您所在的位置: 上海有色 > 有色金属产品库 > 一水氯化钴 > 一水氯化钴百科

一水氯化钴百科

氯化钴

2019-02-21 13:56:29

【英文名称】cobaltous chloride;cobalt dichloride 【结构或分子式】 CoCl2·6H2O   【密度】相对密度(25℃):1.925(六水),3.356(无水) 【熔点(℃)】86(六水) 【性状】 六水物:赤色晶体,无水物:浅蓝色粉末。 【溶解状况】 六水:易溶于水,也溶于乙醇、和;无水物:溶于乙醇、、。 【用处】 用于制气压计、比重计、隐显墨水等。氯化钴试纸在枯燥时是蓝色,湿润时转变为粉赤色。硅胶中加一定量的氯化钴,可指示硅胶的吸湿程度。 【制备或来历】 由氧化钴与效果而制得。 【其他】 六水物在空气中易潮解,热至120~140℃则失掉结晶水而成无水物。

利用钴矿制取氯化钴的试验研究

2018-12-10 14:18:49

利用钴矿制取氯化钴的试验研究.pdf

鲕绿泥石-一水软铝石铝土矿技术

2019-01-29 10:09:51

矿石的特点是微细赤铁矿和鲕绿泥石与一水软铝石紧密结合,部分富集一水软铝石的铝土岩在破碎时容易解离,而铁矿物在细级别中细粒分散。     国外某鲕绿泥石-一水软铝石铝土矿,原矿含Al2O341.93%、SiO210.68%、Fe2O330.6%。采用筛分洗矿后,粗级别(-50mm+3mm)进行选择性碎矿后分级,粗粒级为低铝硅比产物,细级别(小于0.4mm)用选择性絮凝可脱除杂质铁,其选择工艺流程如图1b所示。可获得铝精矿含Al2O352.3%、SiO28.43%、Fe2O38.43%,铝的回收率73.3%,铝硅比为6.2的分选效果,见表1。 表1  鲕绿泥石-一水软铝石铝土矿选别指标产品名称产率/%品位/%回收率/%铝硅比Al2O3SiO2Fe2O3Al2O3SiO2Fe2O3铝土矿精矿 低铝硅比产品 高镁产品(絮凝溢流) 原矿59.2 18.0 22.8 100.052.3 33.99 21.95 41.938.43 13.28 14.45 10.688.43 13.28 14.45 30.322.35 32.12 50.77 30.673.8 14.6 11.6 100.046.7 22.4 30.9 100.06.2 2.6 1.5 3.9  图1  一水软铝石型铝土矿选别工艺流程图 8a-某高岭石; b-某鲕绿泥石

磷酸盐对一水硬铝石和高岭石的浮选性能

2019-01-18 09:30:34

我国铝土矿资源丰富,但具有高铝、高硅、低铁、低铝硅比的特点,大部分矿石不能满足工艺上先进的拜耳法生产氧化铝的要求。目前,我国氧化铝的生产主要是采用混联法及烧结法,面临生产成本高、能耗高及环境污染问题,产品缺乏国际竞争力。为了解决我国23亿吨铝土矿资源利用问题及应对我国加入WTO后的挑战,国家“九·五”攻关计划提出开发选矿一拜耳法生产氧化铝新技术,并已初步获得成功。开发出的正浮选脱硅技术可获得高铝硅比铝土矿精矿,以供生产氧化铝。国家重点基础研究发展规划项目(973)及国家“十·五”攻关计划进一步提出反浮选脱硅基础理论研究与技术开发作为重点课题。反浮选脱硅中,一水硬铝石的选择性抑制和高岭石的强化捕收是两个技术关键。本论文研究了磷酸盐对一水硬铝石和高岭石的浮选性能。六偏磷酸钠(SHMP)在低用量条件下,对高岭石的抑制作用大于对一水硬铝石的,可以实现铝土矿的正浮选脱硅;而在高用量的条件下,六偏磷酸盐对一水硬铝石的抑制作用很强,对高岭石的抑制作用与低用量条件相比没有明显变化,因而可以实现铝土矿的反浮选脱硅。通过磷酸盐的溶液化学、六偏磷酸钠对一水硬铝石和高岭石矿物的 电位影响及其在矿物表面上的吸附量测定,同时通过显微镜对溶液中的矿物颗粒成像,探讨了(NaPO3 )6在一水硬铝石和高岭石的胺阳离子反浮选体系中的作用机理。

一水硬铝石高浓度精液分流生产砂状氧化铝技术

2019-01-02 16:33:39

针对我国一水硬铝石矿资源和生产工艺特点,对高铝酸钠溶液晶种分解的附聚和长大过程进行了系统研究。通过大量的基础研究及工业规模的全流程试验研究,提出了一水硬铝石高浓度精液分流生产砂状氧化铝新技术。   成果创新点如下:1、揭示了温度、固含、浓度和过饱和度等条件对晶种分解过程的影响规律;2、首次开发了在高碱、高浓度条件下,通过精液分流提高晶体长大填充动力生产高强度砂状氧化铝的技术。   拜耳法种分采用该新技术,可以明显提高晶体长大过程初期溶液的过饱和度,有利于分解过程的附聚和产品强度的提高,通过控制精液分流比例等工艺条件,可以确保系统的粒度分布稳定。试验研究结果表明,精液分流后氧化铝磨损指数可以达到20%以下和不分流相比,相对降低25.7%,该规律得到了工业试验验证。产品氢氧化铝和氧化铝颗粒形貌较好,是以附聚长大为主的多晶体颗粒而非晶体径向长大,产品颗粒的晶粒小,可以得到高强度砂状氧化铝产品。   该成果具有我国自主知识产权,为我国一水硬铝石型铝土矿高浓度生产砂状氧化铝提供了理论依据和技术支撑,对提高我国冶金级氧化铝产品质量具有重要意义。该成果工艺技术先进,适应性强,系统粒度易于控制,在以一水硬铝石为原料生产砂状氧化铝领域,具有广泛的推广应用价值。

水氯化法提金

2019-02-14 10:39:39

水溶化法在20世纪70年代末曾有不少专利。卡林(Carlin )公司用二次氯化法树立日处理500 t矿石的接连实验装置,使耗费大大下降,美国专利曾报导在328kPa氧压下(160℃)用氯化物溶液浸出,金浸出率高于98.5%。    化法(亦称湿法氯化或溶化)是在盐或酸的水溶液中,参加氯或其他氯化剂,使金被氯化而浸出提取。此法初期选用氯水或硫酸加漂的溶液从矿石中成功地浸出金,并用硫酸亚铁从浸出液中沉积出金。后经开展成为19世纪末的首要浸出金办法之一。一般说来,原猜中但凡可溶的物质,化法也能够溶解。选用化法,金的浸出率比化法高,可达90% -98%,氯的报价比低,氯的耗费量约为0.7~2. 5 kg/t精矿。化法面世后,化法工艺在19世纪末也相继呈现,并开端广泛使用于从矿石中直接浸出金,故几乎在同一时刻化法在各工厂中止选用,近些年来,因为一些湿法冶金办法污染环境,化法又从头被用来提取金、银,往后它有或许再次成为金、银重要的冶金办法之一。    该工艺的特色是出资少,收回率高,有利于环保。化法实质上是一种氧化浸出。氯溶于水后,发作水解反响生成氧化性极强的次氯酸使金氯化成HAuCl4或NaAuCl4,再用二氧化硫、硫酸亚铁复原沉积。按运用的氯化剂和介质的不同,化分为:介质水溶化,次氯酸盐(次或)氯化和电氯化三种首要工艺。    基本原理    水氯化法浸金原理是:金在饱满有Cl2的酸性氯化物溶液中被氧化,构成三价金的络阴离子。    氯是一种强氧化剂,能与大多数元素起反响。对金来说,它既是氧化剂又是络合剂。在Au-H20-Cl- 系统的电位-pH图中,如下图所示,金被氯化而发作氧化并与氯离子络合,故称水氯化浸出金,其化学反响为:                               2Au+3Cl2+2HC1 ==== 2HAuC14                              2Au+3Cl2+2NaC1 ==== 2NaAuC14    这一反响是在溶液中氯浓度显着增高的低pH条件下快速进行的。    三价金在氯化物溶液中电位适当高:                                 Au+4C1- ==== AuC14-+3e-                                       Eө =1.00 V[next]    因而,已溶金很易被复原,故矿石浸出时溶液中有必要饱满。水氯化法的最大长处是廉价,浸出速度快,用于化法的浸出剂首要是(湿)氯和氯盐。因为氯的活性很高,不存在金粒表面被钝化的问题。因而,在给定的条件下,金的浸出速度很快,一般只需浸出1-2h。这种办法更适于处理碳质金矿、经酸洗过的含金矿石、锑渣、含砷精矿或矿石等,而且从溶液中收回金很简单。    可是,水氯化法也存在严峻的局限性:当硫化矿浸出时,会有一部分或大部分MeS溶解,这使废液处理复杂化,因而,关于含S<0.5%的酸性矿石,用水氯化法或许是合适的,除此,水氯化法还存在Cl2对现场的损害以及设备复杂化的问题,可是跟着复合金属的使用,设备问题或许会方便的解决。    南非有一座大型水氯化法处理重选金精矿的实验工厂。所用流程是:精矿在800℃下氧化焙烧脱硫后,将焙砂在通的溶液中浸出,金的浸出率达99%。然后用SO2复原,从溶液中沉积金。用氯化溶液洗刷后的金粉,纯度达三个九。    工艺特色    实践流程是矿石磨至-200目占65%以上,矿浆浓度45%,温度27-38℃,以500t/d的给矿量参加4台串联的拌和槽,总的拌和时刻为20 h。氯化槽是衬胶的,外涂尿烷泡沫隔热层。通过分配管道送入前三个槽,第四个槽是储槽,以使氯化反响完结。密封槽的气体排至洗刷塔,该塔为一填料塔,有纯碱溶液循环通过,氯同纯碱反响生成次,再回来流程中同矿浆作用,的使用率超越99%。已用氯化法处理约60×104t矿石,当给矿含金8.71 g/t时,提取率为83.5%,每吨矿石耗费18 kg。    凭借氯化使难选冶矿石适于化法的这种预氧化处理,在美国至少有两个较大的金矿山选用。尽管如此,也还存在不同观念。如马塞恩在关于莫克金矿流程挑选的证明中以为,若选用进行预氧化处理,在后继的化作业中欲达较高的金提取率,等药剂耗费甚高(86.26 kg/t矿石、碳酸钠48.12 kg/t矿石,金化浸出率方可达84%),因而以为该矿预先氯化不是一种经济实用的办法。    漫金作用    水溶化作为预处理手法受到重视,并在固执矿石或精矿的处理上得到了工业使用。其间一例是卡林金矿选厂处理含碳难选矿石时选用的矿浆氧化法。卡林氧化矿石中存在活性炭及长链有机碳水化合物,难以用惯例化法处理,但发现含碳物质的有害影响可用矿浆中加氧化剂来消除,即可选用或使用就地电解含盐矿浆发生的次,将炭及有机碳水化合物氧化成CO或CO2。这种经氯化法预处理过的矿浆便可直接给入化回路。    水溶化法还可用于地下浸出,涅别拉以为这是从含金0.6-2.1g/t的贫矿中提金最经济的办法。美国专利也曾介绍,为进行地下浸出,对含金矿石疏松爆炸,然后让含氯、氧化剂和有机物质(钠叠氮化酯、羟或乙二胺)的溶液流入与金络合。开始研讨标明,金的提取率达80%-90%(浸出时刻三周),并证明含金低浓度溶液可用吸附、离子交换或电解等办法收回其间80%一-90%的金。工业上能否选用这种地下浸出法首要取决于地质条件。    涅别拉供给了用于地下浸出的氯化物溶液的三种配方:①HCl+0.1mol/L NaCl+Cl2;(2)Ca(OH)2+C12,③NaCl+0.05 mol/L Na2C03+Cl2,其间都是到达饱满的,并对三者的浸出作用作了比较。    化法提金在工业生产中现已得到实践使用。美国选用介质水溶化工艺成功地处理了碳质金矿石,于1980年在内华达州建成了碳质矿石处理工厂。Murchison联合矿藏公司用该工艺处理锑烧渣,金的收回率达98%以上。此外,对含金黄铁矿、砷黄铁矿选用化法处理,比化法和法浸出率高。在通过650℃氧化焙烧或许矿石浆化后于75-100℃通入空气氧化预处理后,矿石以液固比2:1浸出数小时,金的浸出率达92%以上。    因为氯化剂简单得到,报价廉价;生成的金氯化物简单别离,且易得到纯产品;避免了氯化作业对人体的损害,有利于环保。因而,化法提金工艺的开展前景非常宽广,在未来的金银提取领域中,必将占有重要位置。    总归,水溶化法适于处理较单一的含金质料或含碳金矿石,其长处是金浸出率较高,选用作氧化剂报价比低。美国矿业局曾用进行过中间工业性实验。该法的首要缺陷是许多杂质简单一起溶解而耗费药剂,并给后继提金进程带来困难,选用操控电位浸出法,可部分战胜这方面的缺陷。

