置换6次配位的Al 而存在于云母类矿藏中,其次存在于氧化铁及粘土矿藏中,还有一小部分存在于电气石及石榴石中。钒的价态分析成果标明,该矿样中贱价钒占了绝大部分,到达74.14%五价钒25.86%。 表1  钒矿石多元素化学分析成果表2  钒矿石物相分析成果(二)试剂 硫酸:分析纯(95%~98%,密度 1.84g/mL); :分析纯;:工业级,NH3约20%;铁粉:工业级;P2O4:工业级。 三、实验原理和办法在硅铝酸盐矿藏中以V3类质同象方式置换次配位的AP而存在于云母晶格中的钒,有必要损坏云母结构并使之氧化才能够溶出。含钒质料直接或许与添加剂混合后于氧化性气氛下高温焙烧,其意图就是损坏钒矿藏的安排结构,将三价或四价钒氧化为五价钒,并与添加剂或矿石自身分化出来的氧化物生成偏钒酸盐。焙烧进程中生成的碱金属和镁的偏钒酸盐可溶于水与酸,Fe(VO3)2、Fe(VO3)3、Mn(VO3)2、Ca(VO3)2以及未彻底氧化的四价钒化合物不溶于水,但溶于酸。 酸浸进程没有选择性,除了钒化合物溶解外,许多杂质也溶解进人溶液,因而得到的浸出液杂质较多,需进一步净化处理。钒矿石硫酸浸出液的净化有多种办法,既能够直接沉钒后再碱溶提纯,或许离子交换直接提纯,也能够选用溶剂萃取的办法净化后沉钒。本实验选用 P2O4(二(2一乙基 己基 )磷酸 )与 TBP(磷酸三丁酯)的磺化火油溶液萃取的办法,P2O4可萃取四价或五价钒阳离子,且萃取V4+的才能比V5+强。P2O4对V4+的萃取系数颇大,萃取 反响可标明为:    (1) 式中,HA为P2O4。当nl>1时萃取进程中生成多核络合物。 在实践萃取进程中,P2O4的浓度一般在 10%~20%,另参加5%的。TBP协同萃取,磺化火油用量为75%~85%。萃取进程 pH维持在2左右。萃取前溶液用铁粉、或处理,将溶液中的v5+ 复原为。溶液中的Fe3+也被复原为非萃取状况的Fe2+。反萃 P2O4中的钒一般用l5%的硫酸溶液或许10%的碳酸钠溶液,本实验选用l5%硫酸溶液作为反萃剂。 反萃液中的钒是以四价形状存在,有必要氧化成五价钒后方可铵盐沉钒。本实验选用作为氧化剂。V2O5在 pH=1.9~2.2条件下的溶解度最小,这也是沉钒的最佳酸度,因为反萃剂为硫酸溶液,沉钒时用调pH值,溶液中和发生过量的硫酸铵,故用调pH到2.2即可到达沉钒意图。进步温度可加快钒的沉积,一般每进步 l0℃沉积速度可加快1.6~2倍。拌和能使沉积物均匀分散,进步反响速度,特别是在沉钒后期溶液中钒浓度不断下降时,拌和的影响愈加显着。别的,沉钒时加一些先期沉积的钒化合物作晶种能够加快沉积进程,进步沉积率。沉积后的红钒枯燥后于马弗炉内涵 550℃温度下煅烧3 h,即可得到V2O5产品。 小试选用单要素条件实验断定焙烧温度、焙烧时刻、浸 出温度等工艺参数,扩展闭路循环实验选用小型实验得到的最佳条件进行。扩展实验工艺流程见图1。四、实验成果与分析 (一) 磨矿粒度1、原矿磨矿粒度 原矿磨矿粒度对钒浸出率的影响非常大,因为在硅铝酸盐矿藏中钒是以V3+类质同象方式置换6次配位的Al而存在于云母晶格中,磨矿粒度越细,越简单损坏云母结构,其间的钒也就更简单被氧化。 原矿磨矿粒度的条件实验做了两组:①原矿磨细至小于0.074 mml(以下标明为-0.074 mm)占50%时钒浸 出率为76.2%;②原矿 磨细至-0.074mm占71.5%时钒浸出率为94.39%。磨矿粒度越小,磨矿费用越高,在-0.074mm占71.5%粒度条件下已到达了90%以上的钒浸出率,所以,没有必要用更细的粒度作实验。故选定原矿磨矿粒度为-0.07mm目占71.5%即可。 2、焙烧矿磨矿粒度 焙烧之后的矿(烧结矿),其磨矿粒度对钒浸出率的影响实验标明,焙烧矿磨细至小于1.19mm(以下标明为-1.19mm)占50%,钒浸出率82.4%;焙烧矿磨细至-1.19mm占84%,钒浸出率可到达90%以上;粒度再细,对钒浸出率的添加不显着。所以,选取焙烧矿的磨矿粒度为-1.19mm占84%。 (二)焙烧准则 将原钒矿磨细至-0.074mm占71.5%,加水制成φ8mm~φ20mm颗粒,枯燥后焙烧,以断定最佳焙烧准则。 1、焙烧温度进行了不同焙烧温度 (650、750、800、850、950、1050 ℃,焙烧时刻1h)对钒浸出率的影响实验,成果见图2。由图2能够看出,焙烧温度在 650℃时钒浸出率只要48%;750℃时钒浸出率86.2%;800℃时钒的浸出率最高,达93.8%,再升高焙烧温度钒浸出率反而下降。这是因为物料烧结使得钒被包裹或许生成了捆绑钒的方钠石类与霞石类矿藏,使钒难以浸 出。而较低焙烧温度贱价钒的氧化不彻底,导致浸出率偏低。所以,选定800℃为基准焙烧温度。2、焙烧时刻进行了不同焙烧时刻(1.0、1.5、2.0、3.0h,焙烧温度800℃)对钒浸出率的影响实验,成果见图3。