三水铝石
2018-12-29 09:43:03
三水铝石的化学组成为Al(OH)3、晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯(Gibbs)的姓于1822年命名。晶体结构与水镁石相似,由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成,只是Al3+不占满夹层中的全部八面体空隙,仅占据其中的2/3。三水铝石的晶体一般极为细小,呈假六方片状,并常成双晶﹔通常以结核状、豆状、土状集合体产出。白色,或因杂质染色而呈淡红至红色。玻璃光泽,解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5,比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物,是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。
三水铝石(Gibbsite)
Al(OH)3
[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。
[结构与形态]单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm,β=94°34';Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。
斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。 [物理性质]白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。
偏光镜下:无色。二轴晶( ),2V=0°。Ng=1.587,Nm=Np=1.566。
[产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。
三水铝石(Gibbsite)
2019-01-21 10:39:10
Al(OH)3
【化学组成】常有少量的Fe2+和Ga3+呈类质同像替换Al3+。
【晶体结构】单斜晶系, ;a0=0.864 nm,b0=0.507 nm,c0=0.972 nm,β=94°34′;Z=8。具水镁石型结构,但Al3+只充填于每两层相邻的OH-羟离子之间的2/3八面体空隙,组成配位八面体的结构层。
【形态】单晶呈假六方形极细片状。通常成结核状、豆状集合体或隐晶质块状集合体。
【物理性质】白色,常带灰、绿和褐色;玻璃光泽,解理面呈珍珠光泽,集合体和隐晶质者暗淡。解理平行{001}极完全。硬度2.5~3.5。相对密度2.30~2.43。
【成因及产状】主要是长石等铝硅酸盐经风化作用而形成。部分三水铝石为低温热液成因。在区域变质作用中,三水铝石经脱水作用变为一水硬铝石;而在更深的区域变质条件下,可变为刚玉;如有SiO2存在时则变为含铝硅酸盐矿物。
【主要用途】为铝的主要矿石矿物。也可用于制造耐火材料和高铝水泥原料。
高岭石-三水铝石型铝土矿
2019-02-12 10:07:54
首要矿藏为三水铝石、高岭石、赤铁矿、针铁矿等。关于低档次的三水铝石的铝土矿,一般以为浮选都是比较有用的,有主线正浮选三水铝石,也有建议反浮选含硅矿藏,药方与一般氧化矿浮选根本相同。以为参加和辅佐捕收剂(火油、机油)能够强化浮选,浮选流程方面留意泥沙分选及分支浮选等。
某高岭石-三水铝石型铝土矿选用泥、水分选,粗等级(-50mm+3mm)磨矿后用磁选除铁,矿泥磨矿后浮选,其选别工艺流程如图1所示。选别后得三种产品,铝土精矿用于出产电炉刚玉或拜耳法炼铝氧,高岭石产品用烧结法收回,含铁产品出产铁精矿,从而使铝土矿得到归纳收回。图1 某高岭石-三水铝石铝土矿选别示意图
磁选磁场强度为3000~3500奥斯特,浮选捕收剂为油酸:塔尔油:机油=1:1:1,其总用量为300g/t。其选别成果见表1。从表1中可见,铝土矿精矿含Al2O3为49.8%、收回率为58.8%,铝硅比从4.7提高到8.4,取得了必定分选作用。
