您所在的位置: 上海有色 > 有色金属产品库 > 三水氯化铬颜色 > 三水氯化铬颜色百科

三水氯化铬颜色百科

三水铝石

2018-12-29 09:43:03

三水铝石的化学组成为Al(OH)3、晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯(Gibbs)的姓于1822年命名。晶体结构与水镁石相似,由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成,只是Al3+不占满夹层中的全部八面体空隙,仅占据其中的2/3。三水铝石的晶体一般极为细小,呈假六方片状,并常成双晶﹔通常以结核状、豆状、土状集合体产出。白色,或因杂质染色而呈淡红至红色。玻璃光泽,解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5,比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物,是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。   三水铝石(Gibbsite)   Al(OH)3   [晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。   [结构与形态]单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm,β=94°34';Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。   斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。 [物理性质]白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。   偏光镜下:无色。二轴晶( ),2V=0°。Ng=1.587,Nm=Np=1.566。   [产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。

三水铝石(Gibbsite)

2019-01-21 10:39:10

Al(OH)3 【化学组成】常有少量的Fe2+和Ga3+呈类质同像替换Al3+。 【晶体结构】单斜晶系, ;a0=0.864 nm,b0=0.507 nm,c0=0.972 nm,β=94°34′;Z=8。具水镁石型结构,但Al3+只充填于每两层相邻的OH-羟离子之间的2/3八面体空隙,组成配位八面体的结构层。 【形态】单晶呈假六方形极细片状。通常成结核状、豆状集合体或隐晶质块状集合体。     【物理性质】白色,常带灰、绿和褐色;玻璃光泽,解理面呈珍珠光泽,集合体和隐晶质者暗淡。解理平行{001}极完全。硬度2.5~3.5。相对密度2.30~2.43。 【成因及产状】主要是长石等铝硅酸盐经风化作用而形成。部分三水铝石为低温热液成因。在区域变质作用中,三水铝石经脱水作用变为一水硬铝石;而在更深的区域变质条件下,可变为刚玉;如有SiO2存在时则变为含铝硅酸盐矿物。 【主要用途】为铝的主要矿石矿物。也可用于制造耐火材料和高铝水泥原料。

高岭石-三水铝石型铝土矿

2019-02-12 10:07:54

首要矿藏为三水铝石、高岭石、赤铁矿、针铁矿等。关于低档次的三水铝石的铝土矿,一般以为浮选都是比较有用的,有主线正浮选三水铝石,也有建议反浮选含硅矿藏,药方与一般氧化矿浮选根本相同。以为参加和辅佐捕收剂(火油、机油)能够强化浮选,浮选流程方面留意泥沙分选及分支浮选等。     某高岭石-三水铝石型铝土矿选用泥、水分选,粗等级(-50mm+3mm)磨矿后用磁选除铁,矿泥磨矿后浮选,其选别工艺流程如图1所示。选别后得三种产品,铝土精矿用于出产电炉刚玉或拜耳法炼铝氧,高岭石产品用烧结法收回,含铁产品出产铁精矿,从而使铝土矿得到归纳收回。图1  某高岭石-三水铝石铝土矿选别示意图     磁选磁场强度为3000~3500奥斯特,浮选捕收剂为油酸:塔尔油:机油=1:1:1,其总用量为300g/t。其选别成果见表1。从表1中可见,铝土矿精矿含Al2O3为49.8%、收回率为58.8%,铝硅比从4.7提高到8.4,取得了必定分选作用。 表1  某高岭石-三水铝石型铝土矿选别目标产品名称产率/%Al2O3/%SiO2/%Fe2O3/%铅硅比档次收回率档次收回率档次收回率铝土矿精矿 高岭石产品 含铁产品 原矿50.10 21.70 25.10 100.0049.80 39.30 30.70 24.4058.80 23.00 18.20 100.005.95 21.80 2.97 9.1332.70 59.10 8.20 100.0014.00 23.00 30.40 17.5340.10 16.30 43.60 100.008.4 1.8 10.3 4.7

铝土矿床的主要成分--三水铝石

2018-12-28 09:57:34

三水铝石(Gibbsite) Al(OH)3 三水铝石是铝的氢氧化物矿物,在铝土矿床中它是主要的成分。三水铝石的晶体极细小,晶体聚集在一起成结核状、豆状或土状,一般为白色,有玻璃光泽,如果含有杂质则发红色。它们主要是长石等含铝矿物风化后产生的次生矿物。   化学组成为Al(OH)3﹑晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯 (Gibbs)的姓于1822年命名。晶体结构与水镁石相似﹐由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成﹐只是Al3+不占满夹层中的全部八面体空隙﹐仅占据其中的2/3。三水铝石的晶体一般极为细小﹐呈假六方片状﹐并常成双晶﹔通常以结核状﹑豆状﹑土状集合体产出。白色﹐或因杂质染色而呈淡红至红色。玻璃光泽﹐解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5﹐比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物﹐是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。   三水铝石[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。   [结构与形态] 单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm;Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3 具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。   斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。     [物理性质] 白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。   偏光镜下:无色。二轴晶。Ng=1.587,Nm=Np=1.566。   [产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。

浮选方法提高三水铝石铝硅比的研究

2019-01-24 09:38:19

Abstract The flotation experiments of Indonesia gibbsite ore were conducted using oxidized paraffin soap and tall oil as the collectors and sodium carbonate, sodium silicate and sodium hexametaphosphate as the regulators. Through the con- ditional experiments of multi-factors such as grinding fineness, collector and regulator dosage and pulp concentration, the factors influencing the improvement of the silicon-aluminum ratio of gibbsite and the suitable flotation conditions were inves- tigated. The experiment results show that a flotation concentrate having a recovery of 63.49% and an aluminum to silicon ratio of 11.18 could be obtained at a grinding fineness of 75% -200 mesh, sodium carbonate dosage of 4000g/t, sodium silicate dosage of 2kg/t, sodium hexametaphosphate dosage of 250g/t , collector dosage of 700g/t and pulp concentration of28.57%. 铝土矿是生产氧化铝、耐火材料及建材的主要原料,随着经济的快速发展,金属铝的消耗量将日益增加。随着铝土矿高品位矿石急剧减少,对中低铝硅比铝土矿采用选矿一拜尔法是生产氧化铝的有效方法,即采用选矿方法脱除矿石中的含硅矿物,获得高铝硅比精矿作为拜尔法生产氧化铝的原料。目前国内外都在探索铝土矿选矿脱硅的方法和工艺。 根据铝土矿的化学组成和晶体结构不同,可分为三水铝石、-水软铝石和-水硬铝石等。铝土矿的分子式为Al203·nH2O,属氢氧化物类。主要形成于外生风化和沉积作用中,与褐铁矿、碳页岩、粘土矿物密切共生,含杂质较多。三水铝石又名水铝氧石、氢氧铝石,分子式为A1203·3H2O,晶体结构属层状。氢氧离子成六方最紧密堆积,铝离子填充于邻接的两层氢氧离子之间的2/3八面体空隙,组成配位八面体的结构层。结构层内属离子键,结构层间属分子键,其层状结构决定了它的片状形态。三水铝石通常与高岭石、针铁矿、赤铁矿、伊利石等共生。三水铝石脱水可变成一水软铝石、一水硬铝石和α刚玉,可以被高岭石、多水高岭石等交代。高岭石为主要含硅矿物,分子式Al4(Si4010)(OH)8,因本身含铝,在选矿脱除高岭石时,会造成少量铝的损失。 浮选的方法包括正浮选和反浮选两种。正浮选一般采用脂肪酸或磺酸盐类捕收剂浮选铝土矿,反浮选则采用胺类捕收剂,以六偏磷酸钠、水玻璃、丹宁和苏打等作为调整剂。早在20世纪30—40年代,美国采用浮选法选别阿肯色地区的三水铝石铝土矿,可以将铝土矿的铝硅比由3—8提高到10~19,不足之处是回收率较低。70年代初,针对含高岭石、石英的三水铝石型铝土矿采用塔尔油、机油和油酸的混合物作捕收剂,硅酸钠、六偏磷酸盐作调整剂进行了浮选回收三水铝石的研究,同样精矿回收率很低[1]。Weston等人的专利提出,将NaOH(或 KOH)、Na2CO3和分散剂六偏磷酸钠等加入球磨机中进行湿磨,pH保持在9.5~12.5进行调浆浮选,可获得满意的结果。前苏联处理乌克兰境内的维考波里斯克铝土矿时,采用塔尔油脂肪酸和阳离子药剂AH lI一14的混合物作捕收剂,并添加苏打和0II-7型药剂,可使铝硅比由原矿的5左右提高到9左右。前苏联对三水铝石铝土矿采用筛洗一脱泥一浮选流程,铝硅比由4.7提高到9.00,回收率为58.80%[2.3 J。V.V.Ishchenko[4]等使用十二胺对铝硅比为2.4~2.7的原矿进行反浮选,获得铝硅比>7的精矿。N.M.Anishchenko[5]等使用月桂胺成功地实现了鲕绿泥石与三水铝石的分离。 近年来,我国主要是对一水硬铝石型铝土矿浮选脱硅进行了研究,而对三水铝石型铝土矿的选矿研究很少。20世纪90年代,正浮选铝硅分离研究获得进展,具代表性的是选择性磨矿一选择性聚团浮选分离工艺和阶段磨浮分离工艺。根据铝土矿中各种矿物可磨性差异,通过选择性磨矿+分级获得部分粗粒级合格产品,再脱泥后对剩余窄级别物料进行浮选[6]。针对我国一水硬铝石型铝土矿含硅矿物硬度低、密度小、易磨,一水硬铝石嵌布粒度细等特点,近年来开展了铝土矿反浮选研究[78]。本研究以印尼的三水铝土矿为原料,通过磨矿细度、捕收剂和调整剂用量、浮选浓度等多因素条件试验,探讨正浮选方法脱硅影响因素和适宜工艺条件。 一、矿石性质与试验方法 印尼三水铝石型铝土矿主要含铝矿物为三水铝石,含硅矿物主要为高岭石和石英,并含赤铁矿、钛针铁矿、锐钛矿等。原矿矿物含量和化学组成如表1和表2所示。原矿粒度组成如表3所示。 表1  原矿矿物含量       %矿物名称三水铝石高岭石石英赤铁矿钛针铁矿锐钛矿含量759~102542表2  原矿化学组成       %矿物名称SiO2Al2O3Fe2O3TiO2MgOCaO含量5.6550.317.341.180.100.17原矿铝硅比为8.67。为了分析+200目、-200目级别的铝硅比,原矿用-200目筛子分为+200目和-200目两个级别,分别进行了化学分析。其分析结果见表4。从表4可看出,原矿中+200目和-200目级别铝硅比明显不同,+200目级别的铝硅比达到10以上。 浮选试验采用XFDl-63型单槽式浮选机,浮选槽容量500mL,浮选温度32℃,调浆时间3min,浮选时间为10min。试验以氧化石蜡皂和塔尔油作为捕收剂,碳酸钠、水玻璃、六偏磷酸钠作为调整剂。碳酸钠在磨矿过程中加入。 二、试验结果与分析 (一)磨矿细度对浮选精矿铝硅比和回收率的影响。不同磨矿细度的浮选试验结果如表5所示。其中碳酸钠用量5kg/t,捕收剂用量0.5kg/t,矿浆浓度28.6%。从表5可看出,浮选精矿A1203品位和铝硅比随着磨矿细度的增加而逐渐增加,在磨矿细度为75%-200目时分别达到最大值50.67%和10.92;当磨矿细度大于75%-200目时精矿A12O3品位和铝硅比开始下降。精矿A1203回收率则随着磨矿细度的增加不断增加,磨矿细度为一200目含量92%时精矿中A1203的回收率达到66.19%。可认为磨矿细度为75%一200目时铝土矿中含铝矿物基本达到单体解离,随着磨矿细度继续增大,脉石矿物产生泥化,从而使浮选精矿中夹杂了更多脉石矿物,导致精矿的铝硅比降低。 (二)碳酸钠用量对浮选的影响。在磨矿细度为75%一200目条件下,进行了不同碳酸钠用量浮选试验。试验结果如表6所示。从表6可见,随着碳酸钠用量从3000g/t增加到7000g/t,精矿A1203品位和铝硅比变化不大, A1203品位介于50.03%~50.54%,铝硅比介于10.52-lO.88;而精矿A1203回收率随着碳酸钠用量增加先增大而后逐渐降低,在4000g/t时达到最大值64.07%。因为精矿Al203品位和铝硅比受碳酸钠用量影响不大,所以可认为碳酸钠主要是起调整矿浆pH的作用,而在矿浆中的分散作用并不明显。碳酸钠用量增大使捕收剂在高碱性条件下有更强的捕收性,从而提高精矿A1203回收率。