水氯化法提金—电氯化法浸出工艺

2019-02-14 10:39:39

在水溶液中,金可与氯化合生成易溶性氯化金,由此提出了金矿石的氯化浸出法。金矿石氯化浸出剂是氧气。氯化浸出法的进一步开展是运用电解氯化钠溶液得到的氯浸出矿石中的金。运用这种电化学浸出办法从矿石中浸出金并由溶液中分出金的办法也称电氯化浸出法,简称电氯化法。    金矿石的电氯化浸出进程,多年来得到不断改进,其金的浸出速率比化法快,已进行了半工业实验,没有到达工业运用阶段。由于原子氯和对金的强氧化性和强络合才能,人们在处理难处理金矿石时,对电氯化法给予特别注意,经常在一些小设备中进行小规划加工处理。    1)电氯化法浸出金进程的一般原理    金矿石的电化学浸出进程在悬浮矿浆食盐溶液中通直流电进行,经过电解氯化钠溶液发作氯的氧化和络合作用,使金浸出,转入溶液。    在隔阂电解浸出槽中电解氯化钠溶液时,H+在阴极上放电分出气态氢,C1-在阳极上放电分出气态氯。在阳极上OH-也或许放电分出02。尽管OH-放电分出的氧的可逆电位[Eө(OH-)=+0.82 V,18℃NaCl溶液]比C1-放电可逆电位[Eө(Cl-)=-36 V]低,但其超电位数值大(见下表),实践分出电位比C1-高得多,在电流密度为1 000 A/m2下,Eө(OH-)=1.911 V,Ee(C1-)= 1.611 V。氧和氯在软石墨阳极上超电位电位/V离子电流密度/(A·m-2)102001000200050001mol/L KOH溶液Cl-——0.2510.2980.417饱满NaClOH-0.5250.9631.0911.1421.186     所以,电解中性氯化钠溶液时的首要反响为:    在铁板阴极上                                 2H20+2e- === H2↑+20H-    在石墨阳极上                                    2Cl- ==== Cl2↑+2e-    总反响式为:                              2H20+2C1- ==== C12↑+H2↑+20H-    进程发作的原子氯或分子氧对金都有强的氧化作用。氯溶解在食盐溶液中生成次氯酸,当溶液呈碱性时,则生成易分化的次氯酸盐。C10-的放电电位比C1-小得多,如下图所示,即便次氯酸盐浓度适当小,C10-与C1-也能一起放电。[next]                                  2ClO--2e- ==== 2Cl- + O2↑                                     2C1- - 2e- ==== Cl2↑    分出的氧也是一种强氧化剂。    金的标准电极电位为+1.50 V,在氢以上,意味着金的溶解只能在含氧溶液中进行,特别需求那些电极电位高的活性氧化剂,如次氯酸、次氯酸盐和Cl-(见下表)。金在碱金属氯化物中与氯离子生成氯化络合物,使金的标准电极电位变小,促进金浸出。含氯氧化剂和贵金属的氧化复原电位电极ClO-/Cl-HClO/Cl2(液)Au+/AuAu3+/AuCl2/Cl-Pt4+/Pt氧化复原电位/V1.7151.5941.581.51.3951.2电极Ir3+/IrPd2+/PdAg+/AgRu3+/RuRh3+/Rh 氧化复原电位/V1.150.980.80.490.81      在金矿石电化学浸出进程中,由于食盐电解进程中所耗费的气态氯和氧不断得到弥补,促进浸出反响敏捷进行。电氯化浸出时金的溶解进程也是一种分散进程,金的浸出速率受拌和强度和温度影响,一般,温度升高对金浸出有利,可是,当温度高于40℃今后,金浸出速率就明显下降。拌和强度过大,剧烈拌和会使氯渗透到阴极液,碱渗透到阳极液,或使分子氯很多蒸发,导致溶液中氧过量,构成矿石中的金部分钝化。[next]    2)电氯化法浸出金的运用实例    ①有隔阂电解槽的电氯化浸出。金矿石在装有隔阂的电解浸出槽中浸出。电解浸出槽是铁制的或木制的圆形槽,槽底和槽盖用石棉钢筋混凝土或生铁制作,槽内涂石油沥青或煤沥青。阴极室与阳极室用隔阂离隔。阴极是带孔铁质圆筒,外套隔阂。阳极是石墨板,依环形排列于底部与槽底绝缘。阳极室内装机械拌和器,转速120~150 r/min。经过充沛磨细的矿石与NaCl溶液混合后加到阳极室,运用不断拌和,使矿石颗粒坚持悬浮状。    电氯化浸出运用的矿石是磁黄铁矿型的金精矿,精矿所含的硫化物首要是磁黄铁矿,此外还有少数黄铁矿和硫砷铁矿。精矿的化学组分为:SiO2 3.44%,A1203 0.16%,CaO 7.92%,MgO 4.0%,Mn2O3 1.06%,CuS04 0.O1%,CuS 2.06%,Fe 38.96%,As0.14%,总S 31.88%,Au 52 g/t, Ag 98 g/t。精矿中银和铁,在电氯化浸出时进入溶液。溶液中的银发作堆积,并在金颗粒表面构成氯化银薄膜。铁以硫酸亚铁方式存在,硫酸亚铁将金的氯化物中的金复原成金属金,使金从溶液中堆积出来。据此拟定含金磁黄铁矿精矿的电氯化浸出工艺流程如下图所示。    磨细矿石浮选精矿粒度为74% -200目,用浓度为2.5 moVL的NaCl溶液混合制浆,并参加2%,矿浆液固比1.4:1。将该矿浆加到阳极室,2.5 moVL NaCl溶液加到阴极室,进行榜首段电氯化浸出.电氯化阳极电流密度为750 A/m2,容积电流密度为5500 A/m3,时刻为15 min。榜首段浸出后的精矿再磨细到91.5%-200目,在相同条件下进行第二段电氯化浸出。经过两段电氯化浸出金的金总浸出率为82.7%。用电氯化法处理每吨精矿需耗费3100 g NaCl,其电能耗费为45 kW·h。[next]    浸出进程中参加少数。对金颗粒表面的氯化银薄膜有溶解作用,使金浸出率得到进步。在榜首和第二阶段浸出之间,需对精矿再磨细,以损坏金颗粒表面的氯化银薄膜,进步金浸出率。硫酸亚铁的有害影响,可选用敏捷氧化的办法加以消除,也能够在阶段浸出间精矿再磨操作时用水冲刷除掉二价铁离子。    ②无隔阂电解槽的电氯化浸出。无隔阂电解浸出槽不存在矿泥阻塞问题。在无隔阂槽中运用电解氛化钠水溶液分出的原子氯,从矿石中浸出金,已进行了半工业规划实验。晏庄金矿是“铁帽型”含金氧化矿,以褐铁矿为主,金呈次显微状赋存在褐铁矿孔隙里,粒度为0.001~0.005mm,单个的为0.074~0.06 mm。矿石含金量9g/t。由于磨矿后细微的金粒进入矿泥中,故曾先后选用混-摇床、混-浮选、混-浮选-渗滤化等流程处理,金的收回率仅为63%左右。后在电氯化一树脂矿浆法实验中,金的收回率大大进步。这是由于矿石电氯化浸出时,金颗粒表面的铁、锰薄膜简单被损坏,可获得较高的金浸出率。    电氯化是经过电解碱金属氯化物(NaCl),使水溶液中放出活性氯将矿石中的金氧化生成AuC13,进而成为HAuC14及其复盐NaAuC14,并在水中离解成离子:                                HAuC14 —→ H++AuC14-                               NaAuC14 —→ Na++AuC14-                                AuC14- —→Au3++4C1-    生成的AuCl4-被阴离子交流树脂吸附,进程中离解生成的Au3+,有极少数堆积于阴极板上成阴极泥。向电解槽中参加,除为在电解进程中能分出一部分氯外,首要是用来避免氛化钠离解生成的氛被碱或水吸收而损耗活性氯。    半工业实验设备选用ф900 mm×1000 mm铁制元隔阂电解浸出槽。电解浸出槽内装有螺旋搅碎桨,螺旋桨直径为300 mm,转速为374 r/min,阳极为250 mm×700mm石墨板,每槽5块,沿槽的四周固定在拌和轴与槽壁之间,并与槽底绝缘。阴极为槽的内壁。阳极与阴极的间隔为200 mm。实验条件是:矿石粒度71.92%-200目,矿浆浓度22.25%,电流密度285 A/m2,槽电压13V,矿浆温度50℃。按质料配入氯化钠30 kg/t,20 kg/t制成矿浆,pH值为20再参加-16~+50意图717型湿树脂10 kg/t,在接连拌和下通电氯化和吸附8 h。经144 h的实验,所得的平均指标为:树脂含金量83.80 mg/g,尾液含金质量浓度为1.69 mg/L,除掉阴极上少数的阴极泥(含金6.26g/t)忽略不计,金的吸附收回率为99.10%。    为了调查含金硫化物矿(首要是黄铁矿)对电氯化的影响,还进行了含30%硫化物矿的混合矿样的实验,结果表明,在此条件下含金硫化物矿对金的浸出和吸附几乎没有影响。    选用筛选-筛分-摇床联合流程从矿浆中别离载金树脂获得了好的别离作用。载金树脂中的金用静电淋洗收回、静电淋洗在拌和珐琅桶内进行,拌和转速为252 r/min,螺旋桨直径70 mm。阴极为铅板,阳极为石墨板,南北极距离80 mm。金的淋洗剂由4%硫脉和2%制造。在槽电压2V和阴极电流密度400 A/m,条件下,运用7倍于载金树脂质量的淋洗剂,进行8h淋洗,金近于彻底淋洗。    金矿石的电氯化浸出作用遭到诸要素的影响。明显,影响金浸出的要素都与初生态氯的产值及运用程度有直接关系,氯产值高又能充沛运用,金的浸出作用就好。电氯化浸出作为一种强化浸出办法,对含少数硫化物的金矿加工是可行的,即便矿石中硫化物含量高达30%,金浸出率仍可到达88%。    金的电氯化浸出与金在矿石中的赋存状况、矿石化学成分以及矿藏成分有关,它们对电氯化进程的影响很大。合适电氯化浸出的矿石有:金呈游离态而无氯的吸附剂的石英矿石;金粒表面的铁、锰薄膜易氧化进入溶液的铁帽型氧化矿石;黄铁矿和其他硫化物含量少的金矿石;磁黄铁矿、黄铁矿精矿;含金方铅矿、闪锌矿、黄铁矿、毒砂混合矿石或精矿以及含铜金矿石等。不合适电氯化浸出的金矿石有:含很多CaC03或MgCO3的碳酸盐矿石,碳酸盐匆溶解抓相互作用增大氯的耗费,并发作很多细泥阻塞隔阂的孔隙;高砷金矿和高锑金矿,砷化物和锑化物在电氯化进程中发作二次反响,耗费溶解的氯;含碲和硒的金矿,某些碲化物和硒化物对氯化金发作复原作用,阻碍金的电氯化浸出;含石墨和炭的金矿石,碳质物对氯化金发作抢先吸附,大大削减金的有用浸出。

一水硬铝石生产砂状氧化铝工艺技术研究(两项合并)

2019-01-16 11:51:40

具有自主知识产权的一水硬铝石拜耳法种分、烧结法碳分生产砂状氧化铝的分解工艺技术,总体技术达到了国际领先水平。其攻关的成果和技术已在全中铝范围内进行产业化推广和应用。   “连续碳分生产砂状氧化铝”通过对精液降温、添加晶种、分解过程通气速度调整、分解时间、产品旋流分级等关键技术的研究,开发出“精液降温—控制分解梯度—添加循环晶种”的连续碳分生产砂状氧化铝新工艺流程,该流程工艺简单、流程稳定、分解过程易于控制,易于实现全面自动化,可稳定得到合格的砂状氧化铝产品。   “拜耳法种分砂状氧化铝”通过对种分影响因素的系统研究,成功开发出“高温附聚-中间降温-低温长大-中等固含”生产工艺路线,在以一水硬铝石为原料的氧化铝拜耳法生产工艺中可稳定生产出砂状氧化铝。同时开发出一整套产品粒度、强度和系统粒度稳定平衡的调控技术,在半工业试验和工业试验中应用此技术所得到的拜耳法种分各项技术指标和氧化铝产品全部质量指标均达到了攻关目标,标志着我国一水硬铝石矿拜耳法生产氧化铝产品的质量已提高到砂状氧化铝的新水平。   通过《砂状氧化铝分解技术》研究,产品氧化铝的各项指标显著改善,大幅度减少气态悬浮炉焙烧时的破损、改善电解使用性能,其连续碳分和拜耳法种分工艺具有可靠性和先进性,而且综合经济效益较好。该技术在不需对我国现有的拜耳—烧结混联联合法和拜耳法法氧化铝厂种分生产系统进行大的改造,即可实现生产砂状氧化铝,应用前景广阔。目前已在中铝山西分公司成功应用。

钴的相关知识(一)