由图3能够看出,焙烧时刻1h,钒浸出率仅87%,很显然焙烧时刻缺乏,矿藏结构未能彻底损坏,导致贱价钒氧化不充分而使钒难以浸出;焙烧1.5h,钒浸出率最高,达94.4%;再添加焙烧时刻,钒的浸出率并没有添加,且消耗更多的动力。所以,选定焙烧时刻为1.5h。(三)浸出条件的断定焙烧矿磨细至 -1.19 mln占84%,在液∶固 =1.2∶1的条件下进行浸出实验。1、硫酸参加量进行了不同硫酸参加量 (按焙烧矿量的2%、4%、6%、8%、10%、l2%参加)对钒浸出率的影响实验,成果见图4。由图4能够看出,只需参加焙烧矿量 6%的硫酸,即可到达90%以上的浸出效果。当溶液中钒浓度大于2.55 g/L、pH=2—3时,V2O5水解沉积;当pH约 1.8时,V2O5的溶解度最小。该焙烧矿中有多达65%的水溶性钒存在,而焙烧矿中含有必定量的耗酸物质,因而,当浸出时硫酸参加量下降至2%-4%,浸出液 pH即升高至 1.8-3,导致现已浸出的五价钒水解沉积,使钒的浸出率大大下降。浸出时硫酸用量在6%的基础上再添加,对钒浸出率的进步不显着。所以,选定浸出用酸量为焙烧矿量的6%。2、浸出温度不同浸出温度(30、60、90℃)对钒浸出率的影响见图5。由图 5能够看出,温度对钒浸出率的影 响不显着,各温度条件下(30~90℃)钒的浸出率都在90%以上,考虑到高温浸出时动力消耗与对浸出 设备的更高要求,实验选定常温浸出。3、浸出时刻进行了不同浸出时刻(0.5、0.67、1.0、2.0、12 h)对钒浸出率的影响实验,成果见图6。由图6可见,浸出时刻0.5h,钒浸出率仅72.5%;浸出时刻0.67h,钒浸出率87.54%;浸出时刻1h,钒浸出率93.4%;再 延伸浸 出时刻,钒浸出率进步不大,因而,选定浸出时刻为1h。上述实验得到的最佳条件为:原钒矿磨细至一0.074mm占 71.5%,加水制粒 (粒径φ8mm~φ20mm ),枯燥后焙烧。焙烧温度800℃,时刻1.5h;焙烧矿磨细至-1.19mm占84%;浸出温度常温,时刻1h;浸出液:固 =1.2∶1;浸出时的硫酸用量为焙烧矿量的6%。(四)全流程扩展实验按上述单要素条件实验得到的最佳条件,进行了2.5 kg级的全流程扩展(闭路)实验。实验流程见图1。扩展实验 的目标为:钒浸出率均匀为 91.6l%,到达了条件实验时的水平;中和复原进程钒损失率为3.97%;选用六级萃取(A/O=1),钒萃取率为 99.44%;六级反萃(A/O=10),钒的反萃率璐墨为99.23%;加沉钒,沉钒率99.05%;煅烧进程钒回收率99.24%。实验产品V2O5含量为98.74%, 产品质量到达国家 GB3283-1987冶金用五氧化二钒质量标准。扩展实验(闭路)全流程钒回收率为 85.33%。假如考虑部分溶液的循环运用,钒的总回收率还可进一步进步。 实验浸出废渣首要成分为(%):V2O5 0.10,Si0256.84,TFe1.56,A1203 1.59。因为焙烧与浸出进程中未参加其它试剂,所以废渣没有污染物。废渣的pH值为3—4,加石灰中和至 pH=7后能够到达国家 GB8978--1996工业废渣排放标准。 本工艺进程发生的废水首要为萃余水相,其他如负载有机相洗水、沉钒母液、红钒洗水等均可回来到装备浸出液或许洗刷浸出渣用,所以只要萃余水相需求处理。萃余水相可考虑部分回来浸出,剩下的用石灰中和到 pH>7,铁、铝等杂质以氢氧化物方式沉积,硫酸根则以硫酸钙方式沉积。因为氢氧化铁、氢氧化铝都有必定的絮凝效果,在沉积进程中还可带着其它有害元素共沉积,所以水中的其它有害元素也一起得到了净化。处理后的废水明澈通明,有害元素含量到达国家工业废水外排标准。废水多元素化验成果见表3。 表3  废水化学成分及相关国标本工艺实验进程中有两处发生废气。1、生球焙烧进程依据对相似钒厂φ2.4m×45m的回转窑焙烧钒矿生球核算,生球焙烧进程产出的废气组成为(体积百分数,%):CO29.43,S02 0.031,O25.17,N271.3,H2Ol4.02。工业生产中严格控制燃煤硫含量的情况下,废经收尘器处理后即能够直接由烟囱合格排放。2、用硫酸沉钒,生成六,其煅烧反响为:在氧化性气氛中四价钒被氧化为五价钒。六煅烧时排出对环境无污染的氮气与水蒸气。考虑到工业生产时因为洗刷不洁净,沉积所得红钒或许带着微量硫酸铵,硫酸铵在煅烧进程中分化释放出气与二氧化硫 ,可规划一级水喷淋吸收塔予以吸收。五、定论(一)该钒矿 选用无盐焙烧一硫酸浸出一有机溶剂萃取的工艺提取五氧化二钒,焙烧一浸出段钒回收率可达90%以上,全流程钒回收率到达 85.33%实验产品V2O5含量为 98.74%,产品质量到达国家GB3283-1987冶金用五氧化二钒质量标准。(二)与现行工业生产运用的其他提钒工艺比较本流程钒回收率高,产出的废气、废水、废渣稍加处理即可合格排放,各技术目标超越一般钒厂生产水平,是一项很有出路的清洁生产工艺。