三价铬镀锌

2017-06-06 17:50:07

三价铬镀锌,是电镀锌的一种方法。长期以来,电镀铬通常采用六价铬电镀液。近年来,由于六价铬对环境等方面带来污染影响,于是加紧了对三价铬电镀的研究。六价铬的毒性大,对环境污染严重。镀铬溶液大量使用铬酐,是电镀 行业 含铬废水的主要污染源。这一问题已经引起人们普遍的关注,各国政府也加强了立法管理,如美国对六价铬的排放标准已从0.05mg/L降到0.01mg/L。六价铬镀铬液的电流效率低和覆盖能力差也是一个问题。为了从根本上减轻污染和提高电流效率及覆盖能力,三价铬镀铬工艺越来越受到人们的青睐。三 价格 镀锌的优点:镀层耐蚀性佳,可直接镀取微观不连续的铬镀层;镀液分散能力和覆盖能力优于六价铬镀液;毒性低,废水处理容易;镀液的电流效率高,可达25%左右;镀液的电流密度范围宽,可在0.5~100A/dm宽广的阴极电流范围内获得合格的镀层。用三价铬电镀与六价铬电镀相比,具有很多优异特性,但在实际应用中也存在一些问题,其可镀性受到一定限制。缺点有:镀层的厚度只能达到3μm,不能再增厚,因此不适合镀硬铬;镀层的硬度低;色泽不像六价铬镀液中取出的呈青白色,而是带有不锈钢的黄白色;镀液稳定性差。三价铬镀锌所用镀液,是用的硫酸盐,以草酸作为三价铬的配位络合剂,以硼酸作为缓冲剂。在草酸溶液的三价铬镀液中未发现六价铬离子,而且获取的是具有塑性和没有裂纹的铬镀层。 

三氯化锑

2017-06-06 17:50:12

三氯化锑   1英文名称 Antimony trichloride   别 名 氯化亚锑   分子式 SbCl3 外观与性状 白色易潮解的透明斜方结晶体,在空气中发烟   分子量 228.11 蒸汽压 0.13kPa(49.2℃)   熔 点 73.4℃ 沸点:223.5℃ 溶解性 溶于醇、苯、丙酮等   密 度 相对密度(水=1)3.14 稳定性 稳定   危险标记 20(酸性腐蚀品) 主要用途 用作分析试剂、催化剂及用于有机合成三氯化锑 对环境的影响:一、健康危害  侵入途径:吸入、食入、经皮吸收。   健康危害:吸入、摄入或经皮肤吸收对身体有害。高浓度的三氯化锑对眼睛、皮肤、粘膜和呼吸道有强烈的刺激作用。可引起支气管炎、肺水肿。   慢性影响:实验表明有诱变作用。二、毒理学资料及环境行为  急性毒性:LD50525mg/kg(大鼠经口)   危险特性:受热或遇水分解放热,放出有毒的腐蚀性烟气。具有较强的腐蚀性。   燃烧(分解)产物:氯化物。三氯化锑 应急处理处置方法:一、泄漏应急处理  隔离泄漏污染区,周围设警告标志,建议应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,用沙土、干燥石灰或苏打灰混合,转移到安全场所。如大量泄漏,收集回收或无害处理后废弃。二、防护措施  呼吸系统防护:可能接触其粉尘时,应该佩带防尘口罩。必要时佩带防毒面具。   眼睛防护:戴化学安全防护眼镜。   防护服:穿工作服(防腐材料制作)。   手防护:戴橡皮手套。   其它:工作后,淋浴更衣。单独存放被毒物污染的衣服,洗后再用。保持良好的卫生习惯。三、急救措施  皮肤接触:立即脱去污染的衣着,用大量流动清水彻底冲洗。若有灼伤,就医治疗。   眼睛接触:立即提起眼睑,用流动清水冲洗10分钟或用2%碳酸氢钠溶液冲洗。   吸入:迅速脱离现场至空气新鲜处。注意保暖,保持呼吸道通畅。必要时进行人工呼吸。就医。   食入:患者清醒时立即漱口,给饮牛奶或蛋清。立即就医。   灭火方法:干粉、砂土。