2019-03-14 10:38:21

钴,门捷列夫元素周期表第八族金属化学元素,钴的拉丁语称号Cobaltum(Co),是一种淡灰色的过渡性金属,具有强磁性(居里点1121°С)。质硬而脆,加热到1150℃时磁性消失。钴的首要物理、化学参数与铁、镍挨近,属铁族元素。钴的化合价为2+和3+。在常温气氛中化学安稳性好。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细金属钴粉在空气中能自燃生成氧化钴。钴矿藏稀疏,有80~90%的钴采自镍矿石,且首要用于制备钴合金(磁性合金,热强合金,超硬质合金,耐蚀合金等)。放射性同位素60Co在医学与技术范畴可作为γ射线源运用。钴是维生素B12的首要成份,对植物与动物的生命非常重要。根本性质钴(Co)原子序数27外观淡灰色金属地壳中含量0.0023 %原子功用原子量 (摩尔量)58.9332原子质量单位(g/mol)原子半径1.25 Å电离能(一次电子)758.1 (7.86)kJ/mol(eV)电子摆放[Ar] 3d7 4s2化学特点共价半径1.16 Å离子半径(+3e) 0.63 (+2e)0.72Å负电性1.88(鲍度)电极电位0氧化态3, 2, 0, -1物理特点密度8.9g/cm3比热0.456 J/(K·mol)传热性100 W/(m·K)熔化温度1768 K(1495 °C)熔化热15.48кJ/mоl欢腾温度3200 K(2927 °C)汽化热389.1кJ/mоl导热系数100 W/(m·K)导电率17.2×106/mΩ克分子体积6.7 сm³/mоl其它晶格结构六角形晶格期间2.510 Å杰拜温度385.00 K 钴的发现与命名 在15世纪,人们在萨克森(民主德国)富银矿石中发现了类似于钢的亮光的矿石,呈灰白色晶体,但并没有从中熔炼出金属,原因是银矿或铜矿所含的这种矿石杂质影响了金属的熔炼。很显然,这是因为含砷的钴矿藏(辉钴矿CoAsS,或许硫化方钴矿,斜方砷钴矿或许砷钴矿)所造成的。 焙烧含砷钴矿藏时会蒸发出有毒的氧化砷,矿工们便将含这种矿藏的矿石称之为“科博利特”山神(德国神话中的精灵),古代的挪威人以为熔炼银时发作的熔炼工中毒就是因为这种“恶魔”在耍狡计。恶魔的姓名大约来自希腊的“科博洛斯”—意指幻影或烟雾,希腊人是将这个词语用来描述那些好扯谎的人。    1735年,瑞典矿藏学家布兰特(G.Brandt)从这种矿藏中别离出一种此前并不为人们熟知的金属,他根据“科博利特”谐音便将其称之为钴。他一起还查明,含钴的化合物能够把玻璃涂成兰色,其实这种特点早在古代的亚述国和巴比伦国己被选用。1780年,瑞典化学家伯格曼(T.Bergman)断定钴为元素。 资源情况 钴在地球上散布广泛,但含量很低,其在地壳中含量为0.0023%(质量),自然界中钴的赋存状况首要有3种:以独立钴矿藏方式存在、以类质同像或包裹体方式存在和以吸附方式存在,其间以第2种方式最遍及。到现在为止,已发现钴矿藏和含钴矿藏百余种,首要为硫化物、硒化物、砷化物、硫砷化物、碳酸盐、硫酸盐和盐等,首要的钴矿石矿藏有硫钴矿、硫铜钴矿、含钴黄铁矿、方钴矿、斜方砷钴矿、辉砷钴矿和钴华等。我国的钴资源紧缺,已探明钴金属估有储量约数十万吨。散布于全国24个省(区)。国外钴资源丰富,储量约为520万吨,但绝大部分产在风化型红土镍矿、岩浆型硫化铜镍矿和堆积型砂岩铜矿之中,且95%以上会集散布在民主刚果、澳大利亚、古巴、赞比亚、新喀里多尼亚和俄罗斯等少量国家。 钴的制备 钴矿藏的赋存状况杂乱,矿石档次低,所以提取办法许多并且工艺杂乱,收回率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,最终得到钴化合物或金属钴。 在我国,硫化铜镍矿是收回钴的重要资源。金川集团公司的钴收回包含从镍电解体系净化钴渣中出产电解钴和氧化钴,从转炉渣提钴流程产出的富钴冰铜中出产氧化钴两部分。现在,金川集团公司的钴产值已占全国总产值的70%以上,成为我国钴出产的重要基地。 用处 钴作为重要的战略金属,因为其具有优秀的物理、化学和机械功用,是出产耐高温、耐腐蚀、高强度和强磁性等材料的重要质料,因此,在全球范围内运用非常广泛。 纯钴的运用很少,但钴是合金与特殊钢的首要增加元素。例如,固体磁性材料就是由稀土元素(首要是钐和铒)与钴结合而成,是一种具有强磁场的永久磁铁。相同,热强合金、超硬质耐蚀合金中也参加有钴。在许多情况下,钴一般用于电镀,因为钴镀层较之铬、镍镀层的耐弱酸性要安稳的多。 钴基合金是钴和铬、钨、铁、镍组中的一种或几种制成的合金的总称。含一定量钴的刀具钢能够显著地进步钢的耐磨性和切削功用。含钴50%以上的司太立特硬质合金即便加热到1000℃也不会失掉其原有的硬度,现在这种硬质合金已成为含金切削东西和铝间用的最重要材料。在这种材料中,钴将合金组成中其它金属碳化物晶粒结合在一起,使合金具更高的耐性,并削减对冲击的灵敏功用,这种合金熔焊在零件表面,可使零件的寿数进步3-7倍。航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金,但两种合金的“强度机制”不同。含钛和铝的镍基合金强度高是因为构成组成为NiAl(Ti)的相强化剂,当工作温度高时,相强化剂颗粒就转入固溶体,这时合金很快失掉强度。钴基合金的耐热性是因为构成了难熔的碳化物,这些碳化物不易转为固体溶体,分散活动性小,在温度在1038℃以上时,钴基合金的优越性就显现无遗。这关于制作高效率的高温发动机,钴基合金就适可而止。 在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。核反应堆供热作使热介质的涡轮发电机能够不检修而接连工作一年以上。据报导美国实验用的发电机的锅炉就是用钴合金制作的。钴是磁化一次就能坚持磁性的少量金属之一。在热效果下,失掉磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力进步2.5倍。在振荡下,一般磁性钢失掉差不多1/3的磁性,而钴钢仅失掉2%~3.5%的磁性。因此钴在磁性材料上的优势就很显着。     氧化钴首要用于出产硬质合金及陶珐琅颜釉料等;硫酸钴首要用于陶瓷、颜釉料、油漆催干剂和电镀等职业。氯化钴首要用于制作气压计、比重计和用于陶瓷业。酸钴首要用于油漆及油墨的催干剂、着色剂、橡胶增粘剂及玻璃钢职业。异痛苦钴首要用于油漆、玻璃钢及橡胶子午轮胎等方面。 钴的最大运用范畴是二次电池。钴在电池范畴运用有较大增加。首要是锂离子电池开展的成果。在当今国际信息与通信产业、以及环保和节能范畴中,锂离子电池是最新一代的电池,它的比能量、充放电寿数均高于Ni/MH电池。锂二次电池的研讨开发竞赛非常激烈,国际发达国家都把组成电化学功用优越与安全功用杰出的锂离子二次电池用正极材料作为研讨开发的要点。开发的正极材料有钴酸锂或氧化锂镍钴或氧化锂钴锰。氧化亚钴运用于镍氢电池。 因为钴的优秀性质,在制作耐高温、耐腐蚀合金方面很难被其他金属代替,因此钴在超级合金范畴用处依然很坚硬,现在超级合金是钴的第二大运用范畴。 钴在高温下、低温下与许多金属有杰出的湿润性,因此钴粉被广泛的用做黏结剂,简直成为金刚石东西、硬质合金不行代替的胎体黏结剂。我国硬质合金产值居国际第一,金刚石东西的产值也居国际前列。 钴基合金粉末广泛用于热喷涂,用于内燃机排气阀密封面、阀座,舰艇用大型轴承内、外环,大型水轮机转子叶片,榨油机推进器等的喷焊或喷涂。用于各种螺旋推进器部件、密练机部件、泵叶等的喷焊或喷涂。 磁性材料是重要的功用材料,在电子工业和其他高科技范畴起着非常重要的效果。钴在磁性材料范畴运用散布如下:70%用于Alnico 永磁合金,20%用于Smco合金,10%用于其他稀土永磁材料。 钴催化剂首要用于聚酯化纤材料的出产上。钛酸钴是首要的原油脱硫催化剂。Co-Mo-N 和Ni-Mo-N合金是组成催化剂。磺化酞菁钴、聚酞菁钴都是脱除累质油中硫醇硫的高效催化剂。氧化钴可代替铂铑作为出产硝酸的催化剂,可大起伏下降催化剂费用。 环烷酸钴和异痛苦钴用作催干剂,比其它同类产品催干速度快,广泛运用于油漆、油墨职业中,也用作不饱和树脂的优秀促进剂。 固体环烷酸钴、硬脂酸钴、硼酰化钴和新癸酸钴广泛运用于钢丝子午胎、输送带和钢丝织造胶管中,不只粘合强度高,并且具有耐热、耐温文化学缓蚀的特征。 高纯钴靶材用于半导体物理气相堆积进程。 据国内有关报导讲,钴在蓄电池职业、金刚石东西职业和催化剂职业的运用还将进一步扩展,从而对金属钴的需求呈上升趋势。

水氯化法提金—氯化铁溶液浸出工艺

2019-02-14 10:39:39

桂林冶金地质学院分析了FeC13溶液浸出金的热力学。浸出金是氧化复原反响进程。因为反响:                                    Fe3+ + e-====Fe2+的标准复原电极电位E1ө =0.771 V。而                                   Au3+ + 3e- ==== Au的E2ө=1.420 V。因而,用Fe3+不能将Au氧化为Au3+。假如溶液中存在C1-,C1-可与Au3+络合生成AuC14-:                                 AuCl4-+3e- ==== Au+4C1-E3ө=0.994 V,因而在氯离子存在的条件下,Fe3+将Au氧化为AuC14-就较简单了。经过操控系统中参与反响有关物质的浓度,就能使浸出金得以完结,浸出反响为:                              Au+3Fe3++40- ==== AuC14-+3Fe2+    该反响对应的原电池电动势为:                                              RT         α(AuC14-)·  α3(Fe3+)         E = Eө(Fe3+/Fe2+)-Eө(AuC14-/Au)- ——In ———————————                                                                                3F            α4(Cl-)·α3(Fe3+)要使该反响从左向右自发进行,E有必要大于零。若取a (AuC14-)=10-2, a (Cl-)=10,不难算出,当a(Fe 3+)/a(Fe2+)>101.80时,E大于零。    在实际操作进程中这些条件是不难满意的,比方,在298 K下,当参加FeCl3使[Fe3+]=3 mol/L,调理[Cl-]=10 mol/L(FeC13电离C1-,浓度缺乏部分参加HCl或NaCl )。溶液中AuC14-浓度可达10-2.28mol/L。在整个反响进程中[Fe3+ ]/「Fe2+]>102.80。这样的成果关于工业生产是有价值的。热力学分析标明,只需操控必定的热力学条件,坚持满足的Fe3+和C1-浓度,在常温(25℃)下,pH为1.0时,即可用FeCl3溶液来浸出金。    相同,某些金属(Fe, Sn, Pb, Cu, Ag)硫化物、砷化物均可与反响,耗费FeC13,一起生成的S附在矿粒表面,构成一层硫膜,阻止浸出反响。再者,有机物质和粘土的存在对浸出也是晦气的。    近年来,美国呈现了200t/d规划的堆浸场,其工艺办法十分简洁,只需在地上挖一些平行的槽坑,堆一层矿石,喷一层浸出溶液,再堆一层矿石,喷一层浸出溶液,如此循环往复,直至堆淋作业完结,最终从槽中取出富液并从中收回金。这种办法适于处理低档次的金矿,但因为矿粉空隙小,渗透性差,因而金的浸出率不高。    别的,湖南有色金属研究所对龙山砷锑金矿渣焙砂选用FeCl3浸出,金浸出率达98%-99%。电堆积率为98% -99%,金总的收回率达96.54%。与化法比较,浸出率高出4%-6%,总收回率高出5.34%,浸渣中的含金量也从3-5g/t降至0.75-1.5g/t。

水氯化法提金—高温氯化挥发法浸出工艺

2019-02-14 10:39:39

早在1851年,普拉特内提出运用使金转变成氯化金,然后再用水提取氯化金。这一办法后来在西里亚被选用。艾伦首要认识到氯化金的蒸发效果。氯化金的蒸发问题曾引发一系列研讨,1964年由谢弗以及许多苏联学者提出有价值的研讨,并以1970年末黑格和希尔在科罗拉多矿业学院所作的研讨工作到达高潮。美国矿务局最近依据艾斯尔、海南和费希尔等人所做的金矿石氯化的实验,在约翰·黑格的论文基础上提出了金的各种氯化物、它们的安稳区及生成这些氯化物的最新的热力学数据。本节不再重复这些推导,而是介绍斯图尔特·克罗斯德尔对霍姆斯特克型的金矿石列出的工艺流程和焙烧、氯化器以及冷凝体系的规划;以及苏联对4种不同精矿的氯化蒸发实验成果及我国辽宁冶金研讨所的扩展实验。    1)霍姆斯特克金矿的氯化蒸发流程    氯化工艺流程如下图所示。破碎后的矿石给入流态化焙烧炉中,发生的SO2气体送往触摸法制硫酸车间。焙烧矿进入两段式氯化器中,并往氯化器中通入循环运用的。从氯化器放出的气体进入冷凝室,在那里与氯化钠触摸和反响,生成盐-金氯化物的熔体(已从气流中提取了金),再进一步处理,以便收回金。及失效了的物质经冷却和用硫酸洗刷后送到紧缩机中再加压。从回来的气流中取出一部分进行液化,以便使能够蒸馏并除掉失效的物质    ①焙烧炉。为阐明含中等数量黄铁矿的硅质含金矿石氯化进程,已画出了包含操作温度和流速在内的简略的工艺流程,如图所示,在铁的含量为5%时,焙烧进程中不需要再弥补碳,就能发生满足的热量完成矿石的焙烧。焙烧进程中终究运用氧气仍是空气,或许两者结合运用,经实验决议仍是运用氧气,因为这时尽管会增加动力耗费和出资费用,但可缩小焙烧炉的体积,并可得到SO2浓度更高的气体送往硫酸车间,因而就可抵消制氧所需的那部分附加费用。[next]    焙烧的规划应依据终究是运用氧气仍是空气而决议,一同还要考虑到最佳的焙烧温度。为了便利起见,假定焙烧温度627℃是比较适宜和可行的,但在更低的温度(下降100℃)也是彻底或许的。在焙烧温度下降,也就是在527℃的反响器中焙烧时,或许会使给料冷却和彻底裸壳(bareshell),但仍处于热平衡状况。    为加速氯与金的反响,有必要进步氯化器的操作压力,但焙烧炉的压力还要高于氯化器的操作压力。单就为触摸法制硫酸供给S02这一点来说,也期望进步氯化器的压力。    ②氯化器。这种抓化器肯定要规划成二段或三段式的反响器,而且这几段或许都设置在同一个炉壳内。最适宜的操作温度约为350℃。尽管活动会使反响器冷却,而且不会有很多的反响热发生,但仍有必要对焙烧后的矿石给料进行冷却。因为金-铁氯化物的络合物会堆集在炉壁上,并使很多的金留在炉子里(这些金只能在每年或两年清洗一次反响器时才干收回),因而氯化反响器应尽或许规划成有耐火材料的内衬,以避免它在器壁处堆集金的络合物。因为这些反响的条件比较适度,所以不会呈现耐火材料的腐蚀问题。    为考虑到热量和质量的平衡问题,选用的流速为61 cm/s,这也就是为使固体物料能到达很好的搅动的最低的流态化速度,也是最低的安稳态气流。的脉动式活动也是能够运用的,它能削减流进反响器和整个冷凝阶段的量,别的,规划自身就不计划使一切的氧气都得到运用,而是经过的再循环效果使之坚持较高的压力,以保证能以很快的反响速度生成金的络合物。    实验证明,在没有任何促进剂存鄙人进行的金矿直接氯化,-200目矿样最大能以颗粒数每分钟3.45%的速率氯酸盐化。在有存在(它能使氯化反响速度至少进步25倍)并有必定的氯压(它可使氯化反响速度进步13.5-18倍)的条件下进行操作,反响动力学似乎是很快。估计霍姆斯特克的金矿破碎到-20目,在氯化器中逗留1h就可使金彻底转变为氯化金。但为了保证在一段氯化器中能到达很高的转化率,该反响床有必要在适当低的均匀床浓度下操作。选用两段氯化时,榜首段可在较高的金浓度下操作,最终的精加工阶段在十分低的金浓度下操作,这样就可使金到达很高的总转化率。    这一流程标明,往每段氯化器中增加少数的铁粉,是很有必要的。因为平衡核算标明,在氯化器的反响温度下,光靠氧化铁与的反响还不能供给必要数量的FeC13络合物。    ③冷凝体系。在氯化器中形成了金的络合物今后,蒸气状的络合物就以它在氧气中的很低浓度的方式从反响器中逸出。在金的络合物冷凝曾经,从挨近氯化器温度的气流中先经旋流集尘器除尘,然后使这些气体与含有熔体的氯化钠触摸,以使蒸发性的金-铁络合物能转变成四氯铁酸钠适当的NaAuC14。    NaAuC14络盐的键能强度足以使金的氯化物从气相的AuFeCl6络合物中分离出来,而且在低于150℃时,以含有这种络合物的液态熔体的方式存在。    这个反响和气体的冷却进程是在直径0.46 m高30m的水平或立式的高速烟道中进行的,必要时,这种烟道能曲折180o。这种液态盐的络合物可用旋流器在烟道结尾搜集,而气体(温度约为150℃)经过与洗刷旋流器的硫酸触摸而进一步冷却到80℃。然后将氧气在轴流式紧缩机中紧缩,并在80℃时回来氯化阶段。为到达高度紧缩和蒸馏,需放出一部分气体,用以避免失效了的气体的堆集。这种金络合物与盐的反响,虽或许会放出很多的热,但就到达热平衡来说仍是太小,所以热的传递就成为重要因素。[next]    能够坚信,用盐使气相的含金氯化物络合的办法是可完成的,并能供给一种比活性炭吸附更有用的办法,到达从氯化器逸出的气流中收回金。运用低温氯化法处理金、银矿石,以使矿石中的金和银蒸发,到达提金和银的意图。    2)氯化蒸发法从难溶的金精矿中收回金    氯化蒸发法是将精矿与氯化剂一同加热,使金、银、铜、铅、锌等金属氯化生成具有蒸发性的物质提高并捕集于烟尘中,然后经过湿法冶金从烟尘中分步收回这些金属。    氯化剂NaCl或CaCl2的用量一般为精矿质量的10%~15%。当质料为硫化物精矿时,应预先进行不彻底氧化焙烧,使焙砂中残留3%~5%的硫,以便于氯化进程中发生一部分氯化催化剂效果的S2Cl2,使精矿能在1 000℃下氯化蒸发,但精矿不含硫时,氯化蒸发温度有必要不低于1150℃。此刻氯化剂的用量可削减到精矿质量的5%。精矿常与质量分数为10%~15% NaCl一同加水于圆盘制球机中制球,经150~200℃烘干后筛去粉末,再于竖式炉中进行氯化蒸发。当运用的物料为粉料(不制球)时,可选用回转窑进行氯化蒸发。苏联4种难溶金精矿焙砂的氯化蒸发实验成果见下表。 难溶金精矿焙砂的化蒸发实验条件及目标精矿特性氯化剂用量/%氯化温度/℃氯化时刻/h渣含金/(g·t-1)金收回率/%金与硫化物严密共生,前含很多碳5115030.8~396~99金与砷黄铁矿共生5115020.8~396~99金与黄铁矿共生10115030.199.7含铜品10115030.499.4     我国曾对某矿的浮金精矿进行了高温氯化蒸发扩展实验。金精矿组分:Cu 0.20%,Pb 0.29%,Zn 0.29 %,Fe 32.00%,S 30.96%,Si02 26.30%,CaO 0.48%,MgO 0.49%,A1203 0.89%,Au 76.38 g/t,Ag 41.83 g/t。因为精矿含硫高,故先经欢腾焙烧脱硫。焙砂经磨矿后和70.6%140~180目烟尘兼并,于圆盘制粒机上喷洒相对密度为1.29~1.30的氯化钙液,制成直径10~12 mm的球粒。经竖式枯燥炉枯燥至含水1%左右,此刻球粒含氯化钙8%~10%,抗压强度为10~15kg/t,经振动筛去粉料后,送回转窑进行氯化焙烧。    实验用的回转窑生产能力为0.98 t/(m3·d),窑体倾斜度1.85%,转速1.42 r/min,矿球在窑内的充填系数10.3%,逗留时刻80 min 。加热用柴油,每吨矿球耗油250~300 kg。窑内高温区(氯化蒸发区)温度1040~1080℃,烟气含5%~9%氧,烟气排出速度1.5~2 m/s。经氯化蒸发焙烧后,矿球失重率10%左右,抗压强度达31 ~ 95 kg/t,所含的铁和杂质均契合炼铁要求,可直接入高炉熔炼生铁。收尘运用沉降斗、冲击洗刷器、内喷式文氏管和湿式电收尘器等组成的湿式快速收尘体系。    氯化蒸发烟尘中的金悉数呈金属状况,将其于磁球磨机中参加液,并向液中参加漂和硫酸,使其分化放出活性氯来氯化金:[next]                                   2Au+Cl2 —→2AuCl                                   AuCl+Cl-—→AuC12                                 AuC12-+C12 —→ AuC14-     其总反响式为:                              2Au+3Cl2+2HCl —→2HAuCl4    因为烟法中含金较多(12 kg/t),故选用两次浸出。浸出前先将烟尘磨碎至-0.15mm(100目)。一次浸出条件为:固液比1:2,参加10%、5%漂、4%硫酸,浸出时刻4h,金的浸出率可达96.70 %。二次浸出条件为:固液比1:1.5,参加10%、3%漂、4%硫酸,浸出时刻4h,可使剩余金的79.80%进入溶液。两次浸出金的总浸出率达99%以上,浸出渣含金小于100g/t。    二次浸出渣用质量分数为2%洗刷两次,一次洗液回来作二次浸出用,二次洗液回来作一次洗刷用。洗刷渣过滤后送收回银、铅。二次氯化浸出液回来作一次浸出用,以便于取得富含金的浸出液。    一次浸出的富金溶液,在0.7 moV/L浓度下加钠复原金:                      2AuCl3+3Na2S03+3H20 ==== 2Au↓+6HC1+3Na2SO4    钠的用量为理论量的1.2~1.8倍,一般按每克金参加1.5 g。金的复原率达99.9%,液中含金的质量浓度在0.01g/L以下。复原的金粒经过滤后,用质量分数为1%的洗刷两次,再用水洗刷两次,取得的金纯度大于98.5%,然后分别用氯化铵液和稀硝酸处理除掉银、铅等杂质,金的纯度可进步到99.7%~99.8%。    浸出金的渣,用pH为1的酸性食盐水洗刷后送去收回其他金属。