二硫化钼的润滑特性

2019-01-29 10:09:51

二硫化钼——天然或合成的辉钼矿,以润滑油脂及其他固体润滑剂难比拟的优点,被誉为“固体润滑之王”而被广泛应用。     作为润滑剂要必备两个条件,即材料内部具良好滑移面,材料与基材有很强的附着力。     二硫化钼以S—Mo—S的三明治式夹层相迭加。层内,S—Mo间以极性键紧密相连。层间,S—S间以分子键相连,范德华-伦敦力的键合力太弱,当受到很小的剪切应力后即能断裂产生滑移。而这样的滑移面在每两个夹心层间就有一个。也就是在1μM厚的二硫化钼薄层内就有399个良好的滑移面。     二硫化钼与基材强烈粘附,这也是其他润滑剂,比如石墨也难比拟的。     除此外,它还具备有许多良好的润滑特性。     (1)温度适应范围宽:高温航空硅油能耐250℃高温,冷冻机油耐-45℃低温,这在润滑油脂中已属姣姣者。而二硫化钼在空气中应用,可在349℃下长期使用,或399℃下短期使用;在真空中,二硫化钼可在1093℃下工作;在氩气等惰性气体中,二硫化钼可在1427℃下工作。除能在高温下工作,二硫化钼还能在-184℃或更低温度下工作。     (2)耐重负荷:在重负荷下油脂润滑膜会因变薄甚至消失而使润滑失效。但厚度仅为2.5μm的二硫化钼润滑膜在2800MPa、40m/s的重负荷、高速度下润滑性能良好。即使负荷加大到3200MPa超过了钢铁屈服强度,二硫化钼的润滑效能依旧存在。这是其他任何液体和固体润滑剂所难达到的。因此,全世界所产二硫化钼的大部份都被当作“极性添加剂”与油脂合用,比如市面常见的二硫化钼锂基脂、二硫化钼钙基脂、各种二硫化钼齿轮成膜膏等等。     (3)耐真空:航天器在500km以上高空飞行,太空的真空度已达1.3×10-2μPa以上:此时,油脂润滑剂的蒸发已超过它的极限蒸发率。这不仅会使润滑失效,而且挥发气体还会污染仪表和环境,在真空中连石墨润滑剂的润滑性能也会大幅度下降,而二硫化钼在真空条件下的润滑性能比在空气中的润滑性能还要好。在1.3×10-2μPa真空度下,二硫化钼擦涂膜的摩擦系数降至0.0016,比在空气中的0.1低了很多。在1.3μPa真空、8000r/min、0.2MPa条件下工作的二硫化钼溅射膜轴承,其工作寿命已超过1500h。     (4)抗辐射:油脂在放射性辐照下会因分子交联而失效。而二硫化钼膜在7×108伦琴强辐射辐照后,比辐照前润滑性能几乎没受影响。二硫化钼在辐照前,静摩擦系数为0.13~0.14,动摩擦系数为0.11~0.12,磨损为306.1×10-3cm3;在辐照后则分别为:0.13,0.11和382.3×10-3cm3。这是二硫化钼在原子工业中被广泛应用的主要原因。     (5)耐腐蚀:二硫化钼稳定的化学性能使它具备了耐酸、耐碱、耐腐蚀的优点,这为二硫化钼与其他润滑剂合用创造了条件。[next]     (6)速度适应范围宽:二硫化钼在很低或很高转速下,都具良好润滑效能。而油脂润滑剂在低速下会出现“粘-滑”或“冷焊”;高转速下,又会因润滑膜破裂而失效。     鉴于二硫化钼这些良好的润滑特性,从1940年开始应用至今,发展迅猛。美国和前苏联的研究起步早,应用广泛;而日本也已有七个生产和推销二硫化钼的公司。我国对二硫化钼的研究起步较晚,1958年开始研究,1963年上海井岗山化工厂开始生产,截至1986年,我国每年生产二硫化钼粉150t,而年需要量已达400t。西北有色金属研究院研究成的“二硫化钼润滑剂制备新工艺”于1987年已通过中国有色金属工业总公司主持的鉴定,按此工艺1987年在栾川县钼业公司和1992年在西北有色金属研究院分别新建的,年生产能力为l00t的生产线已正式投入了生产,它将缓解我国对二硫化钼供不应求的局面。其标准见下表。   表  二硫化钼(润滑级)质量标准  生产厂家等级主要成份含量(%)MoS2 ≥酸不溶物Fe ≤MoS3 ≤水 ≤油 ≤C ≤酸度中国专业标准 ZBG12022-90一级品981.50①0.30 0.50  5合格品962.50①0.70 0.50  5西北有色金属研究院企业标准0#990.10②0.100.10   0.21#980.20②0.150.10   0.2国际贸易标准非微粉98.00.40①0.130.05微0.031.100.5微粉98.00.40①0.130.200.150.201.103.0克莱迈克斯(Climax)化工产品标准 CC-3D72年非微粉产品98.20.35①0.150.010.00.031.000.01标准98.20.50①0.200.050.050.051.500.05微粉产品98.00.35①0.150.030.00.251.200.55标准98.00.50①0.200.050.050.401.500.59沪Q/HG11-85-820#98       1#97       2#96       辽Q240/800#990.02①0.06     1#990.02①0.04     2#980.05①0.1     栾川钼业公司企业标准0#990.100.200.050.201.000.2 1#980.200.300.10.451.000.5 2#970.400.400.10.501.501.0 3#960.500.400.10.501.501.0      ①不溶物;②SiO2。       二硫化钼不仅是“固体润滑之王”而且还是石油产品精炼加工中的良好脱硫催化剂。     不管作润滑剂或催化剂,对产品所含MoS2纯度要求都很高。     由含MoS2纯度较低的钼精矿,生产成高纯度的二硫化钼粉,其生产工艺繁多,各工厂都有各自的特色,不尽相同,其研究归类也互不统一。笔者将它们归纳进两个大类:合成法与天然法进行介绍。

五氧化二钒国家标准

2019-01-03 14:43:41

本标准适用于钒渣或其他含钒矿物经焙饶、浸出、沉淀、分解、熔化制得的冶金、化工等用的片状或粉状五氧化二钒。 1 技术要求 1.1 牌号和化学成分 1.1.1 产品按用途和五氧化二钒品位分为三个牌号,其化学成分应符合下表的规定: 适用范围牌 号化学成分,%物理状态 V2O5SiFePSAsNa2O+K2OV2O4 不小于不大于 冶金V2O599990.150.20.030.010.011-片状 V2O598980.250.30.050.030.021.5- 化工V2O597970.250.30.050.10.0212.5粉状 1.1.2 需方如有特殊要求,可协商供应杂质含量更低的产品。 1.1.3 需方要求时,可协商提供表列以外其他元素的实测数据。 1.2 物理状态 冶金用五氧化二钒以片状交货,片径不大于55×55mm,厚度不大于5mm;化工用五氧化二钒以分解后自然粉状交货。 2 试验方法 2.1 取样 化学分析用试洋的采取按附录A所规定的方法进行。 2.2 制样 化学分析用试样的制取按附录B所规定的方法进行。 2.3 化学分析 五氧化二钒的分析暂按各生产厂现行分析方法进行,如有异议,通过协商解决。 3 检验规则 3.1 产品质量的检查和验收,由供方技术监督部门进行,需方有权按规定对产品质量进行复验。如有异 议,应在到货后30天内提出。 3.2 同一牌号的产品可以归为—‘批交货,其批量—般在4—10t之间,或由供需双方商定。 4 包装、标志、储运和质量证明书 4.1 包装 产品采用铁桶包装,桶内壁须刷一层防护漆。每桶净重一般不大于250kg,或由供需双方商定。 4.2 标志、储运和质量证明书 产品标志、储运和质量证明书应符合GB 3650-83《铁台金验收、包装、储运、标志和质量证明书的—般规定》的要求。