表1 某高岭石-三水铝石型铝土矿选别目标产品名称产率/%Al2O3/%SiO2/%Fe2O3/%铅硅比档次收回率档次收回率档次收回率铝土矿精矿
高岭石产品
含铁产品
原矿50.10
21.70
25.10
100.0049.80
39.30
30.70
24.4058.80
23.00
18.20
100.005.95
21.80
2.97
9.1332.70
59.10
8.20
100.0014.00
23.00
30.40
17.5340.10
16.30
43.60
100.008.4
1.8
10.3
4.7
铝土矿床的主要成分--三水铝石
2018-12-28 09:57:34
三水铝石(Gibbsite) Al(OH)3 三水铝石是铝的氢氧化物矿物,在铝土矿床中它是主要的成分。三水铝石的晶体极细小,晶体聚集在一起成结核状、豆状或土状,一般为白色,有玻璃光泽,如果含有杂质则发红色。它们主要是长石等含铝矿物风化后产生的次生矿物。
化学组成为Al(OH)3﹑晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯 (Gibbs)的姓于1822年命名。晶体结构与水镁石相似﹐由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成﹐只是Al3+不占满夹层中的全部八面体空隙﹐仅占据其中的2/3。三水铝石的晶体一般极为细小﹐呈假六方片状﹐并常成双晶﹔通常以结核状﹑豆状﹑土状集合体产出。白色﹐或因杂质染色而呈淡红至红色。玻璃光泽﹐解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5﹐比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物﹐是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。
三水铝石[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。
[结构与形态] 单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm;Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3 具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。
斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。
[物理性质] 白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。
偏光镜下:无色。二轴晶。Ng=1.587,Nm=Np=1.566。
[产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。
浮选方法提高三水铝石铝硅比的研究
2019-01-24 09:38:19
Abstract The flotation experiments of Indonesia gibbsite ore were conducted using oxidized paraffin soap and tall oil as the collectors and sodium carbonate, sodium silicate and sodium hexametaphosphate as the regulators. Through the con- ditional experiments of multi-factors such as grinding fineness, collector and regulator dosage and pulp