转炉渣提钴(一)

2019-03-05 09:04:34

金川公司转炉渣提钴的流程见图1。由图可见,该工艺是由转炉渣电炉贫化、钴锍缓冷选矿、钴合金加压氧化酸浸和浸出液萃取沉积提钴四道工序组成。    (一)转炉渣电炉贫化    转炉渣中的钴74%以硅酸盐方式存在,19%在铁酸盐中。因而转炉渣处理选用电炉碳复原法使钴从硅酸盐和铁酸盐复原出来,复原气氛下钴易于被硫化,为使钴收回更彻底,加复原剂之后再加黄铁矿等硫化剂。使生成钴镍合金和金属硫化物组成的钴锍。钴和镍散布率为:在钴合金平分别为90%和96%,在钴锍中8%和3%,在氧化物中只要1%和2%。电炉贫化的成果,铁也有1/3以上进入金属相。首要化学反响是: [next]     电炉贫化的首要技能条件与目标为:焦率3%,硫化剂20%,炉温1300-1450℃,贫化时刻3-4h,产出钴锍含钴1.62%,弃渣含钴    第二段酸浸时,溶液中的Fe2+被氧化成Fe3+并水解沉积,一起释放出H2SO4,有利钴的溶出。加压浸出7h,温度150℃,浸出釜内压力1.5MPa。浸出液成分为(g/L):Co 14.4,Ni 80,Cu 5.3,Fe 0.29,H2SO420。    (四)浸出液净化、沉积与钴焚烧    首要加硫黄粉通SO2气体从溶液平别离出铜,然后用P204萃取除杂质,再用P507萃取别离镍钴,含钴有机相用反萃取,得到氯化钴溶液。[next]    氯化钴溶液参加草酸铵,使钴生成草酸钴沉积:                    COCl2+(NH4)2C2O4====COC2O4↓+2NH4Cl    草酸钴在450℃下煅烧分化,得到产品氧化钴:                            4CoC2O4+3O2====2Co2O3+8CO2    产品氧化钴粒度<0.25mm,松装密度0.48g/cm3,含Co>72%,N<0.5%,Cu 富钴铳物相组成/%元素合金相散布率硫化物相散布氧化物散布算计Co3.3293.63.13100Ni7.0192.30.71100Cu0.3599.60.07100Fe4.8765.329.8100     (1)富钴梳加压浸出富钴梳加压浸出根本反响是:

废盐酸浸出菱锰矿制备四水氯化锰

2019-02-25 09:35:32

贵州遵义钛厂是我国最大的海绵钛全流程大型冶炼厂,是国内名列前茅的海绵钛出产大厂。在冶炼进程中有很多发作,为了削减环境污染,运用水洗除氯,这样就会发作很多的废,这种废酸浓度大约为20%,难以处理,并且由于废酸中含有很多杂质,所以对其收回使用也有必定的困难。燃眉之急是怎样处理钛厂废。贵州作为我国的矿产资源大省之一,其锰矿的储量居于全国第三位。贵州省的锰矿资源首要散布在遵义、松桃两区域。跟着近年严峻的无序挖掘,导致锰矿资源档次逐渐下降。这种中低档次的菱锰矿作为冶金、化工等职业的出产质料,很难对其进行开发使用。由于贵州省大部分锰矿资源具有贫、细、杂的特色,所以选矿也有必定的困难,对遵义、松桃两地的中低档次锰矿资源的综合使用一直是一个冶金化工等职业科研人员比较重视的问题。因而,本文作者提出用钛厂废浸出遵义区域中低档次菱锰矿制备四水的试验计划,选用单要素的研讨办法,别离调查浸出温度、浸出时刻、液固比、酸过量系数对锰浸出率的影响。 一、试验 (一)原理菱锰矿与浸出反响首要是菱锰矿中的碳酸锰与发作反响的进程,并且菱锰矿中的Fe2O3、FeO、CaO、MgO等成分也均能与反响而溶解到溶液中,其首要反响方程如下:MnCO3+2HCl(1)=MnCl2+H2O+CO2 △G@=-100.661KJ/mol) 核算可得上述反响的吉布斯自由能△G MaterialW(Mn)/% W(Fe2+)/% W(Fe)/% Rhodochrosite 19 5.6 10 Psilomelane massive 28 - -Manganese dioxide 42 - - 三)办法与工艺流程通过拌和浸出的方法,行将和硫酸渣按必定的液固比配成浸出液在加热的条件下进行,然后进行过滤净化得到四水产品,其工艺流程如图1所示。图1 废酸浸出菱锰矿制取四水的工艺流程 二、成果与分析 挑选浸出温度70、80、90和95℃;浸出时刻40、60、80和100min;反响液固比为2∶1,2.5∶1,3∶1;低浓度过量系数为1、1.3、1.5等几组试验别离进行单要素试验研讨。 (一)浸出温度对铁浸出率的影响 别离组织反响温度为70、80、90和95℃4组试验,浸出试验条件为菱锰矿200g,硬锰矿60g,240mL,液固比为2.5∶1,浸出时刻60min,反响进程PH值0.5~1.0,反响结尾pH值4.0~5.0。图2 浸出反响温度对锰浸出率的影响        图2所示为浸出反响温度对锰浸出率的影响。从图2能够看出,跟着浸出温度的升高,锰的浸出率会相应增高。可是温度过高对进步锰的浸出作用并不显着,相反还添加了投入本钱。因而,挑选80℃作为试验浸出温度较好。 (二)浸出反响时刻对锰浸出率的影响 别离组织反响时刻为40、60、80和100min4组试验,浸出试验条件为菱锰矿200g,硬锰矿60g,250mL,液固比2.5∶1,浸出反响温度80℃,反响进程pH值0.5~1.0,反响结尾pH值4.0~5.0。图3 浸出反响时刻对锰浸出率的影响 图3所示为浸出反响时刻对锰浸出率的影响。从图3能够看出,跟着浸出时刻的添加,锰的浸出率会相应增高。浸出时刻从40min添加到60min,浸出率进步了6%,再进步到80min,浸出率又进步了0.5%。因而,酸浸锰矿浸出时刻越长,锰的浸出作用越好。可是浸出时刻到达60min今后,浸出率的增量显着变小,考虑到60min后延伸浸出时刻会增大本钱并且作用也不很显着,所以浸出时刻挑选60min较好。 (三)浸出反响液固比对锰浸出率的影响别离组织反响液固比为2∶1、2.5∶1、3∶1的3组试验,浸出试验条件为菱锰矿200g,硬锰矿60g,250mL,浸出反响时刻60min,浸出反响温度80℃,反响进程PH值0.5~1.0,反响结尾PH值4.0~5.0。图4 浸出反响液固比对锰浸出率的影响 图4所示为浸出反响液固比对锰浸出率的影响。由图4能够看出,当反响液固比为2.5∶1时反响的浸出率最佳。因而,在反响系统中反响液固比为2.5∶1较好。 (五)废酸过量系数对锰浸出率的影响别离组织酸过量系数为1、1.3、1.5的3组试验,浸出试验条件为菱锰矿100g,硬锰矿40g,130mL,浸出反响时刻60min,浸出反响温度80℃,液固比2.5∶1,反响进程PH值0.5~1.0,反响结尾pH值4.0~5.0。图5 废酸过量系数对锰浸出率的影响 图5所示为废酸过量系数对锰浸出率的影响。从图5能够看出,当的过量系数为1.3(运用量为170mL)时,锰的一次浸出率最好,并优于其它的试验条件。因而,挑选酸的过量系数为1.3较好。但一起也能够看到,废酸运用量关于锰浸出率的影响并不太大,所以,假如结合实际需要也能够恰当挑选较小的过量系数。 (五)成果分析通过对4个首要要素进行单要素分析能够看出,针对前2个要素,跟着反响时刻的延伸,进步反响温度能够很好地进步产品的浸出率,可是当反响时刻到达60min,反响温度到达80℃今后,锰的浸出率不再有显着的改变,为了下降出产本钱,故挑选这2个参数作为最佳反响条件。从液固比和废酸过量系数2个参数能够看出,当液固比为2.5∶1,废酸过量系数为1.3倍时,锰浸出率到达极大值,故挑选这2个参数为最佳反响条件。依据探索性试验与单要素试验得到的最佳工艺条件为依据,咱们又进行了三要素三水平的正交试验,固定酸过量系数为1.3,得到了与单要素试验类似的最佳工艺条件:浸出反响时刻60min、浸出反响温度80℃、反响液固比2.5∶1。依据单要素分析可知液固比对锰浸出率的影响最大,反响温度次之,反响时刻对锰浸出率的影响最小。 (六)最佳工艺条件试验 在断定了浸出反响的最佳工艺条件之后,在固定废酸过量系数为1.3的条件下,又组织了选用此工艺参数的试验,成果如表2所列。 表2 最佳工艺条件试验成果从表2中能够看出,在相同的试验条件下由最佳工艺条件得到的锰的一次浸出率要显着优于各单要素试验所得成果。 (七)产品四水的分析将试验所得到的浸出液进行浓缩后分两步别离参加净化剂除掉里边的钙、镁离予与各种重金属离子,然后对除杂后的浸出液进行过滤、浓缩结晶,结晶后的产品经分析,质量能够到达工业级四水一等品的职业标准HG/T3816-2006,产品品质合格。 三、定论            (一)通过浸出反响的单要素试验,断定了该工艺的最佳反响条件,所得浸出液通过净化、除杂、浓缩、结晶所得产品质量能够到达现行的工业级四水的职业标准。(二)该工艺很好地处理了遵义钛业的废酸处理问题以及对遵义区域中低档次锰矿的资源使用问题,很好地完成了资源的再生使用问题,具有较高的经济价值。(三)该工艺流程简略、操作便利、出资少、效益高,易于完成工业化,有较大的实用价值。