铜分离工艺(硫化矿处理)(二)

2019-02-14 10:39:39

中条山有色金属公司矿研所结合铜矿峪矿石特色和现场出产实际情况,将分支浮选工艺与粗精矿再磨浮选工艺相结合,到达了进步精矿档次,下降药剂耗费的意图。    大井银铜矿是一个以银、铜、锡为主的难选杂乱多金属矿床。铜矿藏首要有黄铜矿,粒茺较粗,一般在0.043~1毫米,+0.074毫米占88%左右。银在矿石中首要以独立矿藏的方式存在。呈细粒,一般在0.040毫米以下,达0.060毫米很少。锡矿藏的绝大多数是锡石,很少数呈黝锡矿的方式散布于黄铜矿中或其边际,粒度较细,0.02~0.1毫米粒级的占43%。砷在矿石中首要以毒砂方式存在,其次为含砷黄铁矿,粒度较粗。矿石铜、银、锡的含量较高,是首要收回目标。    北京矿冶研讨总院经过实验研讨提出选用浮选—重选联合工艺流程收回银、铜、锡三种金属,流程结构如图6。 图6[next]     优先选银铜时选用硫代硫酸钠与硫酸锌作为含砷矿藏及黄铁矿的按捺剂,选用丁基铵黑药和黑药为捕收剂,精选时选用石灰、氯化铵脱砷能获得较好的技能经济目标。药剂用量见下表。小型闭路实验成果见下下表。闭路实验药剂用量药剂称号药剂用量(克/吨)药剂称号药剂用量(克/吨)硫代硫酸钠500氧化钙500硫酸锌250氯化铵300丁基铵黑药63硫酸铜300黑药32丁黄药180二号油43  小型闭路实验成果产品称号产率%档次(%)收回率(%)CuAg(吨/克)SAsSnCuAgSAsSn银铜精矿6.8224.141279.131.160.220.32591.8275.3154.782.54.09硫砷产品6.521.57293.621.597.540.465.7216.5336.2883.135.54锡精矿0.50.1228.81.680.4860.390.030.120.220.4155.73尾矿86.160.05110.810.390.0960.222.438.048.7213.9634.64原矿1001.79115.833.870.590.54100100100100100     广东工学院以某钨选厂供给的硫化矿为试样进行归纳收回其有用成分的研讨。实验研讨标明,选用选冶联合流程,即用FeCl3挑选浸出收回铋、铅、银,用—石灰法从FeCl3浸出渣中浮选收回钼、铜、砷等,可使硫化矿中的多种有用成分得到充沛合理地运用。    FeCl3浸出后的硫化矿渣含铜6.51%,含砷9.46%,含硫34.83%。矿渣物相组成的分析成果标明,铜矿藏为黄铜矿,含砷矿藏为毒砂,含硫矿藏首要为黄铁矿。    一石灰法使黄铜矿与毒砂、黄铁矿别离是根据在溶解有石灰的弱酸性矿浆中能使毒砂、黄铁矿有用地按捺,而黄铜矿不光不受按捺,反而能促进其浮游。效果的这种双重性使得铜、砷分选具有很高的挑选性。    实验成果标明,在弱酸性矿浆中(pH=6.5~7),选用与石灰配协作毒砂、黄铁矿的按捺剂,丁基黄药与硫脂混作捕收剂浮选黄铜矿,可使黄铜与毒砂、黄铁矿有用别离,并可获得很好的分选成果,在较低pH值(pH=5.5~6)时,根据对毒砂、黄铁矿按捺程序的差异,在浮铜后的尾矿中,用做调整剂,丁基黄药做捕收剂浮选黄铁矿,可使毒砂与黄铁矿开始别离,并能得到合格的砷精矿。    实验流程及药剂准则见图7,所获得目标见下表。[next]流程实验成果产品称号产率%档次(%)收回率(%)CuAsSCuAsS铜精矿25.6123.880.1834.8890.640.4925.96铜中矿6.816.363.1443.316.422.287.77硫精矿36.580.334.8344.491.7918.8747.3砷精矿31.090.2523.6721.041.1578.3618.96原矿1006.759.2634.4100100100 图7     对浸出渣进行预处理,严格操控矿浆pH值,浮选前对矿浆进行激烈拌和擦拭,以铲除矿渣中夹藏的重金属离子关于矿藏表面所遭到的污染,以及浸出渣表面氧化蜕变的影响。挑选适宜的用量,在矿浆中坚持必定的游离氧化钙含量,操控的效果时刻,是—石灰法的重要工艺条件,也是黄铜矿与毒砂有用别离,下降铜精矿含砷的有用办法。[next]    湖南省郴州雷坪有色金属矿归于含铜多金属矿。金属矿藏有:黄铜矿、斑铜矿、毒砂、闪锌矿、锡石、黄铁矿、磁黄铁矿等。脉石矿藏有:方解石、石英、透辉石、透闪石、萤石、阳起石、绿泥石、绢云母、普通角闪石、滑石、云母等。原矿含铜0.6~0.7%,含砷3.5~4.5%,高者达6~7%。    该矿选厂投产以来,以选矿铜为主,其铜精矿档次一般 为12~16%,铜的收回率为80%左右,铜精矿中含砷在2%以上,产品供应不出去。    该矿考虑到原矿含铜比较低,含砷又比较高;铜矿藏与砷黄铁矿的别离又比较困难。为了进步铜精矿档次,下降有害杂质砷含量,将原浮铜流程的一粗、三精、三扫,改变为一粗、五精、四扫。一起,加大石灰用量,并分四段添加。本来只是将石灰加入球磨和精选,每吨原矿耗费4~5公斤,添加到每吨原矿耗费8~10公斤,添加点为球磨1.5~2公斤/吨;拌和机2.5~3公斤/吨;精选II、精选III合计4~5公斤/吨;粗选pH由8~8.5进步到9~10。使铜精矿档次进步了5.16%,而将砷降至0.5%以下。另一方面改进操作条件,进步磨矿细度、粗选严格操控捕收剂和起泡剂的用量。    经过上述的采纳的办法,收到了杰出的效果。1981年铜精矿档次、铜的收回率别离达22.57%和86.72%,而铜精矿含砷为0.42%。    湖南冶金研讨所用浮选办法对从矽卡岩铜锡矿石中别离硫化铜矿藏与毒砂进行了实验研讨。    实验试料矿体产于花岗岩和白云质大理岩触摸带中,归于高温镁砂卡岩矿床。原矿首要含铜矿藏以黄铜矿为主。砷矿藏以毒砂为主,有少数的硫砷铜矿和砷黝铜矿;毒砂同首要原生硫化矿藏嵌镶严密,并且含量较高,又广泛散布于各种矿石之中。脉石矿藏品种繁复,首要的有石英、长石、金云母、绢云母、绿泥石、铁白云石、白云石、方解石、阳起石、透闪石、角闪石等。    铜砷别离的实验研讨:铜砷别离系指黄铜矿、方黄铜矿、斑铜矿与毒砂别离。毒砂与硫化铁的性质类似,所以铜砷别离也包含与硫铁矿的别离。    硫化铜矿藏、毒砂、黄铁矿的可浮性差异不大,在铜优先浮选时,有必要留意挑选具有挑选性好和捕收力较强的捕收剂。实验证明,丁黄酸丙睛酯在硫化铜矿藏表面吸附结实,适宜于强碱介质屡次精选。    按捺剂的挑选:硫离子能与重金属离子生成难溶性的沉淀物,然后可以消除这些离子活化的影响。粗选进程用与石灰合作运用,可以获得杰出的别离效果。精选进程中,用钠与石灰合作运用,则别离效果得到显着的改进。    添加精选次数显着下降铜精矿含砷量,这是因为屡次按捺使毒砂失掉或下降浮游性,到达了按捺砷矿藏的意图。    粗精矿再磨进一步使铜矿藏与毒砂硫铁矿的连生体得到充沛解离,一起也起擦拭矿粒表面的效果,有利于按捺剂对毒砂的充沛按捺,发明铜、砷别离和进步铜收回率的有利条件,不光使终究铜精矿含砷到达预订的要求,并且使其档次进步5.49%,收回率进步2.72%。    采纳上述办法,不只有用地将铜精矿含砷降至0.3%以下,还有利于进步铜精矿档次和收回率。闭路实验流程见下图8,实验成果见下表。闭路实验成果产品称号产率%档次%收回率%别离条件CuAsCuAs铜精矿2.2428.410.28581.481.23粗精矿再磨(-200目96%)硫精矿8.550.695.297.5587.09尾矿89.210.0960.06810.9711.68原矿1000.780.52100100[next] 图8