佛山市三水雄鹰金属防护材料厂有限公司

2019-01-15 09:49:27

佛山市三水雄鹰金属防护材料厂有限公司是专门从事铝表面处理技术研究、生产和服务的高科技公司。 自公司成立以来,依托北京理工大学国家重点实验室的技术、设备和人才优势,相继研究开发了铝合金整平光亮技术、铝合金光亮酸蚀技术和铝合金化学磨砂无烟抛光技术等多项专利技术及系列产品。特别是新近推出的铝合金光亮酸蚀技术和铝合金化学磨砂无烟抛光技术,更是带来了铝合金表面处理的重大技术变革。 目前,我国铝合金阳极氧化处理生产厂家中,基于传统表面前处理技术的占绝大多数,产品同质化非常严重,缺乏国际竞争力,许多厂家生产的铝合金产品附加值很低,一吨铝材的利润还不到5%,许多中小厂家生存都很困难。大厂依靠品牌的优势,虽然占据了一定的市场份额,但也只能靠量上取得利润,技术上并没有得到提高。随着其它发展中国家的进步和我国劳动力优势的丧失及环保机制的健全,我国现有铝材加工业的成本会越来越高,越来越多的厂家会逐步走向衰落,只有不断提高技术才是发展之路。 铝合金整平光亮技术工艺简单、无烟、无流痕,不仅能生产抛光平光材,同时能生产抛光磨砂材,其化学砂面是除酸砂、碱砂外的一种新的化学砂面,克服了传统抛光的许多弊端。该技术已申报一项国家发明专利。目前整平光亮技术已在佛山金兰集团等多家铝材厂以及众多的五金厂投入使用,是公司目前的主打技术之一。 铝合金光亮酸蚀技术解决了普通酸蚀铝材表面发暗的世界难题,生产一种全新的光亮酸蚀磨砂材种,极大地提升铝合金表面质量,是现有普通酸蚀、碱蚀、低温抛光等传统工艺的换代技术。该技术已申报两项国家发明专利。光亮酸蚀技术的市场前景十分广阔,以2005年全国生产了约150万吨普通氧化材为例,若全部换代,产品项目可增加产值15亿元;下游生产厂家因表面质量改善可额外增加附加值30亿元左右,同时可节约5-6万吨原铝。该项技术已成功地在广东兴发集团等多家大型企业投入生产,并出口到东南亚等国家和地区。目前亚洲铝厂、凤铝铝业、南山集团、南平铝业等国内大型铝加工企业正积极洽谈和准备中。 铝合金化学磨砂无烟抛光技术彻底解决了三酸抛光存在的黄烟、流痕、高药耗、低成品率的世界难题,是现有三酸抛光、电解抛光的升级换代技术。该技术已申报两项国家发明专利。以2005年全国共生产了约50万吨抛光材为例,若全部换代,可节约各类酸(以磷酸为主)约15万吨、黄烟及废水处理成本近15亿元,提升产品成品率减少生产厂家损失约5亿元,有着巨大的环保价值和经济价值。该技术已成功地在广西南南铝业及多家五金厂投入使用。亚洲铝厂、兴发集团、南平铝业正积极洽谈和准备中。

广东佛山三水金雄鹰有限公司 ◆ 酸蚀光亮技术 ◆ 获得

2019-01-09 09:34:23

广东佛山三水金雄鹰有限公司 ◆ 酸蚀光亮技术 ◆ 获得巨大成功广东佛山三水金雄鹰有限公司酸蚀光亮技术收到愈来愈多的生产厂家及销售商的欢迎,大量的海外客户及台商争相订购经酸蚀光亮技术处理的铝材。酸蚀光亮作为一种铝材表面处理的前沿技术,是在酸蚀槽后配备酸性光亮槽,对酸蚀材进行光亮处理,不仅保留了酸蚀去机械纹能力强、起砂快、铝耗低的优点,而且解决了酸蚀材表面发暗的弊端,是一项难得的技术突破。经酸蚀和其配套技术酸蚀光亮工艺处理的型材,表面无纹、细砂、亮丽。此外,酸蚀光亮可以取代低温抛光槽,以及三合一槽,生产平光料,即型材直接进酸蚀光亮槽进行除油,去膜,增亮,两道水洗后直接氧化。可以预见,随着酸蚀光亮技术的迅速普及,我国酸蚀铝型材的国际竞争能力有望得到迅速提升。服务电话:0757-5511262

水氯化法提金

2019-02-14 10:39:39

水溶化法在20世纪70年代末曾有不少专利。卡林(Carlin )公司用二次氯化法树立日处理500 t矿石的接连实验装置,使耗费大大下降,美国专利曾报导在328kPa氧压下(160℃)用氯化物溶液浸出,金浸出率高于98.5%。    化法(亦称湿法氯化或溶化)是在盐或酸的水溶液中,参加氯或其他氯化剂,使金被氯化而浸出提取。此法初期选用氯水或硫酸加漂的溶液从矿石中成功地浸出金,并用硫酸亚铁从浸出液中沉积出金。后经开展成为19世纪末的首要浸出金办法之一。一般说来,原猜中但凡可溶的物质,化法也能够溶解。选用化法,金的浸出率比化法高,可达90% -98%,氯的报价比低,氯的耗费量约为0.7~2. 5 kg/t精矿。化法面世后,化法工艺在19世纪末也相继呈现,并开端广泛使用于从矿石中直接浸出金,故几乎在同一时刻化法在各工厂中止选用,近些年来,因为一些湿法冶金办法污染环境,化法又从头被用来提取金、银,往后它有或许再次成为金、银重要的冶金办法之一。    该工艺的特色是出资少,收回率高,有利于环保。化法实质上是一种氧化浸出。氯溶于水后,发作水解反响生成氧化性极强的次氯酸使金氯化成HAuCl4或NaAuCl4,再用二氧化硫、硫酸亚铁复原沉积。按运用的氯化剂和介质的不同,化分为:介质水溶化,次氯酸盐(次或)氯化和电氯化三种首要工艺。    基本原理    水氯化法浸金原理是:金在饱满有Cl2的酸性氯化物溶液中被氧化,构成三价金的络阴离子。    氯是一种强氧化剂,能与大多数元素起反响。对金来说,它既是氧化剂又是络合剂。在Au-H20-Cl- 系统的电位-pH图中,如下图所示,金被氯化而发作氧化并与氯离子络合,故称水氯化浸出金,其化学反响为:                               2Au+3Cl2+2HC1 ==== 2HAuC14                              2Au+3Cl2+2NaC1 ==== 2NaAuC14    这一反响是在溶液中氯浓度显着增高的低pH条件下快速进行的。    三价金在氯化物溶液中电位适当高:                                 Au+4C1- ==== AuC14-+3e-                                       Eө =1.00 V[next]    因而,已溶金很易被复原,故矿石浸出时溶液中有必要饱满。水氯化法的最大长处是廉价,浸出速度快,用于化法的浸出剂首要是(湿)氯和氯盐。因为氯的活性很高,不存在金粒表面被钝化的问题。因而,在给定的条件下,金的浸出速度很快,一般只需浸出1-2h。这种办法更适于处理碳质金矿、经酸洗过的含金矿石、锑渣、含砷精矿或矿石等,而且从溶液中收回金很简单。    可是,水氯化法也存在严峻的局限性:当硫化矿浸出时,会有一部分或大部分MeS溶解,这使废液处理复杂化,因而,关于含S<0.5%的酸性矿石,用水氯化法或许是合适的,除此,水氯化法还存在Cl2对现场的损害以及设备复杂化的问题,可是跟着复合金属的使用,设备问题或许会方便的解决。    南非有一座大型水氯化法处理重选金精矿的实验工厂。所用流程是:精矿在800℃下氧化焙烧脱硫后,将焙砂在通的溶液中浸出,金的浸出率达99%。然后用SO2复原,从溶液中沉积金。用氯化溶液洗刷后的金粉,纯度达三个九。    工艺特色    实践流程是矿石磨至-200目占65%以上,矿浆浓度45%,温度27-38℃,以500t/d的给矿量参加4台串联的拌和槽,总的拌和时刻为20 h。氯化槽是衬胶的,外涂尿烷泡沫隔热层。通过分配管道送入前三个槽,第四个槽是储槽,以使氯化反响完结。密封槽的气体排至洗刷塔,该塔为一填料塔,有纯碱溶液循环通过,氯同纯碱反响生成次,再回来流程中同矿浆作用,的使用率超越99%。已用氯化法处理约60×104t矿石,当给矿含金8.71 g/t时,提取率为83.5%,每吨矿石耗费18 kg。    凭借氯化使难选冶矿石适于化法的这种预氧化处理,在美国至少有两个较大的金矿山选用。尽管如此,也还存在不同观念。如马塞恩在关于莫克金矿流程挑选的证明中以为,若选用进行预氧化处理,在后继的化作业中欲达较高的金提取率,等药剂耗费甚高(86.26 kg/t矿石、碳酸钠48.12 kg/t矿石,金化浸出率方可达84%),因而以为该矿预先氯化不是一种经济实用的办法。    漫金作用    水溶化作为预处理手法受到重视,并在固执矿石或精矿的处理上得到了工业使用。其间一例是卡林金矿选厂处理含碳难选矿石时选用的矿浆氧化法。卡林氧化矿石中存在活性炭及长链有机碳水化合物,难以用惯例化法处理,但发现含碳物质的有害影响可用矿浆中加氧化剂来消除,即可选用或使用就地电解含盐矿浆发生的次,将炭及有机碳水化合物氧化成CO或CO2。这种经氯化法预处理过的矿浆便可直接给入化回路。    水溶化法还可用于地下浸出,涅别拉以为这是从含金0.6-2.1g/t的贫矿中提金最经济的办法。美国专利也曾介绍,为进行地下浸出,对含金矿石疏松爆炸,然后让含氯、氧化剂和有机物质(钠叠氮化酯、羟或乙二胺)的溶液流入与金络合。开始研讨标明,金的提取率达80%-90%(浸出时刻三周),并证明含金低浓度溶液可用吸附、离子交换或电解等办法收回其间80%一-90%的金。工业上能否选用这种地下浸出法首要取决于地质条件。    涅别拉供给了用于地下浸出的氯化物溶液的三种配方:①HCl+0.1mol/L NaCl+Cl2;(2)Ca(OH)2+C12,③NaCl+0.05 mol/L Na2C03+Cl2,其间都是到达饱满的,并对三者的浸出作用作了比较。    化法提金在工业生产中现已得到实践使用。美国选用介质水溶化工艺成功地处理了碳质金矿石,于1980年在内华达州建成了碳质矿石处理工厂。Murchison联合矿藏公司用该工艺处理锑烧渣,金的收回率达98%以上。此外,对含金黄铁矿、砷黄铁矿选用化法处理,比化法和法浸出率高。在通过650℃氧化焙烧或许矿石浆化后于75-100℃通入空气氧化预处理后,矿石以液固比2:1浸出数小时,金的浸出率达92%以上。    因为氯化剂简单得到,报价廉价;生成的金氯化物简单别离,且易得到纯产品;避免了氯化作业对人体的损害,有利于环保。因而,化法提金工艺的开展前景非常宽广,在未来的金银提取领域中,必将占有重要位置。    总归,水溶化法适于处理较单一的含金质料或含碳金矿石,其长处是金浸出率较高,选用作氧化剂报价比低。美国矿业局曾用进行过中间工业性实验。该法的首要缺陷是许多杂质简单一起溶解而耗费药剂,并给后继提金进程带来困难,选用操控电位浸出法,可部分战胜这方面的缺陷。