concentration, the factors influencing the improvement of the silicon-aluminum ratio of gibbsite and the suitable flotation conditions were inves- tigated. The experiment results show that a flotation concentrate having a recovery of 63.49% and an aluminum to silicon ratio of 11.18 could be obtained at a grinding fineness of 75% -200 mesh, sodium carbonate dosage of 4000g/t, sodium silicate dosage of 2kg/t, sodium hexametaphosphate dosage of 250g/t , collector dosage of 700g/t and pulp concentration of28.57%.
铝土矿是生产氧化铝、耐火材料及建材的主要原料,随着经济的快速发展,金属铝的消耗量将日益增加。随着铝土矿高品位矿石急剧减少,对中低铝硅比铝土矿采用选矿一拜尔法是生产氧化铝的有效方法,即采用选矿方法脱除矿石中的含硅矿物,获得高铝硅比精矿作为拜尔法生产氧化铝的原料。目前国内外都在探索铝土矿选矿脱硅的方法和工艺。
根据铝土矿的化学组成和晶体结构不同,可分为三水铝石、-水软铝石和-水硬铝石等。铝土矿的分子式为Al203·nH2O,属氢氧化物类。主要形成于外生风化和沉积作用中,与褐铁矿、碳页岩、粘土矿物密切共生,含杂质较多。三水铝石又名水铝氧石、氢氧铝石,分子式为A1203·3H2O,晶体结构属层状。氢氧离子成六方最紧密堆积,铝离子填充于邻接的两层氢氧离子之间的2/3八面体空隙,组成配位八面体的结构层。结构层内属离子键,结构层间属分子键,其层状结构决定了它的片状形态。三水铝石通常与高岭石、针铁矿、赤铁矿、伊利石等共生。三水铝石脱水可变成一水软铝石、一水硬铝石和α刚玉,可以被高岭石、多水高岭石等交代。高岭石为主要含硅矿物,分子式Al4(Si4010)(OH)8,因本身含铝,在选矿脱除高岭石时,会造成少量铝的损失。
浮选的方法包括正浮选和反浮选两种。正浮选一般采用脂肪酸或磺酸盐类捕收剂浮选铝土矿,反浮选则采用胺类捕收剂,以六偏磷酸钠、水玻璃、丹宁和苏打等作为调整剂。早在20世纪30—40年代,美国采用浮选法选别阿肯色地区的三水铝石铝土矿,可以将铝土矿的铝硅比由3—8提高到10~19,不足之处是回收率较低。70年代初,针对含高岭石、石英的三水铝石型铝土矿采用塔尔油、机油和油酸的混合物作捕收剂,硅酸钠、六偏磷酸盐作调整剂进行了浮选回收三水铝石的研究,同样精矿回收率很低[1]。Weston等人的专利提出,将NaOH(或 KOH)、Na2CO3和分散剂六偏磷酸钠等加入球磨机中进行湿磨,pH保持在9.5~12.5进行调浆浮选,可获得满意的结果。前苏联处理乌克兰境内的维考波里斯克铝土矿时,采用塔尔油脂肪酸和阳离子药剂AH lI一14的混合物作捕收剂,并添加苏打和0II-7型药剂,可使铝硅比由原矿的5左右提高到9左右。前苏联对三水铝石铝土矿采用筛洗一脱泥一浮选流程,铝硅比由4.7提高到9.00,回收率为58.80%[2.3 J。V.V.Ishchenko[4]等使用十二胺对铝硅比为2.4~2.7的原矿进行反浮选,获得铝硅比>7的精矿。N.M.Anishchenko[5]等使用月桂胺成功地实现了鲕绿泥石与三水铝石的分离。
近年来,我国主要是对一水硬铝石型铝土矿浮选脱硅进行了研究,而对三水铝石型铝土矿的选矿研究很少。20世纪90年代,正浮选铝硅分离研究获得进展,具代表性的是选择性磨矿一选择性聚团浮选分离工艺和阶段磨浮分离工艺。根据铝土矿中各种矿物可磨性差异,通过选择性磨矿+分级获得部分粗粒级合格产品,再脱泥后对剩余窄级别物料进行浮选[6]。针对我国一水硬铝石型铝土矿含硅矿物硬度低、密度小、易磨,一水硬铝石嵌布粒度细等特点,近年来开展了铝土矿反浮选研究[78]。本研究以印尼的三水铝土矿为原料,通过磨矿细度、捕收剂和调整剂用量、浮选浓度等多因素条件试验,探讨正浮选方法脱硅影响因素和适宜工艺条件。