五氧化二钒技术现状简介

2019-01-18 09:30:34

五氧化二钒技术现状简介1、 加盐焙烧提钒技术 加盐焙烧提钒技术(工业盐添加量8-15%)属于在九十年代初期提出的取缔关停淘汰落后技术,存在的主要问题是空气污染严重和废水中无机盐含量高。在九十年代,一些企业采用了减少食盐添加量的低盐焙烧提钒技术(工业盐添加量5-6%),但并没有效解决加盐焙烧提钒技术的环境污染弊端,由于废水中无机盐含量高,废水循环利用率低,生产过程产生大量外排废水,在企业的周边区域造成严重的环境纠纷!目前我国存在石煤提钒行业的省份,对新建企业大多采取禁止采用加盐(含低盐)焙烧提钒技术的产业政策,比如河南、湖北、重庆、陕西、新疆、贵州等。 2、 无盐焙烧提钒技术(空白焙烧技术)九十年代初,湖南省煤炭研究所联合有关企业开发研究无盐焙烧提钒技术(不添加任何添加剂),目前该技术仅在湖南省怀化的个别企业采用,矿石中钒的总收率在38-45%之间,经过技术改进,收率有所提高。该技术对矿石有很强的选择性,而且收率低,不具备工业化推广价值。 3、 强酸浸出提钒技术(湿法提钒技术)强酸浸出技术包括矿石预焙烧后强酸浸出技术和无焙烧强酸浸出技术。该项技术主要由核工业总公司北京化工冶金研究院开发。无焙烧强酸浸出提钒技术(湿法提钒技术)虽有矿石不需焙烧过程的优点,但酸用量大、投资大(设备腐蚀严重)、生产成本高、废水、废渣难以处理(废水、废渣中无机盐含量高)、经济性差,而且对矿石也有一定的选择性,工业化推广有一定的局限性。 4、 其它技术改进包括用于焙烧过程的多元复合焙烧添加剂,用于浸出过程的多元复合浸取剂等,都只是对工艺过程的一种配方式改进,且均有一定的局限性,不属于新工艺新技术的范畴。