水氯化法提金—电氯化法浸出工艺

2019-02-14 10:39:39

在水溶液中,金可与氯化合生成易溶性氯化金,由此提出了金矿石的氯化浸出法。金矿石氯化浸出剂是氧气。氯化浸出法的进一步开展是运用电解氯化钠溶液得到的氯浸出矿石中的金。运用这种电化学浸出办法从矿石中浸出金并由溶液中分出金的办法也称电氯化浸出法,简称电氯化法。    金矿石的电氯化浸出进程,多年来得到不断改进,其金的浸出速率比化法快,已进行了半工业实验,没有到达工业运用阶段。由于原子氯和对金的强氧化性和强络合才能,人们在处理难处理金矿石时,对电氯化法给予特别注意,经常在一些小设备中进行小规划加工处理。    1)电氯化法浸出金进程的一般原理    金矿石的电化学浸出进程在悬浮矿浆食盐溶液中通直流电进行,经过电解氯化钠溶液发作氯的氧化和络合作用,使金浸出,转入溶液。    在隔阂电解浸出槽中电解氯化钠溶液时,H+在阴极上放电分出气态氢,C1-在阳极上放电分出气态氯。在阳极上OH-也或许放电分出02。尽管OH-放电分出的氧的可逆电位[Eө(OH-)=+0.82 V,18℃NaCl溶液]比C1-放电可逆电位[Eө(Cl-)=-36 V]低,但其超电位数值大(见下表),实践分出电位比C1-高得多,在电流密度为1 000 A/m2下,Eө(OH-)=1.911 V,Ee(C1-)= 1.611 V。氧和氯在软石墨阳极上超电位电位/V离子电流密度/(A·m-2)102001000200050001mol/L KOH溶液Cl-——0.2510.2980.417饱满NaClOH-0.5250.9631.0911.1421.186     所以,电解中性氯化钠溶液时的首要反响为:    在铁板阴极上                                 2H20+2e- === H2↑+20H-    在石墨阳极上                                    2Cl- ==== Cl2↑+2e-    总反响式为:                              2H20+2C1- ==== C12↑+H2↑+20H-    进程发作的原子氯或分子氧对金都有强的氧化作用。氯溶解在食盐溶液中生成次氯酸,当溶液呈碱性时,则生成易分化的次氯酸盐。C10-的放电电位比C1-小得多,如下图所示,即便次氯酸盐浓度适当小,C10-与C1-也能一起放电。[next]                                  2ClO--2e- ==== 2Cl- + O2↑                                     2C1- - 2e- ==== Cl2↑    分出的氧也是一种强氧化剂。    金的标准电极电位为+1.50 V,在氢以上,意味着金的溶解只能在含氧溶液中进行,特别需求那些电极电位高的活性氧化剂,如次氯酸、次氯酸盐和Cl-(见下表)。金在碱金属氯化物中与氯离子生成氯化络合物,使金的标准电极电位变小,促进金浸出。含氯氧化剂和贵金属的氧化复原电位电极ClO-/Cl-HClO/Cl2(液)Au+/AuAu3+/AuCl2/Cl-Pt4+/Pt氧化复原电位/V1.7151.5941.581.51.3951.2电极Ir3+/IrPd2+/PdAg+/AgRu3+/RuRh3+/Rh 氧化复原电位/V1.150.980.80.490.81      在金矿石电化学浸出进程中,由于食盐电解进程中所耗费的气态氯和氧不断得到弥补,促进浸出反响敏捷进行。电氯化浸出时金的溶解进程也是一种分散进程,金的浸出速率受拌和强度和温度影响,一般,温度升高对金浸出有利,可是,当温度高于40℃今后,金浸出速率就明显下降。拌和强度过大,剧烈拌和会使氯渗透到阴极液,碱渗透到阳极液,或使分子氯很多蒸发,导致溶液中氧过量,构成矿石中的金部分钝化。[next]    2)电氯化法浸出金的运用实例    ①有隔阂电解槽的电氯化浸出。金矿石在装有隔阂的电解浸出槽中浸出。电解浸出槽是铁制的或木制的圆形槽,槽底和槽盖用石棉钢筋混凝土或生铁制作,槽内涂石油沥青或煤沥青。阴极室与阳极室用隔阂离隔。阴极是带孔铁质圆筒,外套隔阂。阳极是石墨板,依环形排列于底部与槽底绝缘。阳极室内装机械拌和器,转速120~150 r/min。经过充沛磨细的矿石与NaCl溶液混合后加到阳极室,运用不断拌和,使矿石颗粒坚持悬浮状。    电氯化浸出运用的矿石是磁黄铁矿型的金精矿,精矿所含的硫化物首要是磁黄铁矿,此外还有少数黄铁矿和硫砷铁矿。精矿的化学组分为:SiO2 3.44%,A1203 0.16%,CaO 7.92%,MgO 4.0%,Mn2O3 1.06%,CuS04 0.O1%,CuS 2.06%,Fe 38.96%,As0.14%,总S 31.88%,Au 52 g/t, Ag 98 g/t。精矿中银和铁,在电氯化浸出时进入溶液。溶液中的银发作堆积,并在金颗粒表面构成氯化银薄膜。铁以硫酸亚铁方式存在,硫酸亚铁将金的氯化物中的金复原成金属金,使金从溶液中堆积出来。据此拟定含金磁黄铁矿精矿的电氯化浸出工艺流程如下图所示。    磨细矿石浮选精矿粒度为74% -200目,用浓度为2.5 moVL的NaCl溶液混合制浆,并参加2%,矿浆液固比1.4:1。将该矿浆加到阳极室,2.5 moVL NaCl溶液加到阴极室,进行榜首段电氯化浸出.电氯化阳极电流密度为750 A/m2,容积电流密度为5500 A/m3,时刻为15 min。榜首段浸出后的精矿再磨细到91.5%-200目,在相同条件下进行第二段电氯化浸出。经过两段电氯化浸出金的金总浸出率为82.7%。用电氯化法处理每吨精矿需耗费3100 g NaCl,其电能耗费为45 kW·h。[next]    浸出进程中参加少数。对金颗粒表面的氯化银薄膜有溶解作用,使金浸出率得到进步。在榜首和第二阶段浸出之间,需对精矿再磨细,以损坏金颗粒表面的氯化银薄膜,进步金浸出率。硫酸亚铁的有害影响,可选用敏捷氧化的办法加以消除,也能够在阶段浸出间精矿再磨操作时用水冲刷除掉二价铁离子。    ②无隔阂电解槽的电氯化浸出。无隔阂电解浸出槽不存在矿泥阻塞问题。在无隔阂槽中运用电解氛化钠水溶液分出的原子氯,从矿石中浸出金,已进行了半工业规划实验。晏庄金矿是“铁帽型”含金氧化矿,以褐铁矿为主,金呈次显微状赋存在褐铁矿孔隙里,粒度为0.001~0.005mm,单个的为0.074~0.06 mm。矿石含金量9g/t。由于磨矿后细微的金粒进入矿泥中,故曾先后选用混-摇床、混-浮选、混-浮选-渗滤化等流程处理,金的收回率仅为63%左右。后在电氯化一树脂矿浆法实验中,金的收回率大大进步。这是由于矿石电氯化浸出时,金颗粒表面的铁、锰薄膜简单被损坏,可获得较高的金浸出率。    电氯化是经过电解碱金属氯化物(NaCl),使水溶液中放出活性氯将矿石中的金氧化生成AuC13,进而成为HAuC14及其复盐NaAuC14,并在水中离解成离子:                                HAuC14 —→ H++AuC14-                               NaAuC14 —→ Na++AuC14-                                AuC14- —→Au3++4C1-    生成的AuCl4-被阴离子交流树脂吸附,进程中离解生成的Au3+,有极少数堆积于阴极板上成阴极泥。向电解槽中参加,除为在电解进程中能分出一部分氯外,首要是用来避免氛化钠离解生成的氛被碱或水吸收而损耗活性氯。    半工业实验设备选用ф900 mm×1000 mm铁制元隔阂电解浸出槽。电解浸出槽内装有螺旋搅碎桨,螺旋桨直径为300 mm,转速为374 r/min,阳极为250 mm×700mm石墨板,每槽5块,沿槽的四周固定在拌和轴与槽壁之间,并与槽底绝缘。阴极为槽的内壁。阳极与阴极的间隔为200 mm。实验条件是:矿石粒度71.92%-200目,矿浆浓度22.25%,电流密度285 A/m2,槽电压13V,矿浆温度50℃。按质料配入氯化钠30 kg/t,20 kg/t制成矿浆,pH值为20再参加-16~+50意图717型湿树脂10 kg/t,在接连拌和下通电氯化和吸附8 h。经144 h的实验,所得的平均指标为:树脂含金量83.80 mg/g,尾液含金质量浓度为1.69 mg/L,除掉阴极上少数的阴极泥(含金6.26g/t)忽略不计,金的吸附收回率为99.10%。    为了调查含金硫化物矿(首要是黄铁矿)对电氯化的影响,还进行了含30%硫化物矿的混合矿样的实验,结果表明,在此条件下含金硫化物矿对金的浸出和吸附几乎没有影响。    选用筛选-筛分-摇床联合流程从矿浆中别离载金树脂获得了好的别离作用。载金树脂中的金用静电淋洗收回、静电淋洗在拌和珐琅桶内进行,拌和转速为252 r/min,螺旋桨直径70 mm。阴极为铅板,阳极为石墨板,南北极距离80 mm。金的淋洗剂由4%硫脉和2%制造。在槽电压2V和阴极电流密度400 A/m,条件下,运用7倍于载金树脂质量的淋洗剂,进行8h淋洗,金近于彻底淋洗。    金矿石的电氯化浸出作用遭到诸要素的影响。明显,影响金浸出的要素都与初生态氯的产值及运用程度有直接关系,氯产值高又能充沛运用,金的浸出作用就好。电氯化浸出作为一种强化浸出办法,对含少数硫化物的金矿加工是可行的,即便矿石中硫化物含量高达30%,金浸出率仍可到达88%。    金的电氯化浸出与金在矿石中的赋存状况、矿石化学成分以及矿藏成分有关,它们对电氯化进程的影响很大。合适电氯化浸出的矿石有:金呈游离态而无氯的吸附剂的石英矿石;金粒表面的铁、锰薄膜易氧化进入溶液的铁帽型氧化矿石;黄铁矿和其他硫化物含量少的金矿石;磁黄铁矿、黄铁矿精矿;含金方铅矿、闪锌矿、黄铁矿、毒砂混合矿石或精矿以及含铜金矿石等。不合适电氯化浸出的金矿石有:含很多CaC03或MgCO3的碳酸盐矿石,碳酸盐匆溶解抓相互作用增大氯的耗费,并发作很多细泥阻塞隔阂的孔隙;高砷金矿和高锑金矿,砷化物和锑化物在电氯化进程中发作二次反响,耗费溶解的氯;含碲和硒的金矿,某些碲化物和硒化物对氯化金发作复原作用,阻碍金的电氯化浸出;含石墨和炭的金矿石,碳质物对氯化金发作抢先吸附,大大削减金的有用浸出。