一、矿石性质与试验方法
印尼三水铝石型铝土矿主要含铝矿物为三水铝石,含硅矿物主要为高岭石和石英,并含赤铁矿、钛针铁矿、锐钛矿等。原矿矿物含量和化学组成如表1和表2所示。原矿粒度组成如表3所示。
表1 原矿矿物含量 %矿物名称三水铝石高岭石石英赤铁矿钛针铁矿锐钛矿含量759~102542表2 原矿化学组成 %矿物名称SiO2Al2O3Fe2O3TiO2MgOCaO含量5.6550.317.341.180.100.17原矿铝硅比为8.67。为了分析+200目、-200目级别的铝硅比,原矿用-200目筛子分为+200目和-200目两个级别,分别进行了化学分析。其分析结果见表4。从表4可看出,原矿中+200目和-200目级别铝硅比明显不同,+200目级别的铝硅比达到10以上。
浮选试验采用XFDl-63型单槽式浮选机,浮选槽容量500mL,浮选温度32℃,调浆时间3min,浮选时间为10min。试验以氧化石蜡皂和塔尔油作为捕收剂,碳酸钠、水玻璃、六偏磷酸钠作为调整剂。碳酸钠在磨矿过程中加入。
二、试验结果与分析
(一)磨矿细度对浮选精矿铝硅比和回收率的影响。不同磨矿细度的浮选试验结果如表5所示。其中碳酸钠用量5kg/t,捕收剂用量0.5kg/t,矿浆浓度28.6%。从表5可看出,浮选精矿A1203品位和铝硅比随着磨矿细度的增加而逐渐增加,在磨矿细度为75%-200目时分别达到最大值50.67%和10.92;当磨矿细度大于75%-200目时精矿A12O3品位和铝硅比开始下降。精矿A1203回收率则随着磨矿细度的增加不断增加,磨矿细度为一200目含量92%时精矿中A1203的回收率达到66.19%。可认为磨矿细度为75%一200目时铝土矿中含铝矿物基本达到单体解离,随着磨矿细度继续增大,脉石矿物产生泥化,从而使浮选精矿中夹杂了更多脉石矿物,导致精矿的铝硅比降低。
(二)碳酸钠用量对浮选的影响。在磨矿细度为75%一200目条件下,进行了不同碳酸钠用量浮选试验。试验结果如表6所示。从表6可见,随着碳酸钠用量从3000g/t增加到7000g/t,精矿A1203品位和铝硅比变化不大, A1203品位介于50.03%~50.54%,铝硅比介于10.52-lO.88;而精矿A1203回收率随着碳酸钠用量增加先增大而后逐渐降低,在4000g/t时达到最大值64.07%。因为精矿Al203品位和铝硅比受碳酸钠用量影响不大,所以可认为碳酸钠主要是起调整矿浆pH的作用,而在矿浆中的分散作用并不明显。碳酸钠用量增大使捕收剂在高碱性条件下有更强的捕收性,从而提高精矿A1203回收率。
三价铬镀锌
2017-06-06 17:50:07
三价铬镀锌,是电镀锌的一种方法。长期以来,电镀铬通常采用六价铬电镀液。近年来,由于六价铬对环境等方面带来污染影响,于是加紧了对三价铬电镀的研究。六价铬的毒性大,对环境污染严重。镀铬溶液大量使用铬酐,是电镀
行业
含铬废水的主要污染源。这一问题已经引起人们普遍的关注,各国政府也加强了立法管理,如美国对六价铬的排放标准已从0.05mg/L降到0.01mg/L。六价铬镀铬液的电流效率低和覆盖能力差也是一个问题。为了从根本上减轻污染和提高电流效率及覆盖能力,三价铬镀铬工艺越来越受到人们的青睐。三
价格
镀锌的优点:镀层耐蚀性佳,可直接镀取微观不连续的铬镀层;镀液分散能力和覆盖能力优于六价铬镀液;毒性低,废水处理容易;镀液的电流效率高,可达25%左右;镀液的电流密度范围宽,可在0.5~100A/dm宽广的阴极电流范围内获得合格的镀层。用三价铬电镀与六价铬电镀相比,具有很多优异特性,但在实际应用中也存在一些问题,其可镀性受到一定限制。缺点有:镀层的厚度只能达到3μm,不能再增厚,因此不适合镀硬铬;镀层的硬度低;色泽不像六价铬镀液中取出的呈青白色,而是带有不锈钢的黄白色;镀液稳定性差。三价铬镀锌所用镀液,是用的硫酸盐,以草酸作为三价铬的配位络合剂,以硼酸作为缓冲剂。在草酸溶液的三价铬镀液中未发现六价铬离子,而且获取的是具有塑性和没有裂纹的铬镀层。