五氧化二钒焙烧工艺综述

2019-02-25 09:35:32

跟着近几年来,五氧化二钒市场报价的坚硬,职业效益的进步,各种提钒技能不断涌现,现首要分为两大派系:一是湿法提钒法,二为火法提钒法。 湿法提钒技能首要由核工业部下的一个研究院开发出来也叫酸化提钒技能,此技能对矿石的选择性强,出产中耗酸量大,100吨矿石需求15~25吨硫酸,相应在液体处理时需把液体调成中性,然后耗碱量也较高,吨本钱中间原材料过高,别的废渣的堆放给环境形成必定的污染。此技能规划化实践使用是陕西山阳区域部分钒厂,2006年因为污染严峻被政府强制性封闭;火法技能是将矿石经过焙烧,然后浸出提取钒。此技能的关键是焙烧办法与添加剂的不同。现对国内近几年来涌现出的焙烧办法做一总述,供贵公司参阅,在选定工艺道路时,少走弯路,缺乏之处请纠正。 一、平窑焙烧法 平窑焙烧法是一种经典的焙烧办法。经过长期的实践查验,它是比较有用的一种焙烧办法,一起在实践中也发现了它的缺乏。最大的缺陷是转浸率不安稳,一年四季转化率误差大,就是在一天也有误差。这首要是因为气流上升速度不同所形成的。因为此种焙烧办法是预先将矿料发热量配好,假如气流上升速度发生变化,只要经过调理烟囱风门来操控。此种调整办法很难找到最佳点,所以焙烧转化率一般只能安稳在40~50%之间。 二、多膛炉焙烧法 我国最早运用多膛炉焙烧法用于提钒职业是四川攀枝花钢铁公司,在出产中用于焙烧钒渣,钒渣高温带的焙烧温度为720~800℃。2006年辰溪庞大钒业有限公司在出产中也选用了此种焙烧办法,但效果均不抱负,形成这种成果的首要原因是矿石在高温段逗留时刻不行。含钒石煤矿高温段最佳焙烧温度带比较窄,只要10~20℃的误差起伏,又因为钒在焙烧进程中是一个不断氧化和转化的进程,需在最佳温度点逗留5~6个小时,才干到达最高转化率。而此种焙烧办法是预先配好发热量,经过鼓入的空气量来调理温度的。而料从上至下是一个不断耗费热量的进程,想要在某一个温度点逗留5~6个小时是不可行的。故此种炉型要用于含钒石煤矿的焙烧,还需求许多的工业实践来调整。 三、欢腾炉焙烧法 现在欢腾炉用于含钒石煤矿提钒职业,成功的只是在矿石脱碳这一步,其转化率只要10%以下。到现在为止还没有看到转化率在40%以上的事例。尽管现在有许多关于欢腾炉焙烧含钒石煤矿效果极佳的专利技能,但也仅仅只是文字的东西,在出产实践中使用很少,危险极大。欢腾炉焙烧含钒石煤矿,其难点在于矿石在炉内逗留时刻过短,要延伸逗留时刻,只要无限扩展欢腾炉的容积,此计划出资大危险大。欢腾炉焙烧另一个缺陷就是矿料和添加剂的触摸不充沛,达不到抱负的转化率,此种焙烧办法还需许多的实践和技能完善才干断定其经济性。 四、回转窑焙烧法 回转窑焙烧法用于五氧化二钒提钒职业,我国最早的是四川攀枝花钢铁公司用于钒渣的焙烧,其焙烧高温段为720~800℃,钒渣中添加必定量的碳酸钠,选用长火焰焚烧器,高温段长度为20米左右,钒的转化率在90%以上。此焙烧原理是将钒渣在碳酸钠的效果下,烧成熔体,使钒转变成钒酸钠,钒渣在炉内不需求较长期;另一点是钒渣含钒量一般在20%左右,添加剂相对于钒量的比值小。而含钒石煤矿的含钒量一般在1%左右,若依照矿石含量的12~15%添加,本钱过高;其二是有的矿石不必定适用添加碳酸钠。2000年我在吉首建材化工总厂使用自治州的钒矿和本来烧硫化的回转窑试烧了两个月,成果没有成功,经过实践得出以下定论:要矿石到达最佳转化率,矿石在高温段930℃左右的逗留时刻保持在5~6个小时,而回转窑要正常焚烧其高温点最低不能低于1100℃,而矿石的熔点不超越1000℃,所以矿石转化率所需求的最佳焙烧温度限制了回转窑的正常焚烧。 要战胜此弊端,有必要采纳多个喷火点。依据产值的巨细需添加5~10个喷火点,一个喷火点需求一个支点,本来回转窑的承要点为三组托轮,若喷火点添加的情况下,要使8~13个支点在加热受重的状态下都在一条直线上工作,从机械规划和制作视点动身,不经过许多的试验和实践运用,在厂商实践出产中是不能够选用的,故此种焙烧办法现阶段用于实践出产建设出资过大,危险极大,只要待实践老练后方可选用。 五、步进式焙烧法 自己经过各种炉型的焙烧原理结合含钒石煤矿取得最佳转化率的机理,规划了一种新式炉型——步进式焙烧炉。 此炉型在河南省平顶山一供应商现已规划化出产,矿石的均匀转化率安稳在70%以上,不论任何一种炉型都有其长处和缺陷,现把此种炉型一年多的出产所表现出的优缺陷做一总结:长处 1、粉尘低,工作环境好。 2 、焙烧合格率高,一般在98%以上。 3、没有烧好的料能够回来重烧。4、矿石和添加剂钙盐触摸充沛,转化率一般安稳在70%以上。 5、机械化程度高,避免了气候、人为因素等等对转化率的影响, 出产人员比平窑出产所需人员节约近40%。6、简单操控,出产安稳 缺陷 1、需求外热,能量使用率低,100吨矿石需5吨煤 2、出资较平窑大,平等规划需添加10%资金 结束语 从现在在无氧化二钒焙烧工序,成功的炉型只要平窑和咱们开发的步进式焙烧炉,其它的炉型要使用于实践还需求一段时日。