水氯化法提金—氯化铁溶液浸出工艺

2019-02-14 10:39:39

桂林冶金地质学院分析了FeC13溶液浸出金的热力学。浸出金是氧化复原反响进程。因为反响:                                    Fe3+ + e-====Fe2+的标准复原电极电位E1ө =0.771 V。而                                   Au3+ + 3e- ==== Au的E2ө=1.420 V。因而,用Fe3+不能将Au氧化为Au3+。假如溶液中存在C1-,C1-可与Au3+络合生成AuC14-:                                 AuCl4-+3e- ==== Au+4C1-E3ө=0.994 V,因而在氯离子存在的条件下,Fe3+将Au氧化为AuC14-就较简单了。经过操控系统中参与反响有关物质的浓度,就能使浸出金得以完结,浸出反响为:                              Au+3Fe3++40- ==== AuC14-+3Fe2+    该反响对应的原电池电动势为:                                              RT         α(AuC14-)·  α3(Fe3+)         E = Eө(Fe3+/Fe2+)-Eө(AuC14-/Au)- ——In ———————————                                                                                3F            α4(Cl-)·α3(Fe3+)要使该反响从左向右自发进行,E有必要大于零。若取a (AuC14-)=10-2, a (Cl-)=10,不难算出,当a(Fe 3+)/a(Fe2+)>101.80时,E大于零。    在实际操作进程中这些条件是不难满意的,比方,在298 K下,当参加FeCl3使[Fe3+]=3 mol/L,调理[Cl-]=10 mol/L(FeC13电离C1-,浓度缺乏部分参加HCl或NaCl )。溶液中AuC14-浓度可达10-2.28mol/L。在整个反响进程中[Fe3+ ]/「Fe2+]>102.80。这样的成果关于工业生产是有价值的。热力学分析标明,只需操控必定的热力学条件,坚持满足的Fe3+和C1-浓度,在常温(25℃)下,pH为1.0时,即可用FeCl3溶液来浸出金。    相同,某些金属(Fe, Sn, Pb, Cu, Ag)硫化物、砷化物均可与反响,耗费FeC13,一起生成的S附在矿粒表面,构成一层硫膜,阻止浸出反响。再者,有机物质和粘土的存在对浸出也是晦气的。    近年来,美国呈现了200t/d规划的堆浸场,其工艺办法十分简洁,只需在地上挖一些平行的槽坑,堆一层矿石,喷一层浸出溶液,再堆一层矿石,喷一层浸出溶液,如此循环往复,直至堆淋作业完结,最终从槽中取出富液并从中收回金。这种办法适于处理低档次的金矿,但因为矿粉空隙小,渗透性差,因而金的浸出率不高。    别的,湖南有色金属研究所对龙山砷锑金矿渣焙砂选用FeCl3浸出,金浸出率达98%-99%。电堆积率为98% -99%,金总的收回率达96.54%。与化法比较,浸出率高出4%-6%,总收回率高出5.34%,浸渣中的含金量也从3-5g/t降至0.75-1.5g/t。