三氯化锑
2017-06-06 17:50:12
三氯化锑 1英文名称 Antimony trichloride 别 名 氯化亚锑 分子式 SbCl3 外观与性状 白色易潮解的透明斜方结晶体,在空气中发烟 分子量 228.11 蒸汽压 0.13kPa(49.2℃) 熔 点 73.4℃ 沸点:223.5℃ 溶解性 溶于醇、苯、丙酮等 密 度 相对密度(水=1)3.14 稳定性 稳定 危险标记 20(酸性腐蚀品) 主要用途 用作分析试剂、催化剂及用于有机合成三氯化锑 对环境的影响:一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入、摄入或经皮肤吸收对身体有害。高浓度的三氯化锑对眼睛、皮肤、粘膜和呼吸道有强烈的刺激作用。可引起支气管炎、肺水肿。 慢性影响:实验表明有诱变作用。二、毒理学资料及环境行为 急性毒性:LD50525mg/kg(大鼠经口) 危险特性:受热或遇水分解放热,放出有毒的腐蚀性烟气。具有较强的腐蚀性。 燃烧(分解)产物:氯化物。三氯化锑 应急处理处置方法:一、泄漏应急处理 隔离泄漏污染区,周围设警告标志,建议应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,用沙土、干燥石灰或苏打灰混合,转移到安全场所。如大量泄漏,收集回收或无害处理后废弃。二、防护措施 呼吸系统防护:可能接触其粉尘时,应该佩带防尘口罩。必要时佩带防毒面具。 眼睛防护:戴化学安全防护眼镜。 防护服:穿工作服(防腐材料制作)。 手防护:戴橡皮手套。 其它:工作后,淋浴更衣。单独存放被毒物污染的衣服,洗后再用。保持良好的卫生习惯。三、急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水彻底冲洗。若有灼伤,就医治疗。 眼睛接触:立即提起眼睑,用流动清水冲洗10分钟或用2%碳酸氢钠溶液冲洗。 吸入:迅速脱离现场至空气新鲜处。注意保暖,保持呼吸道通畅。必要时进行人工呼吸。就医。 食入:患者清醒时立即漱口,给饮牛奶或蛋清。立即就医。 灭火方法:干粉、砂土。
佛山市三水雄鹰金属防护材料厂有限公司
2019-01-15 09:49:27
佛山市三水雄鹰金属防护材料厂有限公司是专门从事铝表面处理技术研究、生产和服务的高科技公司。
自公司成立以来,依托北京理工大学国家重点实验室的技术、设备和人才优势,相继研究开发了铝合金整平光亮技术、铝合金光亮酸蚀技术和铝合金化学磨砂无烟抛光技术等多项专利技术及系列产品。特别是新近推出的铝合金光亮酸蚀技术和铝合金化学磨砂无烟抛光技术,更是带来了铝合金表面处理的重大技术变革。
目前,我国铝合金阳极氧化处理生产厂家中,基于传统表面前处理技术的占绝大多数,产品同质化非常严重,缺乏国际竞争力,许多厂家生产的铝合金产品附加值很低,一吨铝材的利润还不到5%,许多中小厂家生存都很困难。大厂依靠品牌的优势,虽然占据了一定的市场份额,但也只能靠量上取得利润,技术上并没有得到提高。随着其它发展中国家的进步和我国劳动力优势的丧失及环保机制的健全,我国现有铝材加工业的成本会越来越高,越来越多的厂家会逐步走向衰落,只有不断提高技术才是发展之路。
铝合金整平光亮技术工艺简单、无烟、无流痕,不仅能生产抛光平光材,同时能生产抛光磨砂材,其化学砂面是除酸砂、碱砂外的一种新的化学砂面,克服了传统抛光的许多弊端。该技术已申报一项国家发明专利。目前整平光亮技术已在佛山金兰集团等多家铝材厂以及众多的五金厂投入使用,是公司目前的主打技术之一。