中国钴行业振兴计划(一)

2019-03-14 10:38:21

支撑钴职业复兴的必要性 1.1钴金属简介     钴(英文为Cobalt)化学符号为Co,在元素周期表中坐落第4周期的Ⅷ族(铁族),原子序数为27,在铁(26)之后,镍(28)、铜(29)之前,原子量为58.9332。钴的密度为8.9克/厘米  ,熔点为1495℃,沸点为2870℃。     钴呈银灰色,硬度高于铁,延展性好于铁,磁性弱于铁。钴的化合价+2和+3,常温下与水和空气不起作用,能逐步溶于稀和硫酸,易溶于硝酸。     因为钴具有不行代替的物理、化学功能,应用领域十分广泛,包含可充电电池材料、超硬耐热硬质合金、石化催化剂、陶瓷色釉料、磁性材料、饲料添加剂、医药品等职业。人工合成的钴60有强放射性,很多用于物体内部控测、医疗及示踪物质等。     钴虽然是小金属,但却是一种十分稀缺的资源,素有“工业味精”和“工业牙齿”之称,是重要的战略资源之一。美国战略储藏局常年坚持钴的储藏。 1.2 钴的用处简介 1.2.1 钴是重要的战略金属     上世纪九十年代曾经,钴的首要用处在出产高温合金、耐热耐腐合金、硬质合金以及磁性材料等,特别是在军事工业(制作与防护装甲)、航空工业(发动机)中有不行代替的重要位置。因而人们认为是钴一种重要战略金属,美国、俄罗斯等国都持有钴的战略储藏。现在硬质合金与超级硬质合金为钴的第二大用处,占钴总消费量的20%左右。 1.2.2 钴是锂离子电池中最重要的金属     上世纪九十年代以来,充电电池职业,特别是锂离子电池、镍氢职业钴消费的快速添加,使全球钴的消费量几年内添加了约100%。钴占锂离子电池正极材料分量的60%,而正极材料是锂离子电池功能决定性材料。现在锂离子电池职业已成为钴最大的消费领域,占钴总消费量的30%左右,而且份额还有继续进步。     因为全世界的锂离子电池、镍氢电池出产首要会集在中、日、韩三国,因而世界钴的消费已从曩昔首要会集在西方发达国家,逐步向日本、我国、韩国等东亚区域搬运。现在,日本和我国,已替代美国,成为钴的首要消费国。 1.2.3 钴的其它用处     钴还广泛应用于PTA等石化品的催化剂,天然气气转液的催化剂,玻璃、陶瓷、珐琅的色釉料,磁性材料,特殊钢的添加剂,动物饲料的添加剂,人工金刚石的催化剂,人工骨骼合金的添加剂,医药品质料等;人工合成的钴60有强放射性,很多用于物体内部控测、医疗及示踪物质等。 1.3 钴资源储量简介     地球上的钴绝大部分赋存在含镍的红土矿床中,其他赋存在铜镍硫化矿床和铜钴矿床中。因为红土矿挖掘本钱较高,现在世界首要钴的直销以铜镍硫化矿床和铜钴矿床开发为主。     世界陆地钴储量静态可采年限在百年以上,在正常状况下可确保长时刻安稳直销。但因一般矿石中钴档次较低,独自挖掘本钱贵重,故大绝大部份钴为挖掘铜镍时所发生的副产品,独自增产的或许性较小。所以在近年跟着钴用量敏捷添加的状况下,钴的直销无法相应添加,形成报价上涨较快。     据美国地质查询局计算,截止2006年的勘探显现,世界钴的储量700万t,根底储量1300万吨,储量高度会集在刚果民主共和国、澳大利亚和古巴。       我国钴矿资源不多,累计探明钴储量70多万吨,首要伴生在铜、镍、铁矿中,独立成矿的钴矿藏仅占全国保有储量的4.70%。我国已知钴矿产地150处,散布于24个省(区),但首要散布在甘肃省(占全国总储量的29.80%)。矿区钴金属储量超越2万吨的只要甘肃金川和青海德尔尼,矿区储量大于1万吨的有河北、四川、海南、新疆四省区。但我国伴生钴矿的档次较低,据对钴储量大于1000吨的58个矿床计算,钴的均匀档次仅为0.02%。     依据我国金属网的报道,钴是我国严峻短少的九种矿产资源之一(这九种资源是:铬,铜、锌、钴、铂族元素、、钾、硼、金刚石)。钴的短少程度比我们重视的石油更严峻。国土资源部网上有文章称:从静态确保程度来看,我国已探明的45种主矿产的储量,到2010年严峻短少的将有铬、钴、钼、钾、金刚石5种。我国有必要加大矿产资源查询与开发使用的力度,进步矿产资源对国民经济建设的确保程度,特别对联系国家安全的战略资源,有必要添加战略储藏,以确保我国经济社会的可继续展开。 综上所述,我国是钴资源短少的国家,大部分钴的出产质料需求从国外进口。 1.4 我国钴职业展开状况     我国现代钴职业起源于1958年,但规划展开不到20年的时刻,真实的蓬勃展开是在2000年后,跟着以锂离子电池职业为首的需求爆破式展开,我国在全球钴职业的历史舞台上逐步兴起,从此,我国成为了世界头号钴消费大国。     世界钴资源首要会集在澳大利亚、古巴和非洲,其间刚果金和赞比亚地处的“铜钴带”占了全球65%的储量。我国可开发钴资源首要在甘肃金昌,我国每年自产原生钴缺乏1000吨,远远满意不了国内挨近20000吨的产量和14000吨的国内需求量。我国钴职业对进口资源的依赖度是90%以上。全球钴消费量约55000吨/年,我国占1/3强。     现在在我国,钴首要用于电池材料(约50%)、超级/硬质合金(约15%)、磁性材料(约10%)、催化剂(约15%)。日本和美国是全球别的两个钴消费大国,消费量都在10000吨/年以上,可是日本首要用于电池材料,美国首要用于航空天天地点的超级合金领域。钴资源的首要储量不处于中日美三国的地图之内,因而钴所具有的战略性远远超越钨钼锡锑(我国储量世界第一),我国对钴资源的取得愈加火急!     以萃取为中心的钴湿法冶炼技能,使得我国钴职业走在了当今世界的前列,现在我国产能、制作本钱、科研技能、从业厂商数量,都是世界第一。当时我国钴职业当时最大的问题是资源受限于国外,这与其他资源型职业相似,如铬、铁、铜精矿、镍等等。     钴的湿法冶炼是一种低能耗、低排放、无污染的技能,单位能耗远远低于铜铝铅锌等根本金属,钴的报价一般是铜报价的10倍以上,是镍报价的3倍以上。2008年年均钴价50万元/吨,均匀钴精粹加工费总计不过8万元/吨,钴精粹过程中没有废气排放,而且一切厂商的污水处理达标率都到达100%,因而钴冶炼是典型的低能耗、低排放、高产量和高附加值的职业。     别的,钴资源的开发,往往伴生铜和镍两种我国也短少的金属。湿法冶炼技能一起能够提取高纯的铜和镍,与火法炼铜镍比较,本钱更低,能耗更少。开发和使用钴资源,一起也是对铜镍资源开发的促进。 1.5 支撑我国钴职业复兴的必要性     从2007年就开端的经济危机,影响到了简直说有的商品市场,厂商的运营环境继续恶化。经济危机或许还会连续几年时刻,而且从金融海啸蔓延到实体经济的阑珊。钴职业也都在面对史无前例的危急状况。2008年,钴价在第一季度到达了30年的高位,但在国家银根紧缩方针的压力和经济危机敏捷席卷的影响下,12月份便跌倒了30年的次低位,行情骤涨暴降至冶炼厂商叫苦连天,也严峻冲击了下流职业的需求和购买爱好,简直一切厂商都在亏本。     2008年,我国进一步加快了飞机制作的脚步,3G车牌的发放、新能源材料的开发也处在方兴未已之中,国家一方面也在调整产业结构,加强对两高一资职业的管控、加强对环境保护方面的出资。这一切都与钴职业密切相关。国民经济的良性展开、内需的拉动,使得国家对资源的渴求愈加火急,因而,国家需求培育拳头职业、拳头厂商,经过支撑的方针去推进展开。在此时,厂商利益高度凝集成国家利益。     我国人口众多,人均资源占有率很低。跟着经济的快速展开,战略性资源短少对我国安全与展开构成的要挟越来越实际,资源安全已成为新世纪影响国家安全的重要内容。为了保护国家安全、安稳社会秩序、促进经济可继续展开,防止别国使用“资源牌”对我进行镇压和操控,应以战略的高度重视稀有金属资源,充分发挥稀有金属资源优势,展开“资源交际”,增强世界话语权;改进我国战略物资储藏系统,健全储藏准则,合理调控储藏种类和数量,将稀有金属列入战略储藏领域。

氯化法钛白的原料(一)

2019-01-25 13:37:59

一、氯化工艺对原料的要求    目前氯化工艺(包括海绵钛生产)从总体看有两种工艺,即沸腾床氯化和熔盐氯化。世界上各厂家多采用沸腾床氯化,仅有前苏联和中国锦州厂采用熔盐氯化工艺制取TiCl4,而且中国锦州厂已实现氯化与熔盐氯化工艺对接技术。    根据氯化工艺不同所选用的原料也不同。国外把氯化使用的原料分为以下三类。    ①CP-A原料中Ti02≥90%,多为人造金红石、天然金红石。    ②CP-B原料中Ti02≥80%,电炉冶炼的高钛渣。    ③CP-C原料中Ti02≥60%-80%,以电炉冶炼的高钛渣和高品位的钛矿为主。    熔盐氯化使用的原料较沸腾氯化用料要求低一些,特别是高钛料CaO, MgO含量可以放宽很多。    世界上氯化法工厂采用CP-A原料的较多,占工厂总数的60%,占总生产能力的54.87%;采用CP-B原料的有7个工厂,占工厂总数的29. 16%,占生产能力的31.12%;仅有杜邦公司下属的两个工厂可使用CP-C原料,生产能力达40. 5万吨/年,占氯化法总生产能力的15.5%。    2000年的氯化法生产能力统计见表1。    20世纪70年代末使用CP-A原料9个工厂的生产能力还没有使用CP-C原料的生产能力大。由于受排污的限制,在80年代CP-A工厂的生产能力得到发展;到1990年CP-A工厂运行超过CP-C工厂的生产能力;到2000年使用CP-A工厂的总生产能力占氯化法总生产能力的50%。可见氯化法工艺使用优质富钛料生产TiCI4已成为发展的趋势,同时也满足了日益严格的环保要求。现在仅有杜邦公司在墨西哥的阿尔塔米拉(12.0万吨/年)和美国密西西比州的德莱尔厂(30.0万吨/年)仍然使用CP-C原料生产。    在沸腾氯化工艺中使用的富钛矿物中,最有害的杂质CaO,Mg0含量不能过高,特别是CaO含量不能太高,否则影响氯化炉正常运行。    美国钛产品公司专利419179提出,如果钛渣氯化时CaO,MgO, Al203的含量要控制在0.5%、7.0%和5.0%以下,可以使沸腾氯化炉操作正常进行并可以避免氯化炉筛板堵塞。为防止炉壁结疤氯化炉多采用高温氯化,控制1000℃以上温度使生成的CaCl2(沸点1900℃,熔点731℃)、MgCl2(沸点1412℃,熔点714℃)以较小的颗粒被气流带出去。[next]    中国在研究无筛板沸腾氯化过程中曾使用过攀枝花矿冶炼的高钛渣,MgO+CaO含量≥12%,CaO含量≥1. 0%,基本顺利,状态稳定,反应良好,排渣顺畅,床层料中MgO+CaO含量高达30%-40%;超过了国外认为的15%的“极限浓度”。国内无筛板氯化炉排渣中控制Ca含量1.0%一1.5%,Mg含量1.5%-4.0%,可以正常运行。    某工厂沸腾床层料实际组成见表2。工艺控制范围见表3.直接用于氯化法高品位铁精矿的化学组成见表4。    从国外床层料成分可以看出Si02的氯化率很低并在床层料中得到富集,相反,CaO, MgO被氯化后带出去,在床层中控制仍然比较低(<1.0%),以防止结料堵塞筛板的喷孔。即使在CP-C的工艺中采用高品位的Ti02含量≥60%的钛精矿,但依然要求CaO, MgO的含量非常低,其中Mg0含量≤0. 5%,CaO含量≤0. 10%。要求Mg0+Ca0含量不超过0.6%,否则在系统中也难以正常控制,影响氯化的质量。    就此看来按照国外的沸腾氯化技术要求,目前国内的最优质钛铁矿、最好高钛渣都不能满足沸腾氯化的要求。而我国目前无筛板氯化炉技术确有一定的先进性,目前Φ1200-1400mm的炉日产TiCI4只有25-40吨,因没有需求没能开发出满足钛白需要日产TiCI4 250吨以上的沸腾氯化炉。因此国内大型沸腾氯化炉尚需要攻关解决。[next]    二、氯化法原料的制备技术    氯化法钛白原料的最大特点是要求Ti02含量高,CaO, MgO含量低,特别是CaO含量要求更低。    1. CP-C原料(高品位钛精矿)的制备    CP-C原料的特点是Ti02含量)60%,CaO, MgO含量低,CaO含量<0.10%,CaO+MgO含量≤1.2%。    钛的资源十分丰富,且分布很广,几乎遍布全世界。现已发现的钛矿物有140多种,但现阶段具有实用价值的只有少数几种,主要是金红石、钛铁矿,其次是白钛石、镁钛矿和红钛铁矿。    钛矿中理论分子式为FeTi03,其中Ti02的理论含量为52. 63%。因形成的条件各异而含有杂质(如Cr, Al, Mg等),可以用通式表示,即m[(Fe·Mg·Mn)·Ti02]·n[(Fe·Cr·A1)203〕。    具有开采价值的钛矿床可分为岩矿和砂矿两大类。岩矿床又可分为两类,即岩浆分化形成的块状矿和碱性岩石中的金红石矿。    钛原料开采和处理作业示意如图1所示。     钛矿含钛铁矿达到15kg/m3的就具有开采价值。    尽管经过严格的选矿,但是能达到CP-C使用钛铁矿的还是不多的。由于氯化技术的限制和环保要求废物排放量减少的要求,因此使得使用CP-C的原料工厂在减少,都在向CP-B、CP-A方向发展。[next]    2. CP-B原料的制备    氯化法使用的CP-B原料主要是电炉冶炼的高钛渣。    生产原理:钛铁矿与还原剂石油焦或褐煤,加入一定量的黏结剂如沥青、造纸业的纸浆进行混配料,在电炉中温度达到1650-1700℃时进行熔炼,使以铁为主能被碳还原的金属还原生成合金在熔融物下层,上层则是熔融的Ti02。定期放出到炉外渣包中,冷却后将它们分开,上层的钛渣进行破碎精整,选出铁珠,就得到被称为高钛渣的富钛料。    冶炼高钛渣的钛铁矿,除要求Ti02含量要高之外,尚要求含铁高,电炉熔炼后才能得到含Ti02高的富钛料。    国外钛渣冶炼厂生产的钛渣,不追求过度还原生成低价钛化合物,提高Ti02含量,而是基本使铁完全还原析出即可,节电高产。因此,这样产品中Ti02含量正常在70%-80%之间,例如,南非RBM渣是Ti02含量比较高的高钛渣。氯化法原料化学成分见表5。