水氯化法提金—高温氯化挥发法浸出工艺

2019-02-14 10:39:39

早在1851年,普拉特内提出运用使金转变成氯化金,然后再用水提取氯化金。这一办法后来在西里亚被选用。艾伦首要认识到氯化金的蒸发效果。氯化金的蒸发问题曾引发一系列研讨,1964年由谢弗以及许多苏联学者提出有价值的研讨,并以1970年末黑格和希尔在科罗拉多矿业学院所作的研讨工作到达高潮。美国矿务局最近依据艾斯尔、海南和费希尔等人所做的金矿石氯化的实验,在约翰·黑格的论文基础上提出了金的各种氯化物、它们的安稳区及生成这些氯化物的最新的热力学数据。本节不再重复这些推导,而是介绍斯图尔特·克罗斯德尔对霍姆斯特克型的金矿石列出的工艺流程和焙烧、氯化器以及冷凝体系的规划;以及苏联对4种不同精矿的氯化蒸发实验成果及我国辽宁冶金研讨所的扩展实验。    1)霍姆斯特克金矿的氯化蒸发流程    氯化工艺流程如下图所示。破碎后的矿石给入流态化焙烧炉中,发生的SO2气体送往触摸法制硫酸车间。焙烧矿进入两段式氯化器中,并往氯化器中通入循环运用的。从氯化器放出的气体进入冷凝室,在那里与氯化钠触摸和反响,生成盐-金氯化物的熔体(已从气流中提取了金),再进一步处理,以便收回金。及失效了的物质经冷却和用硫酸洗刷后送到紧缩机中再加压。从回来的气流中取出一部分进行液化,以便使能够蒸馏并除掉失效的物质    ①焙烧炉。为阐明含中等数量黄铁矿的硅质含金矿石氯化进程,已画出了包含操作温度和流速在内的简略的工艺流程,如图所示,在铁的含量为5%时,焙烧进程中不需要再弥补碳,就能发生满足的热量完成矿石的焙烧。焙烧进程中终究运用氧气仍是空气,或许两者结合运用,经实验决议仍是运用氧气,因为这时尽管会增加动力耗费和出资费用,但可缩小焙烧炉的体积,并可得到SO2浓度更高的气体送往硫酸车间,因而就可抵消制氧所需的那部分附加费用。[next]    焙烧的规划应依据终究是运用氧气仍是空气而决议,一同还要考虑到最佳的焙烧温度。为了便利起见,假定焙烧温度627℃是比较适宜和可行的,但在更低的温度(下降100℃)也是彻底或许的。在焙烧温度下降,也就是在527℃的反响器中焙烧时,或许会使给料冷却和彻底裸壳(bareshell),但仍处于热平衡状况。    为加速氯与金的反响,有必要进步氯化器的操作压力,但焙烧炉的压力还要高于氯化器的操作压力。单就为触摸法制硫酸供给S02这一点来说,也期望进步氯化器的压力。    ②氯化器。这种抓化器肯定要规划成二段或三段式的反响器,而且这几段或许都设置在同一个炉壳内。最适宜的操作温度约为350℃。尽管活动会使反响器冷却,而且不会有很多的反响热发生,但仍有必要对焙烧后的矿石给料进行冷却。因为金-铁氯化物的络合物会堆集在炉壁上,并使很多的金留在炉子里(这些金只能在每年或两年清洗一次反响器时才干收回),因而氯化反响器应尽或许规划成有耐火材料的内衬,以避免它在器壁处堆集金的络合物。因为这些反响的条件比较适度,所以不会呈现耐火材料的腐蚀问题。    为考虑到热量和质量的平衡问题,选用的流速为61 cm/s,这也就是为使固体物料能到达很好的搅动的最低的流态化速度,也是最低的安稳态气流。的脉动式活动也是能够运用的,它能削减流进反响器和整个冷凝阶段的量,别的,规划自身就不计划使一切的氧气都得到运用,而是经过的再循环效果使之坚持较高的压力,以保证能以很快的反响速度生成金的络合物。    实验证明,在没有任何促进剂存鄙人进行的金矿直接氯化,-200目矿样最大能以颗粒数每分钟3.45%的速率氯酸盐化。在有存在(它能使氯化反响速度至少进步25倍)并有必定的氯压(它可使氯化反响速度进步13.5-18倍)的条件下进行操作,反响动力学似乎是很快。估计霍姆斯特克的金矿破碎到-20目,在氯化器中逗留1h就可使金彻底转变为氯化金。但为了保证在一段氯化器中能到达很高的转化率,该反响床有必要在适当低的均匀床浓度下操作。选用两段氯化时,榜首段可在较高的金浓度下操作,最终的精加工阶段在十分低的金浓度下操作,这样就可使金到达很高的总转化率。    这一流程标明,往每段氯化器中增加少数的铁粉,是很有必要的。因为平衡核算标明,在氯化器的反响温度下,光靠氧化铁与的反响还不能供给必要数量的FeC13络合物。    ③冷凝体系。在氯化器中形成了金的络合物今后,蒸气状的络合物就以它在氧气中的很低浓度的方式从反响器中逸出。在金的络合物冷凝曾经,从挨近氯化器温度的气流中先经旋流集尘器除尘,然后使这些气体与含有熔体的氯化钠触摸,以使蒸发性的金-铁络合物能转变成四氯铁酸钠适当的NaAuC14。    NaAuC14络盐的键能强度足以使金的氯化物从气相的AuFeCl6络合物中分离出来,而且在低于150℃时,以含有这种络合物的液态熔体的方式存在。    这个反响和气体的冷却进程是在直径0.46 m高30m的水平或立式的高速烟道中进行的,必要时,这种烟道能曲折180o。这种液态盐的络合物可用旋流器在烟道结尾搜集,而气体(温度约为150℃)经过与洗刷旋流器的硫酸触摸而进一步冷却到80℃。然后将氧气在轴流式紧缩机中紧缩,并在80℃时回来氯化阶段。为到达高度紧缩和蒸馏,需放出一部分气体,用以避免失效了的气体的堆集。这种金络合物与盐的反响,虽或许会放出很多的热,但就到达热平衡来说仍是太小,所以热的传递就成为重要因素。[next]    能够坚信,用盐使气相的含金氯化物络合的办法是可完成的,并能供给一种比活性炭吸附更有用的办法,到达从氯化器逸出的气流中收回金。运用低温氯化法处理金、银矿石,以使矿石中的金和银蒸发,到达提金和银的意图。    2)氯化蒸发法从难溶的金精矿中收回金    氯化蒸发法是将精矿与氯化剂一同加热,使金、银、铜、铅、锌等金属氯化生成具有蒸发性的物质提高并捕集于烟尘中,然后经过湿法冶金从烟尘中分步收回这些金属。    氯化剂NaCl或CaCl2的用量一般为精矿质量的10%~15%。当质料为硫化物精矿时,应预先进行不彻底氧化焙烧,使焙砂中残留3%~5%的硫,以便于氯化进程中发生一部分氯化催化剂效果的S2Cl2,使精矿能在1 000℃下氯化蒸发,但精矿不含硫时,氯化蒸发温度有必要不低于1150℃。此刻氯化剂的用量可削减到精矿质量的5%。精矿常与质量分数为10%~15% NaCl一同加水于圆盘制球机中制球,经150~200℃烘干后筛去粉末,再于竖式炉中进行氯化蒸发。当运用的物料为粉料(不制球)时,可选用回转窑进行氯化蒸发。苏联4种难溶金精矿焙砂的氯化蒸发实验成果见下表。 难溶金精矿焙砂的化蒸发实验条件及目标精矿特性氯化剂用量/%氯化温度/℃氯化时刻/h渣含金/(g·t-1)金收回率/%金与硫化物严密共生,前含很多碳5115030.8~396~99金与砷黄铁矿共生5115020.8~396~99金与黄铁矿共生10115030.199.7含铜品10115030.499.4     我国曾对某矿的浮金精矿进行了高温氯化蒸发扩展实验。金精矿组分:Cu 0.20%,Pb 0.29%,Zn 0.29 %,Fe 32.00%,S 30.96%,Si02 26.30%,CaO 0.48%,MgO 0.49%,A1203 0.89%,Au 76.38 g/t,Ag 41.83 g/t。因为精矿含硫高,故先经欢腾焙烧脱硫。焙砂经磨矿后和70.6%140~180目烟尘兼并,于圆盘制粒机上喷洒相对密度为1.29~1.30的氯化钙液,制成直径10~12 mm的球粒。经竖式枯燥炉枯燥至含水1%左右,此刻球粒含氯化钙8%~10%,抗压强度为10~15kg/t,经振动筛去粉料后,送回转窑进行氯化焙烧。    实验用的回转窑生产能力为0.98 t/(m3·d),窑体倾斜度1.85%,转速1.42 r/min,矿球在窑内的充填系数10.3%,逗留时刻80 min 。加热用柴油,每吨矿球耗油250~300 kg。窑内高温区(氯化蒸发区)温度1040~1080℃,烟气含5%~9%氧,烟气排出速度1.5~2 m/s。经氯化蒸发焙烧后,矿球失重率10%左右,抗压强度达31 ~ 95 kg/t,所含的铁和杂质均契合炼铁要求,可直接入高炉熔炼生铁。收尘运用沉降斗、冲击洗刷器、内喷式文氏管和湿式电收尘器等组成的湿式快速收尘体系。    氯化蒸发烟尘中的金悉数呈金属状况,将其于磁球磨机中参加液,并向液中参加漂和硫酸,使其分化放出活性氯来氯化金:[next]                                   2Au+Cl2 —→2AuCl                                   AuCl+Cl-—→AuC12                                 AuC12-+C12 —→ AuC14-     其总反响式为:                              2Au+3Cl2+2HCl —→2HAuCl4    因为烟法中含金较多(12 kg/t),故选用两次浸出。浸出前先将烟尘磨碎至-0.15mm(100目)。一次浸出条件为:固液比1:2,参加10%、5%漂、4%硫酸,浸出时刻4h,金的浸出率可达96.70 %。二次浸出条件为:固液比1:1.5,参加10%、3%漂、4%硫酸,浸出时刻4h,可使剩余金的79.80%进入溶液。两次浸出金的总浸出率达99%以上,浸出渣含金小于100g/t。    二次浸出渣用质量分数为2%洗刷两次,一次洗液回来作二次浸出用,二次洗液回来作一次洗刷用。洗刷渣过滤后送收回银、铅。二次氯化浸出液回来作一次浸出用,以便于取得富含金的浸出液。    一次浸出的富金溶液,在0.7 moV/L浓度下加钠复原金:                      2AuCl3+3Na2S03+3H20 ==== 2Au↓+6HC1+3Na2SO4    钠的用量为理论量的1.2~1.8倍,一般按每克金参加1.5 g。金的复原率达99.9%,液中含金的质量浓度在0.01g/L以下。复原的金粒经过滤后,用质量分数为1%的洗刷两次,再用水洗刷两次,取得的金纯度大于98.5%,然后分别用氯化铵液和稀硝酸处理除掉银、铅等杂质,金的纯度可进步到99.7%~99.8%。    浸出金的渣,用pH为1的酸性食盐水洗刷后送去收回其他金属。

黄铜颜色

2017-06-06 17:50:00

黄铜颜色是金属硅一项重要的物理性质。随着黄铜越来越多的应用在人们的日常生活中和工业生产中,对黄铜的各项研究具有非常重要的意义。了解黄铜颜色,有利于掌握黄铜的各种性质,更好的利用黄铜。&nbsp;&nbsp;&nbsp; 黄铜是由铜和锌所组成的合金。如果只是由铜、锌组成的黄铜就叫作普通黄铜。黄铜常被用于制造阀门、水管、空调内外机连接管和散热器等。&nbsp;&nbsp;&nbsp; 黄铜颜色是黄色的。众所周知,铜是少数有颜色的金属之一,铜颜色呈紫红色光泽,纯铜在约700毫微米波长有较高的反射率而呈现橙红。铜极易与其它元素形成合金,不同的合金,不同的元素含量又具有不同的色泽。铜与锌的合金称为黄铜,随着锌含量的增加,黄铜颜色由红变为金黄。铜与铝、锡等元素形成的合金称为青铜,青铜颜色为黄带绿色泽。铜与镍形成的合金称为白铜,含镍30%的合金是著名的耐蚀白铜,含有锌和镍的锌白铜具有美丽的银白色。各种元素在铜中含量由少变多的时候,其合金颜色沿红黄青白方向变化。 铜及 合金具有丰富的色泽,铜的化合物也具有不同的颜色。&nbsp;&nbsp;&nbsp; 黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。因此,黄铜颜色不同,说明黄铜所含的金属元素也不同。&nbsp;&nbsp;&nbsp; 更多关于黄铜颜色的资讯,请登录上海有色网查询。&nbsp;