铝合金光亮酸蚀技术解决了普通酸蚀铝材表面发暗的世界难题,生产一种全新的光亮酸蚀磨砂材种,极大地提升铝合金表面质量,是现有普通酸蚀、碱蚀、低温抛光等传统工艺的换代技术。该技术已申报两项国家发明专利。光亮酸蚀技术的市场前景十分广阔,以2005年全国生产了约150万吨普通氧化材为例,若全部换代,产品项目可增加产值15亿元;下游生产厂家因表面质量改善可额外增加附加值30亿元左右,同时可节约5-6万吨原铝。该项技术已成功地在广东兴发集团等多家大型企业投入生产,并出口到东南亚等国家和地区。目前亚洲铝厂、凤铝铝业、南山集团、南平铝业等国内大型铝加工企业正积极洽谈和准备中。
铝合金化学磨砂无烟抛光技术彻底解决了三酸抛光存在的黄烟、流痕、高药耗、低成品率的世界难题,是现有三酸抛光、电解抛光的升级换代技术。该技术已申报两项国家发明专利。以2005年全国共生产了约50万吨抛光材为例,若全部换代,可节约各类酸(以磷酸为主)约15万吨、黄烟及废水处理成本近15亿元,提升产品成品率减少生产厂家损失约5亿元,有着巨大的环保价值和经济价值。该技术已成功地在广西南南铝业及多家五金厂投入使用。亚洲铝厂、兴发集团、南平铝业正积极洽谈和准备中。
广东佛山三水金雄鹰有限公司 ◆ 酸蚀光亮技术 ◆ 获得
2019-01-09 09:34:23
广东佛山三水金雄鹰有限公司 ◆ 酸蚀光亮技术 ◆ 获得巨大成功广东佛山三水金雄鹰有限公司酸蚀光亮技术收到愈来愈多的生产厂家及销售商的欢迎,大量的海外客户及台商争相订购经酸蚀光亮技术处理的铝材。酸蚀光亮作为一种铝材表面处理的前沿技术,是在酸蚀槽后配备酸性光亮槽,对酸蚀材进行光亮处理,不仅保留了酸蚀去机械纹能力强、起砂快、铝耗低的优点,而且解决了酸蚀材表面发暗的弊端,是一项难得的技术突破。经酸蚀和其配套技术酸蚀光亮工艺处理的型材,表面无纹、细砂、亮丽。此外,酸蚀光亮可以取代低温抛光槽,以及三合一槽,生产平光料,即型材直接进酸蚀光亮槽进行除油,去膜,增亮,两道水洗后直接氧化。可以预见,随着酸蚀光亮技术的迅速普及,我国酸蚀铝型材的国际竞争能力有望得到迅速提升。服务电话:0757-5511262
水氯化法提金
2019-02-14 10:39:39
水溶化法在20世纪70年代末曾有不少专利。卡林(Carlin )公司用二次氯化法树立日处理500 t矿石的接连实验装置,使耗费大大下降,美国专利曾报导在328kPa氧压下(160℃)用氯化物溶液浸出,金浸出率高于98.5%。 化法(亦称湿法氯化或溶化)是在盐或酸的水溶液中,参加氯或其他氯化剂,使金被氯化而浸出提取。此法初期选用氯水或硫酸加漂的溶液从矿石中成功地浸出金,并用硫酸亚铁从浸出液中沉积出金。后经开展成为19世纪末的首要浸出金办法之一。一般说来,原猜中但凡可溶的物质,化法也能够溶解。选用化法,金的浸出率比化法高,可达90% -98%,氯的报价比低,氯的耗费量约为0.7~2. 5 kg/t精矿。化法面世后,化法工艺在19世纪末也相继呈现,并开端广泛使用于从矿石中直接浸出金,故几乎在同一时刻化法在各工厂中止选用,近些年来,因为一些湿法冶金办法污染环境,化法又从头被用来提取金、银,往后它有或许再次成为金、银重要的冶金办法之一。 该工艺的特色是出资少,收回率高,有利于环保。化法实质上是一种氧化浸出。氯溶于水后,发作水解反响生成氧化性极强的次氯酸使金氯化成HAuCl4或NaAuCl4,再用二氧化硫、硫酸亚铁复原沉积。按运用的氯化剂和介质的不同,化分为:介质水溶化,次氯酸盐(次或)氯化和电氯化三种首要工艺。 基本原理 水氯化法浸金原理是:金在饱满有Cl2的酸性氯化物溶液中被氧化,构成三价金的络阴离子。 氯是一种强氧化剂,能与大多数元素起反响。对金来说,它既是氧化剂又是络合剂。在Au-H20-Cl- 系统的电位-pH图中,如下图所示,金被氯化而发作氧化并与氯离子络合,故称水氯化浸出金,其化学反响为: 2Au+3Cl2+2HC1 ==== 2HAuC14 2Au+3Cl2+2NaC1 ==== 2NaAuC14 这一反响是在溶液中氯浓度显着增高的低pH条件下快速进行的。 三价金在氯化物溶液中电位适当高: Au+4C1- ==== AuC14-+3e- Eө =1.00 V[next] 因而,已溶金很易被复原,故矿石浸出时溶液中有必要饱满。