水氯化法提金—次氯酸盐浸出工艺

2019-02-14 10:39:39

次溶液浸出进程属氧化碱浸进程,也是碱法氯化进程。ClO -/Cl- 电极复原电位为1.715 V,比金「E(Au+ /Au)=1.58V」和银[E(Ag+/Ag)=0.80V」等贵金属高,故可用于从矿石浸出金银。从电位-pH图(见相关图)看出,在所有pH范围内,HC10, ClO-的电位都高于Au,都可用次溶液浸出金。    用次浸出碳质金矿时,有必要预先通氧进行氧化,以消除某些复原性物质。矿浆液固比7:1,加碳酸钠调理pH为8-13,在49-98℃温度下通氧,氧化4-6h,然后在20-60℃温度下用次浸出数小时,用活性炭吸附收回溶出的金,金的浸出收回率达90%以上。    在酸性条件下用溶液浸出金,有必要增加适量氯化络合剂,如食盐。含金泥制浆,并酸化至pH约为2,然后用浸出数小时,金浸出率超越95%。溶液中的金用溶剂萃取法收回。    含磁铁矿、结合态氧化铜以及透辉石和云母等碱性脉石矿藏的浸铜渣,不宜酸浸,因为试剂消耗量太大。在碱性条件下用次浸出,金浸出率达92%,因为铜渣中含有剩余,与银激烈络合生成银络离子进人溶液,银的浸出率达76%。金溶解的热力学数据指出,系统pH大于9.7时,溶解金发生水解而分出Au(OH) 3 或AuO2。尽管矿浆中含对银浸出有利,但有必要操控系统pH不高于9.7,确保取得高金浸出率。NaClO和C1- 既是浸出剂,又是氧化剂和络合剂,因而,保持必定的氯离子浓度,使反响物生成络合阴离子,能够进步金的溶解度,消除钝化,加快溶解反响。    次受热简单分化:                          3NaC1O ==== 2NaCl+NaClO3    所以,浸出温度不宜过高,以45-50℃为宜。    国内某地难选氧化铜浸渣含金8.37g/t 、银21g/t。 用质量浓度为8.4g/L的NaC10和质量分数为8%的NaCl混合溶液浸出,浸出矿浆液固比3:1,系统pH为9.7,浸出温度53℃,浸出矿浆时刻7.5h,浸渣含Au 0.27g/t, Ag5g/t,金、银浸出率别离达96.7%和76.2%。部分浸出溶液补加适量浸出剂可回来浸出浸铜渣,适用于多段逆流浸出。

金-钴-砷精矿的处理方法(一)

2019-02-18 10:47:01

现在,采金工业部门对金-钴-砷精矿还缺少深化的研讨。本文作者就选用火法-湿法冶金工艺流程处理金-钻-砷浮选精矿的成果作了研讨。该工艺流程中包含:浮选精矿的两段焙烧(第1段-分化焙烧,第Ⅱ段-硫酸化焙烧),硫酸化焙烧后之烧渣进行浸出和浸渣的化处理。 挑选用火法湿法-冶金工艺流程处理这类精矿的依据是:在实践中,用这一工艺流程处理难处理的金-砷精矿最为遍及,并且关于含钴的砷硫化物产品的处理亦具有很大的实践意义。 但是在实践中,常常在进行硫酸化焙烧之前选用氧化焙烧法从原始物猜中除砷,其最大的缺陷是可以生成帅酸盐,然后降低了下一工艺进程的处理作用。此外还将生成很多含砷的二氧化硫。若要综合利用这部分二氧化硫,就需要很大一笔费用。 选用无需通入空气的分化焙烧是进步多金属矿藏质料处理作用、综合利用程度和削减环境污染的-种很有发展前景的办法。 曾在半工业条件下,对选别金-钻-砷矿石所得之浮选精矿作了研讨。精矿的化学组成,%:9.3Si02;1.2Al2O3;24.0Fe总;2.94MSO;4.66CaO;1.02Cu;32.0As;1.13Co,0.43Bi;0.05Ni;15.5S总,1.58C有机。精矿磨矿细度为92%-0.074毫米。矿藏分析标明,精矿中首要为砷黄铁矿和黄铜矿、黄铁矿、磁铁矿、方铅矿、铜蓝、闪锌矿、磁黄铁矿呈单个的颗粒状存在。 依据显微X射线光谱分析仪的分析成果来看,首要金属矿藏-砷黄铁矿-是具有不均匀钴同晶杂质的钴的变种(含钴砷黄铁矿),钴含量动摇在4.36~7.41%范围内。通过热图解法研讨标明,砷黄铁矿的这种含矿变种比不含钴砷黄铁矿更难以氧化。所以在氧化焙烧时,很难从精矿中彻底除掉砷。 焙烧温度在490~730C范围内,能对这种精矿进行最激烈氧化。现已证明,这种精矿中所存在的含碳物质为了能吸附的活性石墨。物相分析证明,这种精矿中73.2%的金(呈连生体和游离状况存在)可被溶解,24.96%的金与硫化物(首要是砷黄铁矿)共生,1.84%的金与脉石连生。 金、钴、银是浮选精矿中有工业价值的组分。精矿中金、银含量之比为1:1.2。因为精矿组成杂乱、存在细粒涣散金(0.001~0.008毫米)和在砷黄铁矿中存在有钴同晶杂质以及砷含量过高(32%),所以这类精矿极难处理,也不适于用惯例办法处理。 在一种特制的实验室设备(图1)中研讨了精矿的分化焙烧。将原始精矿1装入石英细颈瓶2中。把细颈瓶放入昇华器的加热部分3。昇华器的第二部分,即未加热的那一半4用来冷凝,而这些是用空气氧化时从精矿中分出的As蒸汽在喷管内生成的产品。异华器依托镍铬合金电阻丝6进行加热,用变阻器8调理加热程度。选用一种特殊设备使昇华器向一个方向和另一方向进行360℃的接连可逆滚动,然后使精矿接连混合。 研讨成果证明,在分化焙烧进程中砷的收回状况取决于温度、昇华时刻和体系中放电值巨细。断定了分化焙烧的最佳条件如下;提高器内温度为760~780℃;焙烧时刻2小时,体系内负压为0.1×l05帕。砷蒸汽氧化所耗费的空气为3~4升/分钟。 此刻所得之烧渣中含2.82~3.37 As和19~21.9 S。从精矿转入昇华物的砷、硫收回率分别为94.06~92.8%和6.83~14.6%。异华物中含量为99.21%。 对烧渣的矿藏分析标明,烧渣中的硫呈单斜形磁黄铁矿,(硫含量为51.7~55.27原子量%)并含有钻的杂质为0.37~3.45%和含砷的杂质为0.15~1.72%。 砷不彻底提高的原因在于磁黄铁矿中生成了斜方砷铁矿。它是在分化焙烧时,既不蒸发,又不分化的铁的砷化物(其含钴7.0~10.0%)。烧渣中存在有呈硫化物方式的硫(19~21.98%)。这样可使下一段焙烧作业中不需要用特殊的硫酸化剂。

水氯化法提金—从高银低硫氧化型金矿中浸出金

2019-02-14 10:39:39

新疆伊犁河区域某金矿,归于含金石英脉型。金以游离天然金为主,赋存态简略,绝大部分与石英和黄铁矿伴生。金属矿藏以黄铁矿为主,其次为黄铜矿、天然金和方铅矿等。化学分析含Au13.4g/t,Ag 452.4g/t, Cu0.11%,Fe 4.95%,S O.147%。可见,该金矿是一个高银低硫的氧化型金矿。用化浸出将污染伊犁河,所以选用非化工艺。    金和银均能与氯离子构成较安稳的络合物,在氯化物溶液中有氧化剂存在时,金和银的浸出反响可简略表明为:                                                       Au+OX+4Cl-—→AuC14-+OX′                              Ag+OX+4C1-—→AuC143-+OX′                                   Ag+Cl-—→AgCl                           AgCl+2NH3—→[Ag(NH3)2]++C1-    式中:OX为氧化剂,OX′为该氧化剂的复原态。    针对上述反响,探究在有氯盐或(和)存鄙人从该金矿石浸出金、银的或许性,并经过操控恰当的浸出条件,以到达别离浸出金银的意图。    1) NH4H-NaCl系统氯化浸出金和银    试验成果表明,在NH37%,氧化剂5%、NaCl 20%、液固比=10:1,浸出时刻120min,温度80℃浸出条件下,用含氧氯化物作为氧化剂,有或许先挑选浸出银,银的浸出率达98%。而大部分金留在浸出渣中,便于独自处理。缺乏的是,约有24%的金同银一道被浸出进入溶液。要到达别离浸出金、银的意图,需要进一步改善浸出进程的挑选性。    2)HCl-NaCl系统氧化浸出金和银    为调查在HCl-NaCl系统中参加不同类型氧化剂一起浸出金和银的或许性,试验中,浸出条件定为:液固比=10:1、浸出时刻120 min,温度80℃时,氧化剂用量增加但金浸出率增加不明显,而银浸出率影响则比较复杂。当氧化剂用量为2% -5%时,银浸出率大于96%,过多参加氧化剂将导致银浸出率下降,随后又有所上升。为了到达在该系统中一起浸出金和银的意图,曾探究了增加不同氧化剂的试验,典型的试验成果见下表。试验成果表明:在HCl-NaCl系统中,用一种金属离子和含氧氯化物作为氧化剂,可以一起浸出金和银,金浸出率到达96%,银浸出率大于98%。该浸出系统工艺简略,适于处量含银高的氧化型金矿。增加不同氧化剂一起浸出金、银的成果温度/℃浸出系统增加氧化剂金浸出率/%银浸出率/%80H4OH-NaCl含氧氯化物24.65.180HCl-NaCl金属离子85.399.890HCl-NaCl含氧氯化物91.799.790HCl-NaCl双氧化剂92.599.890HCl-NaCl双氧化剂96.199.9