五氧化二钒回收工艺

2019-02-25 14:01:58

五氧化二钒是氧化物,酸性大于碱性,溶于强碱生成钒酸盐,溶于强酸构成钒氧离子VO或VO3+。橙黄或砖赤色固体。无臭、无味、有毒性。微溶于水,生成淡黄色酸性溶液。热分化或三氯氧钒与水效果都可制得五氧化二钒。 2NH4VO3 V2O5+2NH3+H2O 2VOCl3+3HO2 V2O5+6HCl 五氧化二钒是钒氧化物中使用最广泛的产品,在钒资源勘探、出产和国际贸易中,一般都以五氧化二钒作为核算单位。 五氧化二钒是出产金属钒、钒铁合金、和其它钒基合金的中间产品,也是制作钒催化剂的质料,还可用于、邻二等有机组成的催化剂,还用于制作彩色玻璃和陶瓷。 五氧化二钒的收回工艺: (1)从钒渣中收回:钒渣是含钒较高的提钒质料,收回技能比较老练。现在通用的流程是钠化焙烧工艺,选用的设备不同,大型厂商一般都选用回转窑,而有些厂商则选用焙烧炉。工艺进程是将钒渣与钠盐(一般为碳酸钠或芒硝)混合,在必定的温度下焙烧,使钒转为可溶性的钠盐,焙砂再通过浸出,使钒酸盐进入溶液,溶液通过滤,滤出废渣,再通过沉积、精美等进程得到五氧化二钒。国外有的厂商直接使用含钒高的钒钛磁铁矿出产五氧化二钒,首先将矿石制成精矿,然后与熔剂混合,进入回转窑中焙烧,焙砂用水浸出,含钒溶液用铵盐处理,最终沉积。 (2)从石煤中收回:从石煤中提钒的工艺主要是钠化焙烧工艺,钠化氧化焙烧—水浸出—水解沉钒—碱溶铵盐沉钒—热解脱—精钒的工艺流程。该工艺是我国从石煤中提钒遍及选用的工艺,特点是工艺简略,而且充分使用了石煤的热能。缺陷是收回率较低,一般在60%以下。美国选用以上工艺,但选用稀硫酸浸出、溶剂萃取技能,收回率可达70%。 (3)从石油废催化剂中收回:美国、日本等国从上个世纪70年代就开端从石油含钒废催化剂中收回钒,技能现已老练,加工工艺许多,有许多工艺现已申报专利。国际上通用的技能是钠化焙烧法:配料→焙烧→磨碎→浸出过滤→沉钒→煅烧→五氧化二钒产品↓ 溶液→萃取收回钼→钼酸铵产品 ↓ 渣→进一步收回镍→金属镍。 各国收回工艺中的经济技能参数虽然不同,但根本上参照以上工艺,我国从石油工业废催化剂中收回钒的厂商选用的工艺也根本与其相同。 (4)从硫酸工业废催化剂中收回:从硫酸工业的废催化剂中收回五氧化二钒早已引起世界各国的注重,前苏联在此起步较早,技能比较老练,日本、美国也有许多专利报导。我国硫酸工业废钒催化剂中收回钒的作业展开较早,在上个世纪80年代,南化公司、成都工学院、北京矿业学院、镇江冶炼厂、平顶山987化工厂等都作过很多试验,其间平顶山987化工厂现已投入出产。现在选用的技能有火法—湿法联合工艺和全湿法工艺,后者使用比较广泛。工艺如下:废催化剂→破坏→浸出→过滤→加水解→沉钒→精粹→煅烧→产品。湿法流程工艺简略,出资少,总收回率在90%以上。缺陷是发生的废液量较大,不能作到平衡。现在我国从硫酸工业废钒催化剂中收回五氧化二钒的厂商都选用以上工艺,火法湿法联合工艺没有选用。   定论:从含钒物料中提炼钒的工艺有火法、湿法和火法、湿法联合流程,最老练的技能是:钠化焙烧、浸出、沉钒工艺,也是提钒技能的经典。从硫酸工业废钒催化剂中收回五氧化二钒一般都选用酸性直接浸出工艺。

合成法生产二硫化钼

2019-02-12 10:08:00

所谓合成法,是损坏钼精矿里辉钼矿的结构和组成,经从头组合、结晶生成人工晶格二硫化钼。     明显,合成法里的钼阅历了Mo4+→Mo6+→Mo4+的两次氧化复原反响,经过了由辉钼矿转化生成钼酸铵或高纯三氧化钼到三硫化钼等中间产品,终究从头转化成人工合成的辉钼矿的一系列物相转化(图1、图2)。工艺以辉钼矿为目标,从钼的物相转变来除杂。常见的出产实践如下:   图1  合成法(一)出产流程   图2  全成法(二)出产流程       1、湿法硫化工艺     该工艺经钼酸铵、三硫化钼中间产品,选用H2S作钼酸铵的硫化剂来出产高纯二硫化钼。     出产钼酸铵的工艺许多,只需获高纯钼酸铵溶液,选用哪种办法都行。     此工艺出产、净化钼酸铵的进程已在第二节作过介绍,经净化后的钼酸铵溶液不经结晶、分出,直接通入气体进行硫化。很多H2S的通入,溶液中将发作如下反响:   (NH4)2MoO4+3H2S=MoS3↓+2NH3↑+4H2O       根据Б.B.涅克拉索夫(Hexpacos)论说,反响机理是:首要,钼酸铵溶液通入H2S后发作硫逐一替代氧的一系列中间反响:  (NH4)2Mo+H2S(NH4)4MoSO3+H2S(NH4)2MoS3O→→+H2S(NH4)MoS3O→(NH4)2MoS4 →+H2S     [next] 这一系列硫代钼酸铵均可溶于水而无法分出。反响后,再对溶液酸化,将发作如下反响,生成沉积:  (NH4)2MoS4+2H+→2NH+4 +H2MoS4     酸分化      MoS3↓H2S↑     终究发生MoS3的深褐色沉积。将MoS3热解可产MoS2:  MoS3△MoS2+S↑=       工业实践中,要留意阻隔空气,尤其是氧气。不然即便进入了极少量的氧气,也会发作如下反响:   2MoS3+9O2=2MoO3+6SO2↑       工业实践中还须留意,焙烧进程要尽量能使S得到充沛提高,不然,游离硫与三氧化钼混入二硫化钼后,将会大大添加产品酸值、阻碍其使用。     2、火法(焙烧)硫化工艺     该工艺从钼精矿作质料,先制成高纯三氧化钼,高纯三氧化钼与硫化钙在焙烧中反响,硫化是本工艺特色。出产高纯三氧化钼的进程也已在第四节作过介绍。MoO3与CaS反响如下:  MoO3+3CaS△MoS3+3CaO=       在发生此置换反响的一起,MoS3也会发生自氧化复原反响。焙烧完毕后,可通过水溶别离出CaO,碱溶或酸溶以脱除未充沛反响,残留的MoO3或CaS。但MoS3因自氧化复原反响所应留意的事项要求相同。     综上所述,合成法可在钼的物相转化进程里最大极限脱除杂质,出产出MoS2纯度很高的产品。可是,它也存在着以下的几点缺乏:     (1)工艺冗长、钼回收率低、加工费高、本钱高。     (2)三硫化钼自氧化复原后,产品往往呈现游离硫和三氧化钼。而这些物质是二硫化钼的主杂质,对使用影响很大。     (3)普遍认为,人工晶格的二硫化钼,不如天然晶格二硫化钼的光滑性能好。