废盐酸浸出菱锰矿制备四水氯化锰

2019-02-25 09:35:32

贵州遵义钛厂是我国最大的海绵钛全流程大型冶炼厂,是国内名列前茅的海绵钛出产大厂。在冶炼进程中有很多发作,为了削减环境污染,运用水洗除氯,这样就会发作很多的废,这种废酸浓度大约为20%,难以处理,并且由于废酸中含有很多杂质,所以对其收回使用也有必定的困难。燃眉之急是怎样处理钛厂废。贵州作为我国的矿产资源大省之一,其锰矿的储量居于全国第三位。贵州省的锰矿资源首要散布在遵义、松桃两区域。跟着近年严峻的无序挖掘,导致锰矿资源档次逐渐下降。这种中低档次的菱锰矿作为冶金、化工等职业的出产质料,很难对其进行开发使用。由于贵州省大部分锰矿资源具有贫、细、杂的特色,所以选矿也有必定的困难,对遵义、松桃两地的中低档次锰矿资源的综合使用一直是一个冶金化工等职业科研人员比较重视的问题。因而,本文作者提出用钛厂废浸出遵义区域中低档次菱锰矿制备四水的试验计划,选用单要素的研讨办法,别离调查浸出温度、浸出时刻、液固比、酸过量系数对锰浸出率的影响。 一、试验 (一)原理菱锰矿与浸出反响首要是菱锰矿中的碳酸锰与发作反响的进程,并且菱锰矿中的Fe2O3、FeO、CaO、MgO等成分也均能与反响而溶解到溶液中,其首要反响方程如下:MnCO3+2HCl(1)=MnCl2+H2O+CO2 △G@=-100.661KJ/mol) 核算可得上述反响的吉布斯自由能△G MaterialW(Mn)/% W(Fe2+)/% W(Fe)/% Rhodochrosite 19 5.6 10 Psilomelane massive 28 - -Manganese dioxide 42 - - 三)办法与工艺流程通过拌和浸出的方法,行将和硫酸渣按必定的液固比配成浸出液在加热的条件下进行,然后进行过滤净化得到四水产品,其工艺流程如图1所示。图1 废酸浸出菱锰矿制取四水的工艺流程 二、成果与分析 挑选浸出温度70、80、90和95℃;浸出时刻40、60、80和100min;反响液固比为2∶1,2.5∶1,3∶1;低浓度过量系数为1、1.3、1.5等几组试验别离进行单要素试验研讨。 (一)浸出温度对铁浸出率的影响 别离组织反响温度为70、80、90和95℃4组试验,浸出试验条件为菱锰矿200g,硬锰矿60g,240mL,液固比为2.5∶1,浸出时刻60min,反响进程PH值0.5~1.0,反响结尾pH值4.0~5.0。图2 浸出反响温度对锰浸出率的影响        图2所示为浸出反响温度对锰浸出率的影响。从图2能够看出,跟着浸出温度的升高,锰的浸出率会相应增高。可是温度过高对进步锰的浸出作用并不显着,相反还添加了投入本钱。因而,挑选80℃作为试验浸出温度较好。 (二)浸出反响时刻对锰浸出率的影响 别离组织反响时刻为40、60、80和100min4组试验,浸出试验条件为菱锰矿200g,硬锰矿60g,250mL,液固比2.5∶1,浸出反响温度80℃,反响进程pH值0.5~1.0,反响结尾pH值4.0~5.0。图3 浸出反响时刻对锰浸出率的影响 图3所示为浸出反响时刻对锰浸出率的影响。从图3能够看出,跟着浸出时刻的添加,锰的浸出率会相应增高。浸出时刻从40min添加到60min,浸出率进步了6%,再进步到80min,浸出率又进步了0.5%。因而,酸浸锰矿浸出时刻越长,锰的浸出作用越好。可是浸出时刻到达60min今后,浸出率的增量显着变小,考虑到60min后延伸浸出时刻会增大本钱并且作用也不很显着,所以浸出时刻挑选60min较好。 (三)浸出反响液固比对锰浸出率的影响别离组织反响液固比为2∶1、2.5∶1、3∶1的3组试验,浸出试验条件为菱锰矿200g,硬锰矿60g,250mL,浸出反响时刻60min,浸出反响温度80℃,反响进程PH值0.5~1.0,反响结尾PH值4.0~5.0。图4 浸出反响液固比对锰浸出率的影响 图4所示为浸出反响液固比对锰浸出率的影响。由图4能够看出,当反响液固比为2.5∶1时反响的浸出率最佳。因而,在反响系统中反响液固比为2.5∶1较好。 (五)废酸过量系数对锰浸出率的影响别离组织酸过量系数为1、1.3、1.5的3组试验,浸出试验条件为菱锰矿100g,硬锰矿40g,130mL,浸出反响时刻60min,浸出反响温度80℃,液固比2.5∶1,反响进程PH值0.5~1.0,反响结尾pH值4.0~5.0。图5 废酸过量系数对锰浸出率的影响 图5所示为废酸过量系数对锰浸出率的影响。从图5能够看出,当的过量系数为1.3(运用量为170mL)时,锰的一次浸出率最好,并优于其它的试验条件。因而,挑选酸的过量系数为1.3较好。但一起也能够看到,废酸运用量关于锰浸出率的影响并不太大,所以,假如结合实际需要也能够恰当挑选较小的过量系数。 (五)成果分析通过对4个首要要素进行单要素分析能够看出,针对前2个要素,跟着反响时刻的延伸,进步反响温度能够很好地进步产品的浸出率,可是当反响时刻到达60min,反响温度到达80℃今后,锰的浸出率不再有显着的改变,为了下降出产本钱,故挑选这2个参数作为最佳反响条件。从液固比和废酸过量系数2个参数能够看出,当液固比为2.5∶1,废酸过量系数为1.3倍时,锰浸出率到达极大值,故挑选这2个参数为最佳反响条件。依据探索性试验与单要素试验得到的最佳工艺条件为依据,咱们又进行了三要素三水平的正交试验,固定酸过量系数为1.3,得到了与单要素试验类似的最佳工艺条件:浸出反响时刻60min、浸出反响温度80℃、反响液固比2.5∶1。依据单要素分析可知液固比对锰浸出率的影响最大,反响温度次之,反响时刻对锰浸出率的影响最小。 (六)最佳工艺条件试验 在断定了浸出反响的最佳工艺条件之后,在固定废酸过量系数为1.3的条件下,又组织了选用此工艺参数的试验,成果如表2所列。 表2 最佳工艺条件试验成果从表2中能够看出,在相同的试验条件下由最佳工艺条件得到的锰的一次浸出率要显着优于各单要素试验所得成果。 (七)产品四水的分析将试验所得到的浸出液进行浓缩后分两步别离参加净化剂除掉里边的钙、镁离予与各种重金属离子,然后对除杂后的浸出液进行过滤、浓缩结晶,结晶后的产品经分析,质量能够到达工业级四水一等品的职业标准HG/T3816-2006,产品品质合格。 三、定论            (一)通过浸出反响的单要素试验,断定了该工艺的最佳反响条件,所得浸出液通过净化、除杂、浓缩、结晶所得产品质量能够到达现行的工业级四水的职业标准。(二)该工艺很好地处理了遵义钛业的废酸处理问题以及对遵义区域中低档次锰矿的资源使用问题,很好地完成了资源的再生使用问题,具有较高的经济价值。(三)该工艺流程简略、操作便利、出资少、效益高,易于完成工业化,有较大的实用价值。

三氯化铁浸出-二氯化铅融盐电解

2019-02-14 10:39:59

方铅矿在酸性的饱满食盐水中浸出,生成二氯化铅和元素硫,二氯化铅溶于热的食盐水中,趁热过滤,滤液冷却后得到二氯化铅结晶;二氯化铅再进行融盐电解,得到金属铅和;用于氧化二,使之变成,循环运用。首要反响如下:    浸出:PbS+2FeC13 ==== PbCl2+2FeCl2+So    电解:负极:PbCl2+2e ==== Pb↓+2Cl-           正极:2Cl- -2e ==== Cl2    再生:2FeC12+Cl2 ==== 2FeC13    M. M. Wong 1980年报导了美国矿务局雷诺冶金研究中心进行的方铅矿浸出-二氯化铅融盐电解扩展实验的有关细节[1],此扩展实验规划为每次处理铅精矿50kg,连续操作,浸出槽是带有聚氯二乙烯面料和钛加热管的钢桶,容积为1.5m3。浸出液含73g/L的FeC13,254g/L的NaCl、pH=3。温度约100`C,反响30min,铅的浸出率达98%,铜和银的浸出率达80%,锌浸出率约为70%。    电解槽内壁用石英砖砌成,尺度为865mm x 635 mm x457mm,阴极为石墨板,阳极为石墨棒,下图为电解槽的示意图。    电解液由25% LiCl、32% KCl和45% PbCl2组成,电解时通入3000A电流,电解温度450℃,电解产出的液态金属铅用虹吸管放入置于真空室的铸模内,分出的C12经过纤维强化塑料管引至氯化塔底部,使FeCl2氧化为FeCl3,循环运用。此电解槽日产金属铅226.8 kg,电耗为每吨铅1168kW·h。此进程每吨铅的生产成本(包括除矿石外的食盐、、、石灰等原材料、人工、修理、税、稳妥、折旧等费用)为108美元,与火法附近。    此进程的长处是:完成了湿法炼铅,基本解决火法炼铅中的环境污染和铅中毒问题;可收回大部分伴生金属和硫;生产规划可大可小。    此进程的缺陷是:选用氯化物系统浸出和电解,对设备原料要求高PbCl2简单结晶,给矿浆运送、过滤等作业添加困难;电解温度450℃,又要发生,存在不安全要素;电解槽结构比较复杂;矿石中的金不能收回。    参考文献:    1  M. M. Wong,Paper Presented at the 109th AIME Annual Meeting at Lasvegas,Nevada,Feb. 24-28,1980