废铜水

2017-06-06 17:49:55

废铜水,通俗的讲就是含铜的废水,废铜水是怎么产生的?怎么处理掉那,来和小编一起看看吧。&nbsp;&nbsp; 随着经济的发展、城市化进程的加快和人民生活水平的提高,垃圾的排放量迅速增加。每年新增垃圾100亿t。对垃圾泛滥成灾的现实,世界各国的视线已不再仅仅停留在如何控制和消毁垃圾这一老问题上,而是采取积极的态度和有力的措施,着手科学地处理、利用垃圾,将垃圾列为维持经济持续发展的&ldquo;第二资源&rdquo;,向垃圾要资源、要能源、要效益。&nbsp;&nbsp;&nbsp; 目前,我国历年垃圾堆存量已达60亿t,占用耕地5亿m2。全国为660个,城市中有200个城市陷入垃圾包围之中。以城市人口2.6亿为例,如每人每年产生440 kg垃圾计算,年产生垃圾量为1.14亿t。&nbsp;&nbsp;&nbsp; 20世纪50年代到60年代中期,是垃圾污染矛盾激化的年代。60年代中期以后,大体形成了填埋、焚化、堆肥等一系列处置方法。如在美国,垃圾用填埋法处理的占85%,焚化法处理的仅占10%。日本国土不大,填埋法处理的只占26.9%,而焚化法处理占的61%。瑞士也是以焚化法为主,占53%。西欧几个国家以填埋法为主,并多为有控制的填埋法。20世纪70年代以来,日、美、英、法等国,由于受资源和能源危机的影响,对废物采取了&ldquo;资源化&rdquo;的方针,垃圾、粪便的处理不断向&ldquo;资源化&rdquo;的方向发展。尤其对于废物,日本已有25.3%的城市开展了从垃圾中分选回收物品的活动,1976年回收废物达3900万t,占当年废物排量的49.5%。近年来,有些国家还发展了无机垃圾堆山法,并在垃圾山的表面上种植树木、花草,发展街心公园,起到美化城市的作用。&nbsp;&nbsp;&nbsp; 1 现有城市垃圾处理方法&nbsp;&nbsp;&nbsp; 解决垃圾问题的目标是将垃圾减容、减量、资源化、能源化及无害化处理。目前主要有填埋、堆肥及焚烧处理三种方法。&nbsp;&nbsp;&nbsp; 1.1 填埋处理&nbsp;&nbsp;&nbsp; 垃圾填埋历史久远,是普遍采用的处理方法。因为该方法简单、省投资,可以处理所有种类的垃圾,所以世界各国广泛沿用这一方法。从无控制的填埋,发展到卫生填埋,包括滤沥循环填埋、压缩垃圾填埋、破碎垃圾填埋等。&nbsp;&nbsp;&nbsp; 采用填埋处理法,首先要防止从废物中挤压出的液体滤沥及雨水径流对地下水的污染。一般规范要求回填地最低处的标高要高出地下水位3.3 m以上,并且回填地的下部应有不透水的岩石或粘土层。否则需另设粘土、沥青、塑料薄膜等不透水层。其次,填埋场应设置排气口,使厌氧微生物分解过程中释放出的甲烷等气体能及时逸出,避免发生爆炸。回填后的场地,一般在20年内不宜在其上修建房屋,避免由于回填场不均匀下沉造成的结构破坏,但可作绿地、农田、牧场等使用。&nbsp;&nbsp;&nbsp; 填埋处理用地,尽量选用天然的或人工挖出的洼地,开发资源后的废粘土坑、废采石场、废矿坑等。将垃圾填埋于坑中,有利于恢复地貌,维持生态平衡,但如果在大面积的洼地、港湾、山谷等回填,则需考虑是否会破坏生态平衡。&nbsp;&nbsp;&nbsp; 1.2 堆肥处理&nbsp;&nbsp;&nbsp; 堆肥是我国、印度等国家处理垃圾、粪便、制取农肥的最古老技术,也是当今世界各国均有研究利用的一种方法。堆肥是使垃圾、粪便中的有机物,在微生物作用下,进行生物化学反应,最后形成一种类似腐殖质土壤的物质,用作肥料或改良土壤。&nbsp;&nbsp;&nbsp; 堆肥处理是利用微生物分解垃圾有机成分的生物化学过程。在生物化学反应过程中,有机物、氧气和细菌相互作用,析出二氧化碳、水和热,同时生成腐殖质。&nbsp;&nbsp;&nbsp; 堆肥的关键,在于提供一种使微生物活跃生长的环境,以加速其致菌分解过程,使之达到稳定。堆肥主要受废物中的养分、温度、湿度、pH等因素的控制。&nbsp;&nbsp;&nbsp; 根据堆肥原理,可分为厌氧分解与好氧分解两种。厌氧分解需在严格缺氧条件下进行,厌氧微生物分解生长较慢,故不多用。好氧分解过程可同时产生高温,可以杀灭病虫卵、细菌等,我国主要采用好氧分解法。&nbsp;&nbsp;&nbsp; 堆肥技术的工艺比较简单,适合于易腐有机质含量较高的垃圾处理,可对垃圾中的部分组分进行资源利用,且处理相同质量垃圾的投资比单纯的焚烧处理大大降低。堆肥技术在欧美国家起步较早,目前已经达到工业化应用的水平。&nbsp;&nbsp;&nbsp; 1.3 焚烧处理&nbsp;&nbsp;&nbsp; 焚烧是指垃圾中的可燃物在焚烧炉中与氧进行燃烧过程。实质是碳、氢、硫等元素与氧的化学反应。垃圾焚烧后,释放出热能,同时产生烟气和固体残渣。热能要回收,烟气要净化,残渣要消化,这是焚烧处理必不可少的工艺过程。&nbsp;&nbsp;&nbsp; 焚烧处理技术的特点是处理量大,减容性好,无害化彻底,焚烧过程产生的热量用来发电可以实现垃圾的能源化,因此是世界各发达国家普遍采用的一种垃圾处理技术。&nbsp;&nbsp;&nbsp; 通过焚烧可以使可燃性固体废物氧化分解,达到去除毒性、回收能量及获得副产品的目的。几乎所有的有机性废物都可以用焚烧法处理。对于无机-有机混合性固体废物,如果有机物是有毒有害物质,一般也最好采用焚烧法处理。焚烧法适用于处理可燃物较多的垃圾。采用焚烧法,必须注意不造成空气的二次污染。日本以及欧洲的瑞士、瑞典等国在一般焚烧法基础上,还发展了高温与中温分解,使垃圾在1650 ℃以上的高温下基本或完全燃烧,并回收释放的能量作为能源。&nbsp;&nbsp;&nbsp; 焚烧是销毁垃圾利用热能的一种垃圾处理技术。但是,只有对那些不能回收有价物,只能回收热能的垃圾,垃圾焚烧处理才是科学、合理的。&nbsp;&nbsp;&nbsp; 2 现有城市垃圾处理方法的局限性&nbsp;&nbsp;&nbsp; 2.1 填埋处理的局限性&nbsp;&nbsp;&nbsp; 填埋处理埋掉了可利用物,填埋场地的选择越来越困难,运输、填埋、管理等费用也不断提高。填埋场占地面积大,同时存在严重的二次污染,例如垃圾渗出液会污染地下水及土壤,垃圾堆放产生的臭气严重影响场地周边的空气质量,另外,垃圾发酵产生的甲烷气体既是火灾及爆炸隐患,排放到大气中又会产生温室效应。而且填埋场处理能力有限,服务期满后仍需投资建设新的填埋场,进一步占用土地资源。员本┪绻捎孟衷诘募际酰本┦?2000 t/d的垃圾进行卫生填埋处理,单是建设投资就高达7.2亿元人民币(不含征地费用),而且填埋场的寿命也只有12 a。基于以上原因,国外从80年代以来,卫生填埋设施有逐渐减少的趋势,成为其他处理工艺的辅助方法,用来处理不能再利用的物质。&nbsp;&nbsp;&nbsp; 2.2 堆肥处理的局限性&nbsp;&nbsp;&nbsp; 堆肥处理不能处理不可腐烂的有机物和无机物,垃圾中的石块、金属、玻璃、塑料等废弃物不能被微生物分解,这些废弃物必须分捡出来,另行处理,因此减容、减量及无害化程度低;堆肥周期长,占地面积大,卫生条件差;堆肥处理后产生的肥料肥效低、成本高,与化肥比销售困难,经济效益差。引进国外技术投资巨大,不适合我国国情。发达国家由于生活垃圾中的易腐有机物含量大大低于我国的一般水平,因此靠堆肥只能处理15%左右的垃圾组分,这在一定程度上阻碍了堆肥技术的推广。堆肥技术必须是将新鲜的垃圾首先进行分类后再将易腐有机组分进行发酵,才能有效地防止重金属的渗入,从而保证有机肥产品达到国家标准,真正实现无害化和资源化。&nbsp;&nbsp;&nbsp; 2.3 焚烧处理的局限性&nbsp;&nbsp;&nbsp; 焚烧处理对垃圾低位热值有一定要求,不是任何垃圾都可以焚烧的。垃圾中可利用资源被销毁,是一种浪费资源的处理方法,即使回收热能也只能做到废物一次性再生的目的,无法实现资源的多次循环利用。焚烧产生的大量烟气,带走的热能又是一种很大的损失。产生的烟气必须净化,净化技术难度大、运行成本高。焚烧产生的残渣还必须消化。还有,焚烧设备一次性投资大,运行成本高。&nbsp;&nbsp;&nbsp; 3 城市垃圾处理方法的综合利用&nbsp;&nbsp;&nbsp; 表1为美国垃圾处理方式及各年所占比重。综合利用应包括以下几个方面的内容:&nbsp;&nbsp;&nbsp; (1)可用物资(废纸、金属、玻璃等)的回收再生利用;&nbsp;&nbsp;&nbsp; (2)易腐有机物的堆肥处理;&nbsp;&nbsp;&nbsp; (3)高热值不易腐有机物的能量利用;&nbsp;&nbsp;&nbsp; (4)灰渣的固化处理,实现灰渣的材料化。&nbsp;&nbsp;&nbsp; 废铜水在许多国家垃圾处理实践表明,其中的 70% 可以回收,废铜水成为再生原料供重复利用。城市垃圾被誉为&ldqu

废锡水

2017-06-06 17:49:54

废锡水是投资锡的人较为关心的一个信息,其特性需要掌握。产品名称:废锡水产品价格:6000-7000元/吨公司所在地:四川 成都发布时间:2010-8-12 15:44:25产品描述:供应:废锡水废锡水按含量计价,测定可找专业从事测定检验实验室,4.1就是含锡的百分比,即100克含锡4.1克.退锡水是一种因应目前线路之发展需求,而研发出的单液剥锡铅液,适用在常温下喷洒或浸泡操作方式。以硝酸为主要成分,但不含任何氟化物,故不浸蚀底材及铜面,即使长期使用不会产生&ldquo;白点&rdquo;现象,咬铜速率低,且有抗氧化性能。另有以下特点:&nbsp;&nbsp;&nbsp;&nbsp; 1极少的沉淀产生,机器维护保养容易;&nbsp;&nbsp;&nbsp; 2全系列不含氟,不浸蚀底材和铜面,废水处理容易;&nbsp;&nbsp;&nbsp; 3剥锡铅速度快、稳定、高锡铅咬蚀量(100%/L以上);&nbsp;&nbsp;&nbsp; 4适用于喷洒或浸泡的设备,维护管理容易,操作简便&nbsp;&nbsp;&nbsp; 5低咬铜速率;剥除锡铅后光泽性好,不易氧化;如果你想更多的了解废锡水等其他信息,你可以登陆上海有色网进行查询。

含金砷黄铁矿的氯化焙烧(一)

2019-02-18 10:47:01

为了断定作为金-砷硫化物精矿进-步化处理的预备阶段的氯化焙烧作用,研讨了砷黄铁矿在热处理进程中发生的相变和结构改变的次序,以及贵金属同硫化物及其焙烧产品的物理-化学作用特性。     用银盐定量法测定气态氯生成的动力学曲线的比照(图1),用碘量滴定法测定的硫化物型硫的氧化状况,砷黄铁矿在氧化-氯化焙烧进程和在单-氧化焙烧进程中进行反响的开始温度彻底相同,以及在上述两种状况下FeAsS分化温度区彻底相符等等,均可证明在氧化;氯化焙烧中固体氯剂的分化不是固相反响的成果,而是因为它与在硫化物氧化进程中所生成的二氧化硫相互作用所造成的:               2NaCl+SO2+O2=Na3S04+Cl2 气态活性氯剂的存在可以强化结构细密的原始硫的分化进程:砷黄铁矿中的铁不只需求有空气中的氧来氧化,并且还需进行有用的氯化,以便进-步分化氯化物和生成多孔状的氧化物。所以硫化物在氧化氯化焙烧进程中的氧化程度比单-氧化焙烧时愈加充沛。用《YPC-50HM》仪对冷却后的试样进行X射线相分析所作的焙烧固体产品相组成的研讨标明,硫化物型硫在固态氯剂分化进程中起着特殊的重要作用。所以在砷黄铁矿氧化焙烧时最早发现并敏捷消失的陨硫铁(FeS)相是不固定的。在氧化-氯化焙烧下,砷黄铁矿分化后的第-个产品就是磁铁矿(Fe2O3)。它在焙烧温度稍稍超越600℃时,便会彻底改变为赤铁矿(α-fe2O3)的终究相。当存在氯时,砷黄铁矿中的砷氧化进程中,只要-种化合物是固定的,即铁的盐,它不是参考文献中所说的φ1相,(其峰值为d=3.02~311A)那种组成的铁的盐。     衍射图分析标明,φ1相只存在于有磁铁矿(Fe3O4)的产晶中。这种盐可就是磁铁矿和上述组成的不蒸发的的复盐Fe3O4·As2O5或许Fe3O4。在氯介质中,这种化合物是一切铁的盐中最为安稳的。它在分化后只能由磁铁矿转为赤铁矿。     砷黄铁矿在氯化-复原焙烧时发生相改变的特色同氧化-氯化焙烧时类似。在这种状况下,参加炉猜中的碳复原作用会使磁铁矿相存在更长时刻(在700℃的温度范围内)。这就说明晰在这-温度范围内铁的盐数量增加了。

水氯化法从银金精矿焙砂中提取金银的研究

2019-02-14 10:39:39

1986年河南桐柏银矿投产以来,又有20多个独立银矿山连续竣工投产,因而银精矿已成为我国白银出产的重要来历。但因为我国银矿石的档次偏低、矿藏成分镶嵌杂乱,所产出的银(精)矿除少数可选用传统化法收回金银外,大多尴尬处理银精矿。氯化焙烧法、加压氧化法、硝酸氧化法和氯盐—加压氧化法等预处理手法能大起伏改进银的收回率,但关于贵金属元素中报价最低而化学性质却最生动的银而言,这些工艺仍缺少经济竞争力。故银精矿大多被搭配到相应的铅或铜冶炼炉中处理,而金银则从其阳极泥中归纳收回。但是因熔炼工艺存在收回流程长、资金占压严峻等缺陷,故怎么经济地处理含银矿石仍然是国内外冶金工作者未能很好处理的重要难题。  水氯化法曾一度是从矿石中提金的首要办法,但跟着易浸金矿石资源的日渐干涸,难处理金矿石的比重逐渐加大,特别是对环境保护的要求日趋严厉,化面对经济与环保的两层应战。因而,水氯化提金法从头受到重视。现在已有多家工厂投入出产,如南非用水氯化法浸出金精矿焙砂时的浸金率达99%,前苏联浸出含金110g/t的脱砷焙砂时的浸金率达98%,而美国用水氯化法处理含砷、碳矿石,浸出18h时的浸金率达94%,单耗17.5kg/t矿。本文拟对某炭质银金精矿的焙烧进程及其水氯化法提金工艺进行开始研讨。     1 试验部分      1.1  原料及试剂  试料系某银矿的浮选银金精矿,且粒度-0.074mm的物料约占95%。物相分析标明,首要硫化矿藏为FeS2,并伴有少数的方铅矿、闪锌矿、黝铜矿等;首要脉石为硅酸盐类如绢云母;并有较高含量的石墨碳,其化学成分及其金银的化学物相分析成果别离见表1和表2,其间CT为总碳含量;Corg为除碳酸盐以外的有机碳含量。  表1  银金精矿多元素分析成果  %  组分Ag/g·t-1Au/g·t-1CuPbZnFeSCaSiO2 Al2O3CT Corg含量440017.30.392.052.2726.4925.290.9925.293.896.716.69 表2  银精矿中的金和银的化学物相分析 金品种含量g·t-1分配率/% 银品种含量g·t-1分配率/%单体金及露出连生体金15.8795.09天然银与角银矿49011.31辉银矿178041硫化物包裹金0.724.31黄铁矿等硫化物中包裹银203046.87硅酸盐包裹金0.10.6脉石中包裹银310.72小计16.69100小计4331100     1.2  工艺流程    因为所处理的银精矿为炭质高硫矿,若选用水氯化法直接处理时,其间的首要硫化物将与发作如下反响(以黄铁矿为例):                          FeS2+7Cl2+8H2O=FeCl2+12Cl-+2SO42-+16H+    由上式不难看出,每溶解1kg黄铁矿(折合硫0.533kg)将需求至少4.13 kg,假定精矿中的硫悉数以黄铁矿存在,则溶解1t该精矿的硫,需求1959 kg,按1200元/t核算,仅的费用就高达2352元,明显其药剂本钱是不能承受的。因而,本项研讨选用焙烧工艺,先使大部分硫化物转化为SO2(工业出产可考虑用于制酸),以下降水氯化浸出时的耗费量。试验工艺流程如图1所示。 [next]                          图1 水氯化法处理银金精矿的工艺流程示意图     试验时,首要制备焙砂并经XZP-100振动磨再磨1min后用于水氯化提金,然后从其浸出渣收回银。浸金是在可控温的磁力拌和器上的锥形瓶中进行的, 经缓冲瓶后通入,电位及pH值由pHS-2C精细酸度计丈量;浸银试验是由电炉加热、6402型电子继电器和触点式温度计控温、JB-50电动拌和机拌和的带盖的烧杯中进行的。    1.3  分析办法    银精矿、焙砂及固体渣样中金银含量选用火试金法分析,而液相中的银用原子吸收光谱法,其间除非特别指明外,水氯化浸金进程中仅分析金。     2 成果与评论      2.1  银精矿焙砂的制备    因为受炭质银精矿本身性质的约束,焙烧往往很难到达一起改进金银浸出率的意图,一般需求增加硫酸盐或氯化物进行硫酸化或氯化焙烧。本试验焙砂的制备条件为:当有5%以上的增加剂存在的情况下,选用分段焙烧,即榜首段焙烧温度为400℃、焙烧时刻为1h;第二段焙烧温度与焙烧时刻别离为400~670℃和4h。所得焙砂经细磨、调浆后供水氯化浸金试验用。    2.2  水氯化法提金  在水氯化提金进程中,焙砂中残留的硫化物亦被氧化,银将以氯化银方式残留在水氯化渣中;然后选用传统的化法、硫代硫酸盐法或法等都可将水氯化浸金渣中的银收回,且其银的收回率将有较大起伏的进步。    2.2.1  温度对金浸出率的影响  为了保持有满足量的游离氯离子,以保证金氯络离子的稳定性,在水氯化浸金进程中,需增加10~20g/L NH4Cl。在固定的浸出条件(电位大于1.0V、时刻为6h)下,调查了水氯化浸出温度对金浸出率的影响,其试验成果见图2。图2的曲线标明:当温度由室温升至45℃,金的浸出率则进步了约16%,但持续进步温度,金的浸出率却稍有下降,这是因为跟着温度的升高,的溶解度有所下降,且耗氯的副反响加重,浸出液的色彩也由黄绿色逐渐转变成黄棕色,其浸出渣率明显削减(如浸出12h,室温文45℃时的渣率别离为93%和74%左右),也就是说很多的铁氧化物也被溶出,这对后续的金银收回是晦气的。别的,因该焙砂的金含量较低,所以选用室温浸出工艺较好。[next] 图2 温度对金浸出率的影响NH4Cl:20g/L HCl:0.8mol/L  L/S:4:1  t:6h    2.2.2  浸出时刻对金浸出率的影响  在常温及适宜的流量下(由水溶液的电位调理)调查浸出时刻对浸金率的影响,其试验成果如图3所示。图3的曲线标明:金的浸出率跟着浸出时刻的延伸而明显进步,但浸出时刻以10h为宜,此刻的金浸出率为96.1%,渣含金0.7g/t左右。 图3 浸出时刻对金浸出率的影响 NH4Cl:20g/L  HCl:0.8mol/L  L/S:4:1     2.2.3 水氯化法工艺的试剂耗费  因为试验规划小,且试验进程中常遇到瓶阀门阻塞等困难,有关耗量等参数没有进行具体考察,但据文献报导,水氯化法处理含硫0.46%的焙砂时,耗量为35kg/t。本试验焙砂的含硫量虽大于1%,但曾以稀硫酸溶液能否浸出很多银来判别所制备焙砂的质量好坏,故焙砂中的硫化物含量将很低,因而其的耗量似不会超越文献报导的水平。别的,据文献报导, 、及的试剂本钱别离为吨矿1.0、1.5和2.5美元,由此可见,水氯化法的试剂本钱与化法比较毫不逊色,这也许是除环保要素以外,水氯化提金法在炭质金矿处理领域中的研讨非常活泼的原因之一。    2.3  水氯化浸金渣中的银收回  硫代硫酸盐法是近几十年来研讨得最多的几种非提金办法之一。除与铁氧化物构成的难溶银化合物外,水氯化浸金渣中的银均转化为易溶的氯化银等,因而,选用硫代硫酸盐法进行了收回银的测验,最佳浸出条件为:室温、pH 值为9、液固比为25:1、 Na2S2O3浓度为20~25 g/L和浸出时刻3h,此刻,银的最佳浸出率约94.1%~95.6%。     3 结  论      3.1  该炭质银精矿组成杂乱,难以用传统的化法处理,但经焙烧—水氯化浸金—硫代硫酸盐浸银,其金银浸出率最高可别离达96.1%和95.6%。该法选用非试剂常温浸出,金银的浸出率高,适合于在小型金银矿山选用。    3.2  因为受试验室试验规划的约束,许多参数如耗量、贵液中的金银收回等还有待于进一步研讨。