天然法生产二硫化钼

2019-01-29 10:09:51

所谓天然法,指在不破坏钼精矿里辉钼矿的结构与组成,仅脱除精矿中混入的杂质矿物,获得天然晶格二硫化钼产品的工艺。由于除杂方式不同,又可分选矿法,浸出法、选矿加浸出法。     1、选矿法     选矿法不仅辉钼矿没经物相转化,杂质矿物也不须经物相转化。常见的实践有:     单一浮选工艺:它利用辉钼矿与杂质矿物间天然可浮性的巨大差异,通过多次精选工艺提纯,生产出含MoS2≥97%的高纯钼精矿。例如:北京天河化工厂采用浮选柱,钼精矿经过七次开路浮选,获得含MoS297%、钼回收率37%的二硫化钼产品。又如智利的萨尔瓦多(Salvador)采用九次浮选工艺,获得含MoS297%左右、钼回收率约65%的二硫化钼产品。     控制磨矿-分级工艺:它利用辉钼矿各向异性的力学特征,与杂质矿物通常为各向同性的力学性能差异,通过控制磨矿和分级,杂质矿物破磨细进入筛下,而片状辉钼矿却难以粉碎留在筛上得到纯化。例如,加拿大钼有限公司采用四辊磨机加分级,获得少量MoS2含量>97%的高纯产品和大量中矿供冶炼。又如,肯尼柯特公司采用三段控制磨矿工艺,获得MoS2含量97%、钼回收率30.1%的产品。     上述的两种选矿法尽管工艺简单、加工费低廉,但钼产品的回收率太低(如前述,最高的萨尔瓦多也仅达65%),导致二硫化钼成本偏高。笔者研究出脱活强浮新工艺,基本解决了选矿法钼回收率低的不足。     脱活-强浮工艺:鉴于钼选矿所采用烃油类非极性捕收剂选择性很差,而且,过程中所加油量的3/4左右富集在产率仅0.2%~0.8%的钼精矿的表面。当大剂量、选择性差的烃油随钼精矿进入生产二硫化钼的再精选工艺,势必造成:(1)一些杂质矿物因吸附有烃油捕收剂而被选进高纯精矿。(2)因油大泡粘,一些杂质矿物又因机械夹杂混进高纯精矿,构成纯化的困难。笔者自行研制出TL药剂[T-脱(To),L-林(Lin)],并采用TL脱活剂强化钼精矿再精选,在工业试验中获得MoS2含量>97%,钼回收率>97%的高纯钼精矿。在发挥选矿法工艺简单、加工费低廉优势的同时,又取得高回收率。TL药剂脱油效果见下表。   表  强浮过程脱油效果  试验序号含油量(%)脱油率(%)试 料产 品闭路试验1.530.4579.59验证试验2.110.6569.19       对钼精矿再精选的影响见图1。   图1  TL用量对MoS2品位及回收率的影响       2、浸出法     此法虽然不改变钼精矿里辉钼矿的结构(与合成法不同),但须改变杂质矿物的物相,通过杂质的物相转变与固液分离来纯化。常见的实践有:     单一氟化浸出工艺:采用HF加HCI(或H2SO4)在50~90℃温度下,将钼精矿浸出4~24h,使其中的硅类杂质和部分可溶于酸的矿物转化进液相或气相而脱除,主要反应式为:[next]   SiO2+6HF=H2SiF6+4H2O   Fe2O3+6HCl=FeCl2+3H2O   FeS+2HCl=FeCl2+H2S↑   CaCO4+2HCl=CaCl2+CO2↑+H2O       HF是一个中等强度一元酸,电离度很低,即使在0.01~0.lmol/L的低浓度下,电离度也仅8.5%,电离常数Ka=3.53×10-4或PKa=3.45。而H2SiF6是一个强二元酸,电离度很高,即使在蒸汽状态中,也有50%以上的分子已电离。SiF2-6很稳定,SiF2-6←→SiF4+2F-的解离常数很小,Ka= 7×10-7。HF溶SiO2反应机理是:   SiO2+4HF=SiF4↑+2H2O   SiF4+2HF=H2SiF6       在气相中SiF4会逸出;在液相中SiF4不待逸出就会与溶液中F-反应,形成H2SiF6。     浸液中HF用量取决钼精矿中SiO2的重量。笔者对浸出时间、HF用量与SiO2含量间的研究结果见图2。显然,HF耗量为SiO2重量4倍以上为佳。   图2  HF用量对SiO2浸出率的影响       浸液中HCI或(H2SO4)用量在原则上,只需保证足够的酸度(PH≤2),但生产中所加30%HCl或(H2SO4)量往往达到钼精矿重量的1~2.5倍。例如国内某厂浸出工艺中,每产1tMoS2粉,须加入50%的HF350kg,30%的HCl 2t,几乎不再需要添加清水。这样高酸耗有否必要值得考虑。     经浸除硅类及可溶于酸的杂质后,料浆经固液分离、洗滤等,可获高质量二硫化钼滤饼。但该产品往往还夹杂有滤液而含游离酸,最好再用碱液(NaOH、KOH或NH4OH均可,以KOH为佳)洗滤以中和游离酸。净化后的滤饼再经干燥、细磨,即成最终二硫化钼粉。     此法可最大限度脱除硅类杂质,但却无法脱除黄铁矿(FeS2)、黄铜矿(CuFeS2)…等难溶于HCI、H2SO4的硫化杂质。而莫氏硬度高达6.5的黄铁矿对产品润滑性能影响很大。为此。对含FeS2较高的钼精矿往往采用以下两种工艺:     (1)焙烧-浸出工艺:钼精矿在常规氟化浸出前,先在有氮气或惰性气氛保护下,经650~800℃焙烧1~2h。此时,黄铁矿将转化为硬度小(3.5)、易溶于HCI(或H2SO4)的磁黄铁矿(FeSx 1<x<2)。或者,将钼精矿掺入H2SO4,在惰性气氛焙烧,黄铁矿转化成可溶的硫酸亚铁(FeSO4)。焙烧后的钼精矿再经上述氟化浸出,就既可除硅又可除去黄铁矿。     (2)两段浸出工艺:钼精矿先经氯化浸出(——布伦达法)-脱除硫化杂质(布伦达法见第二章有关章节)。经除去了硫化杂质的钼精矿再给入常规氟化浸出以脱硅类杂质。     浸出法以杂质矿物的物相转化为手段来纯化钼精矿,钼损耗少、回收率高。但药耗大,成本高,尤其在钼精矿中黄铁矿等硫化杂质偏高时,焙烧-浸出工艺难控制,二次浸出工艺成本太高,困难较大。     3、选矿+浸出法     该法分别吸收选矿和浸出的特点,先经选矿法获得含FeS2少的高纯钼精矿,再经氟化浸出脱硅类杂质,可获高质量的天然晶格的二硫化钼产品。用高纯钼精矿作浸出原料,药耗也会大幅度降低。     西北有色金属研究院研究出的新工艺,就是选矿+浸出法:采用TL脱活强化浮选,获得MoS2含量≥97%、钼回收率≥97%的高纯钼精矿;再经液固比1:1每吨产品添加50%HF150kg,30%HCl 30kg,在50~800℃浸出3h,获得MoS2含量≥99%SiO2含量0.0275%的高质量二硫化钼粉。