水氯化法的最大长处是廉价,浸出速度快,用于化法的浸出剂首要是(湿)氯和氯盐。因为氯的活性很高,不存在金粒表面被钝化的问题。因而,在给定的条件下,金的浸出速度很快,一般只需浸出1-2h。这种办法更适于处理碳质金矿、经酸洗过的含金矿石、锑渣、含砷精矿或矿石等,而且从溶液中收回金很简单。 可是,水氯化法也存在严峻的局限性:当硫化矿浸出时,会有一部分或大部分MeS溶解,这使废液处理复杂化,因而,关于含S<0.5%的酸性矿石,用水氯化法或许是合适的,除此,水氯化法还存在Cl2对现场的损害以及设备复杂化的问题,可是跟着复合金属的使用,设备问题或许会方便的解决。 南非有一座大型水氯化法处理重选金精矿的实验工厂。所用流程是:精矿在800℃下氧化焙烧脱硫后,将焙砂在通的溶液中浸出,金的浸出率达99%。然后用SO2复原,从溶液中沉积金。用氯化溶液洗刷后的金粉,纯度达三个九。 工艺特色 实践流程是矿石磨至-200目占65%以上,矿浆浓度45%,温度27-38℃,以500t/d的给矿量参加4台串联的拌和槽,总的拌和时刻为20 h。氯化槽是衬胶的,外涂尿烷泡沫隔热层。通过分配管道送入前三个槽,第四个槽是储槽,以使氯化反响完结。密封槽的气体排至洗刷塔,该塔为一填料塔,有纯碱溶液循环通过,氯同纯碱反响生成次,再回来流程中同矿浆作用,的使用率超越99%。已用氯化法处理约60×104t矿石,当给矿含金8.71 g/t时,提取率为83.5%,每吨矿石耗费18 kg。 凭借氯化使难选冶矿石适于化法的这种预氧化处理,在美国至少有两个较大的金矿山选用。尽管如此,也还存在不同观念。如马塞恩在关于莫克金矿流程挑选的证明中以为,若选用进行预氧化处理,在后继的化作业中欲达较高的金提取率,等药剂耗费甚高(86.26 kg/t矿石、碳酸钠48.12 kg/t矿石,金化浸出率方可达84%),因而以为该矿预先氯化不是一种经济实用的办法。 漫金作用 水溶化作为预处理手法受到重视,并在固执矿石或精矿的处理上得到了工业使用。其间一例是卡林金矿选厂处理含碳难选矿石时选用的矿浆氧化法。卡林氧化矿石中存在活性炭及长链有机碳水化合物,难以用惯例化法处理,但发现含碳物质的有害影响可用矿浆中加氧化剂来消除,即可选用或使用就地电解含盐矿浆发生的次,将炭及有机碳水化合物氧化成CO或CO2。这种经氯化法预处理过的矿浆便可直接给入化回路。 水溶化法还可用于地下浸出,涅别拉以为这是从含金0.6-2.1g/t的贫矿中提金最经济的办法。美国专利也曾介绍,为进行地下浸出,对含金矿石疏松爆炸,然后让含氯、氧化剂和有机物质(钠叠氮化酯、羟或乙二胺)的溶液流入与金络合。开始研讨标明,金的提取率达80%-90%(浸出时刻三周),并证明含金低浓度溶液可用吸附、离子交换或电解等办法收回其间80%一-90%的金。工业上能否选用这种地下浸出法首要取决于地质条件。 涅别拉供给了用于地下浸出的氯化物溶液的三种配方:①HCl+0.1mol/L NaCl+Cl2;(2)Ca(OH)2+C12,③NaCl+0.05 mol/L Na2C03+Cl2,其间都是到达饱满的,并对三者的浸出作用作了比较。 化法提金在工业生产中现已得到实践使用。美国选用介质水溶化工艺成功地处理了碳质金矿石,于1980年在内华达州建成了碳质矿石处理工厂。Murchison联合矿藏公司用该工艺处理锑烧渣,金的收回率达98%以上。此外,对含金黄铁矿、砷黄铁矿选用化法处理,比化法和法浸出率高。在通过650℃氧化焙烧或许矿石浆化后于75-100℃通入空气氧化预处理后,矿石以液固比2:1浸出数小时,金的浸出率达92%以上。 因为氯化剂简单得到,报价廉价;生成的金氯化物简单别离,且易得到纯产品;避免了氯化作业对人体的损害,有利于环保。因而,化法提金工艺的开展前景非常宽广,在未来的金银提取领域中,必将占有重要位置。 总归,水溶化法适于处理较单一的含金质料或含碳金矿石,其长处是金浸出率较高,选用作氧化剂报价比低。美国矿业局曾用进行过中间工业性实验。该法的首要缺陷是许多杂质简单一起溶解而耗费药剂,并给后继提金进程带来困难,选用操控电位浸出法,可部分战胜这方面的缺陷。