水氯化法提金—从含铜金矿中浸出工艺

2019-02-14 10:39:39

广西玉林区域某含铜呈微细粒嵌布的金矿石属难选金矿石,矿石的首要金属矿藏为黄铁矿、硫化铜矿和少数Pb、Zn、Sb的矿藏。原矿含金档次15~32g/t,含铜1.4%~2.5%,含硫20%~28%。矿石中金首要以天然金产出,首要呈纤细状被硫化铜、黄铁矿所包裹,不适于捕集或惯例化提金。    矿石磨至-200目,在650~800℃下焙烧4~6h。焙砂用质量浓度为15g/L的H2S04,在80~90℃、液固比(1.5~2):1下浸铜4h。浸铜后的残渣,若铜量低于0.5%即选用氛化法浸出金;若超越0.5%即用化法浸出金。    通过探究试验,选用5%、饱满氯水作为浸出剂,浸出固液比为1:(3~5),密封拌和浸出1h(确保停止时有游离氯存在),金的浸出率可达95%以上(原矿Au 32.8g/t,焙砂浸渣Au 43.7g/t,用饱满氯水酸度5%,固液比1:3,间歇半小时通氯共2h,残渣Au 1.53g/t,Au浸出率为94.5%)。    用含5%~10%的饱满氯水浸出金的贵液,通过滤除掉游离氯后,水洗烘干,放人耐火坩埚中,参加少数硼砂和纯碱,在炭炉中渐渐加热,然后升温熔炼出锑、金合金块。金的收回率98%。    最近,美国还报导了氯化物氧气加压浸出硫化物、氧化物和金属废料的工艺。研发的工艺包含用C12-O2、HC1-O2、FeC12-02、CaC12-02、H2S04-CaC12-02,在温度95~102℃,压力207 ~345 kPa条件下进行浸出,从杂乱的硫化物精矿、废金属、熔炉废料和金属氧化物等物猜中提取Cu, Pb, Zn, Ni, Co, Hg, Au, Ag和其他金属,美国矿务局还着重空气能够用作O2的来历,随后的金属收回办法决议了是C12, HCl, FeC12仍是CaC12适宜于返回到反应器再用。含砷金矿,金的收回率在99%,作为不溶成分留在浸出渣中的元素有A1、As、Cr、Fe、S、Sb和Si。    氯化物一氧气浸出是一个从各式各样的杂乱物猜中浸出金属的最有用和环保上答应的办法。由于不发生有毒的气体、液体或固体废物。此技能已在工厂得到验证,是很有远景的办法。

水锰矿(Manganite)

2019-01-21 10:39:10

MnO(OH) 【化学组成】常含SiO2、Fe2O3、Al2O3、CaO等混入物。 【晶体结构】单斜晶系;a0=0.888 nm,b0=0.525 nm,c0=0.571 nm,β=90°;Z=8。注意:水锰矿也是β=90°的单斜晶系。 【形态】晶体常呈柱状。沿c轴伸长,柱面具清晰纵纹。集合体成束状。双晶以(011)为接合面。沉积成因者多呈隐晶质块体,也有成鲕状或钟乳状者。 【物理性质】暗钢灰至黑色;半金属光泽。解理平行{010}完全,平行{110}和{001}中等。硬度3.5~4。相对密度4.2~4.33。性脆。 【成因及产状】形成于较还原环境中,在低温热液矿脉中常呈晶簇状与重晶石、方解石共生。沉积作用形成的水锰矿则常呈块状或鲕状,此时为四价锰矿物(软锰矿)和二价锰矿物(菱锰矿)之间的过渡产物。在氧化条件下水锰矿不稳定,易氧化成软锰矿。 【鉴定特征】以其晶形,柱面条纹和褐色条痕初步鉴定。与其类似矿物的可靠区别需用差热曲线和X射线粉晶数据进行鉴定。 【主要用途】锰的重要矿石矿物。

锡水铜线

2017-06-06 17:50:11

锡水铜线是应用比较广泛的一种铜线,此外,铜线还分为镀银铜线:镀银铜线在某些场合称之为镀银铜丝或镀银丝,是在无氧铜线或低氧铜线上镀银后,经过拉丝机拉细而成的细线。镀银铜线分为镀银软圆铜线和镀银硬圆铜线。镀银软圆铜线是经过退火,改变其物理特性,以达到变软的目的。好的镀银铜线镀层连续牢固地附在导体表面,经试样后样品表面不变黑。镀银的镀层表面应该光滑连续、没有银粒、毛刺、机械损伤等有害缺陷镀银铜线是铜芯上同心地镀覆银层而制成的。它综合了两种 金属 的特点,具有很好的导电性能,以及明亮而光泽的表面,而且银层具有很高的耐腐蚀性。正因为这些优点,镀银铜线成为高频线和 有色 纺织线的首选产品。康铜丝是以铜镍为主要成份的电阻合金。特点:具有较低的电阻温度系数,较宽的使用温度范围(480℃以下),加工性能良好,具有良好的焊接性能。主要用于制作仪器仪表,电子以及工业设备中的电子元件。此外还有一种新康铜电阻合金,为铜铁基同合金,它具有与康铜一样的电阻率,基本相近似的电阻温度系数,和相同的使用温度。新康铜与康铜电阻合金相比由于不含 价格 较高的镍,而具有低 价格 的优胜,但抗氧化性能比康铜差。在比较多的方面能够替代康铜丝电阻合金.&nbsp;&nbsp; 还有漆包铜线线是绕组线的一个主要品种,由导体和绝缘层两部组成,裸线经退火软化后,再经过多次涂漆,烘焙而成。但要生产出即符合标准要求,又满足客户要求的产品并不容易,它受原材料质量,工艺参数,生产设备,环境等因素影响,因此,各种漆包线的质量特性各不相同,但都具备机械性能,化学性能,电性能,热性能四大性能。&nbsp;&nbsp;&nbsp; 更多关于锡水铜线的相关信息请更多关注上海 有色 网。&nbsp;

2018-04-19 17:41:48

钴是灰色硬质金属,它的居里点(失去磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发生氧化作用,极细粉末状钴会自动燃烧。钴能溶于稀酸,在浓硝酸中会形成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发生剧烈反应。&nbsp;

龙水金矿龙水岭选矿厂

2019-02-18 10:47:01

龙水岭选矿厂规划规划为100t/d,1979年投产。1984年又建有一座规划为10t/d在提金车间。   (1)矿石性质:龙水岭矿石属中温裂隙充填型含金硫化物矿床,矿体赋存在黄岗岩与砂页岩地层触摸部位。矿石中首要金属矿藏有黄铁矿,其次有方铅矿、黄铜矿、少数闪锌矿、斑铜矿和天然金等。脉石矿藏以石英为主,少数绢云母、白云石、方解石、重晶石等。    天然金首要赋存在黄铁矿裂隙中,一般与黄铁矿和石英共生。金的嵌布粒度不均匀,并且粒度较细,大部分都在0.1mm以下,一般为0.01~0.006mm。矿石密度2.87t/m3,普氏硬度8~10。   (2)工艺流程:用浮选取得含金硫精矿,精矿再磨后进行浸出、铁板置换,产出金泥和副产硫精矿,金泥熔炼后得终究产品合质金。工艺流程见下图。    提金工艺是当今世界上黄金选冶的一项新技术。龙水选矿厂提金车间是我国第一座较为完好的工业型实验工厂。提金工艺是当今世界上黄金选冶的一项新技术。龙水选矿厂提金车间是我国第一座较为完好的工业型实验工厂。提金无毒,本钱与惯例化法附近,关于我国数量较多的含金硫砷矿藏提金更具有优越性。    该工艺经过河北峪耳崖金矿和张家口金矿的半工业实验,以及龙水金矿的工业实验标明,浸出置换工艺目标较高,浸出与铁置换在同工序完结,流程较短。该车间规划对置换铁板的提取、清洗、金泥脱落等设有自动化设备,取得了较好的作用。缺陷是,铁板置换在板上简单发生坑洼而缩短铁板的使用寿命,一起金泥中铁含量较高,添加金熔炼的复杂性。为此,从往后的工艺开展和完善出产动身,应对-炭浆法(树脂矿浆法)提金进行研究,以改善法提金和熔炼工艺。龙水岭选矿厂工艺目标见表一,单位耗费目标见表二,首要设备见表三。 表一表二表三

从氧化矿中水冶法提取锌、铜、镍、钴的工艺

2019-02-25 15:59:39

从氧化矿中水冶法提取锌、铜、镍、钴的工艺,将矿粉与所需提取剂参加拌和罐中,经充沛拌和后输入反响罐,其特征在于用与碳酸氢铵的混合溶液作为提取剂,与碳酸氢铵的份额依据的浓度断定,10%的,其份额为20∶1,15%的,其份额为15∶1,20%的,其份额为10∶1,将矿石破坏至粒度小于1mm的矿粉,提取剂的用量视矿石中所含锌或铜或镍或钴的量断定,关于金属含量小于5%的矿粉,每t用提取剂1t,金属含量每添加1~5%,提取剂用量添加0.5t. 提取工艺如下: 1.制活性氧化锌:氧化矿——破坏——提取剂浸出——过滤——除杂置换——分化并收回提取剂——枯燥——焙烧——破坏——活性氧化锌制品; 2.制高档锌精粉: 氧化矿——破坏——提取剂浸出——过滤——分化并收回提取剂——枯燥 ——高档锌精粉;详细工艺进程如下:将矿粉与所需提取剂参加拌和罐中,经充沛拌和后输入反响罐,并经过设在反响罐上的拌和机进行充沛的拌和,每拌和1h进行一次化验,接连拌和3h,在提取率到达90%后,将反响生成的金属溶液输入贮液罐,然后,将金属溶液从贮液罐中自流放入分化罐加热至沸,当金属溶液变为无色透明时,中止加热,将金属溶液进行过滤,烘干后得到金属氧化物,经电解即可得到所提金属。

四氯化钛中杂质及其性质(一)

2019-02-15 14:21:16

(一)中杂质及其分类    无论是熔盐氯化仍是欢腾氯化工艺制取的粗都会有必定的杂质,包含气体、液体、固体杂质,不能直接用于出产钛白,有必要经精制处理,除掉有害杂质,使红棕色的污浊液变成无色通明的液体,才干满足下道工序的要求。    粗TiC14液的大致成分见表1。    这些杂质对钛出产发生的损害可分为两类:一类是影响产品白度的杂质,如钒、锰、铁、铬等;另一类是影响氧化半成品的晶型转化率的,如SiC14。当TiC14中的SiC14含量≥0.10%(质量)时,就会发生显着的影响效果,所以有害杂质有必要除掉。    粗TiC14液中杂质的分类及特征见表2。    关于氯化法钛白来讲,精制工序最主要的使命是除掉溶于TiC14之中的VOC13、VCl4,使之到达    VOC13的蒸气压(p)随温度的升高而增大,可按下面的经历式核算:                lgp=-2.5×105T-1+1.02×103    蒸气压的核算值和实测值见表4。粗TiC14和杂质氯化物蒸气压与温度的联系见表5。

硅锰水渣

2017-06-06 17:50:02

&nbsp;硅锰水渣作为在铸造硅锰合金后残留下来的废物品。如利用硅锰水渣在中频炉中生产硅锰合金以及利用硅锰水渣和锡渣烧制硅酸盐水泥熟料等。每年随着硅锰合金的产出会产生大量的硅锰水渣,如何利用先进技术让这些硅锰水渣变废为宝成为未来一个具有前景的 行业 。&nbsp;&nbsp;硅锰水渣具有二次回收利用的价值。