水氯化法提金—次氯酸盐浸出工艺

2019-02-14 10:39:39

次溶液浸出进程属氧化碱浸进程,也是碱法氯化进程。ClO -/Cl- 电极复原电位为1.715 V,比金「E(Au+ /Au)=1.58V」和银[E(Ag+/Ag)=0.80V」等贵金属高,故可用于从矿石浸出金银。从电位-pH图(见相关图)看出,在所有pH范围内,HC10, ClO-的电位都高于Au,都可用次溶液浸出金。    用次浸出碳质金矿时,有必要预先通氧进行氧化,以消除某些复原性物质。矿浆液固比7:1,加碳酸钠调理pH为8-13,在49-98℃温度下通氧,氧化4-6h,然后在20-60℃温度下用次浸出数小时,用活性炭吸附收回溶出的金,金的浸出收回率达90%以上。    在酸性条件下用溶液浸出金,有必要增加适量氯化络合剂,如食盐。含金泥制浆,并酸化至pH约为2,然后用浸出数小时,金浸出率超越95%。溶液中的金用溶剂萃取法收回。    含磁铁矿、结合态氧化铜以及透辉石和云母等碱性脉石矿藏的浸铜渣,不宜酸浸,因为试剂消耗量太大。在碱性条件下用次浸出,金浸出率达92%,因为铜渣中含有剩余,与银激烈络合生成银络离子进人溶液,银的浸出率达76%。金溶解的热力学数据指出,系统pH大于9.7时,溶解金发生水解而分出Au(OH) 3 或AuO2。尽管矿浆中含对银浸出有利,但有必要操控系统pH不高于9.7,确保取得高金浸出率。NaClO和C1- 既是浸出剂,又是氧化剂和络合剂,因而,保持必定的氯离子浓度,使反响物生成络合阴离子,能够进步金的溶解度,消除钝化,加快溶解反响。    次受热简单分化:                          3NaC1O ==== 2NaCl+NaClO3    所以,浸出温度不宜过高,以45-50℃为宜。    国内某地难选氧化铜浸渣含金8.37g/t 、银21g/t。 用质量浓度为8.4g/L的NaC10和质量分数为8%的NaCl混合溶液浸出,浸出矿浆液固比3:1,系统pH为9.7,浸出温度53℃,浸出矿浆时刻7.5h,浸渣含Au 0.27g/t, Ag5g/t,金、银浸出率别离达96.7%和76.2%。部分浸出溶液补加适量浸出剂可回来浸出浸铜渣,适用于多段逆流浸出。

铍铜颜色

2017-06-06 17:50:06

铍铜颜色,一般会显示出红色或者黄色2种颜色,但铍铜的颜色应该是黄色的,产生红色铍铜的原因是:实铍铜在做成成品的时候其最原始的出货颜色是黄色的,铍铜要从化学的成分上看也就知道拉铍铜的大概的色泽是怎么样的,那么为什么会有采购商认为铍铜本身的基色是红色的呐,原因就在铍铜后期的存放和加工的方面;一般情况下铍铜不会做库房存放的特别的保护措施,存放时间长了铍铜的表面会被轻微氧化;同时铍铜也会被加工人员拿来拿去频繁的接触铍铜表面造成人为的表面色泽变化,而这种变化也造成了采购商对铍铜色泽的初步认知;在这里我想说一种以铜为基体的合金材料他的颜色不会有什么大的变化的,除非铜所占的比列偏低,其他元素比列高,那么颜色会有变化,而铍铜的铍含量只是1.8-2.1, 铜在97左右,颜色没有什么明显的变化的,如果大家仔细的看质检证书,就会发现很少有厂家把颜色也作为一个检测标准来标注的。铍铜是以铍为主要合金元素的铜合金,又称之为铍青铜。铍铜是铜合金中性能最好的高级有弹性材料,有很高的强度、弹性、硬度、疲劳强度、弹性滞后小、耐蚀、耐磨、耐寒、高导电、无磁性、冲击不产生火花等一系列优良的物理、化学和力学性能。铍铜是一种过饱和固溶体铜基合金,是机械性能,物理性能,化学性能及抗蚀性能良好结合的 有色 合金,经固溶和时效处理后,具有与特殊钢相当的高强度极限,弹性极限,屈服极限和疲劳极限,同时又具备有高的导电率,导热率,高硬度和耐磨性,高的蠕变抗力及耐蚀性,广泛应用于制造各类模具镶嵌件,替代钢材制作精度高,形状复杂的模具,焊接电极材料,压铸机,注塑机冲头,耐磨耐蚀工作等。铍铜带应用于微电机电刷,手机、电池、产品上,是国民经济建设不可缺少的重要工业材料。所以说铍铜颜色出现黄色和红色都是正常的,因为在生产和存放过程中出现了氧化的化学反应,是颜色发生变化。

硫酸锌颜色

2017-06-06 17:49:59

硫酸锌颜色是什么?小编来告诉您,硫酸锌是无色斜方晶体、颗粒或粉末,无气味,味涩.在了解了硫酸锌颜色之后,我们一起来了解下硫酸锌的其它信息吧!硫酸锌的化学品英文名称: zinc sulfate heptahydrate 硫酸锌的分子式:ZnSO4,硫酸锌的分子量:287.54,硫酸锌溶液是无色无味的。硫酸锌的有害物成分是CAS No。硫酸锌的健康危害: 本品对眼有中等度刺激性,对皮肤无刺激性。误服可引起恶心、呕吐、腹痛、腹泻等急性胃肠炎症状,严重时发生脱水、休克,甚至可致死亡。灭火方法: 消防人员必须穿全身防火防毒服,在上风向灭火。灭火时尽可能将容器从火场移至空旷处。然后根据着火原因选择适当灭火剂灭火。应急处理: 隔离泄漏污染区,限制出入。建议应急处理人员戴防尘口罩,穿一般作业工作服。不要直接接触泄漏物。小量泄漏:避免扬尘,小心扫起,收集运至废物处理场所处置。大量泄漏:收集回收或运至废物处理场所处置。操作注意事项: 密闭操作,局部排风。防止粉尘释放到车间空气中。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿橡胶耐酸碱服,戴橡胶耐酸碱手套。避免产生粉尘。避免与氧化剂接触。配备泄漏应急处理设备。倒空的容器可能残留有害物。废弃处置方法: 量小时,溶解在水或适当的酸溶液中,或用适当氧化剂将其转变成水溶液。用硫化物沉淀,调节PH至7 完成沉淀。滤出固体硫化物回收或做掩埋处置。用次氯酸钠中和过量的硫化物,然后冲入下水道。小编相信,以上咨询不仅能帮助您了解硫酸锌颜色,更让大家普及了硫酸锌的其他知识.

铝塑板颜色

2017-06-06 17:50:11

铝塑板颜色:铝塑板材料一旦成品下生产线,那么其颜色就是固定的,除了有一款新产品称之为变色龙外,其他颜色均是不能更换的.如果说想改变其颜色有两种做法,一种是在其原来颜色表面采用喷涂方式,将所喜欢的颜色油漆均匀喷在材料表面;另一种是拆除原来的材料,更换成所新选择的颜色铝塑板粘上或挂上面即可.铝塑板颜色种类:常规色有30种闪银、哑光银灰、香槟银、象牙白、高光乳白、乳白、调色白、翠玉银、元宝金、中国红、兰色、孔雀兰、鼠灰、黑金砂、苏宁黄、苏宁兰等,当然不同品牌的颜色也会有一些不同。厚度现在外墙用4mm的比较多,当然也有3mm的,还有加厚的,根据您的需求不同厚度也不同。&nbsp;

磷铜颜色

2017-06-06 17:50:03

磷铜颜色&ldquo;镀白磷铜&rdquo;应该是指&ldquo;表面有白色镀层的磷铜&rdquo;。&ldquo;镀白&rdquo;和&ldquo;磷铜&rdquo;应单独理解。镀白---镀层外观颜色为白色。镀材不同或钝化膜不同,镀层的外观颜色也不同。电器用磷铜镀锡不钝化即为白色。磷铜---含磷的铜。磷铜易于锡焊且弹性良好,常见用于电器。确实有&ldquo;白磷&rdquo;这种物质,是元素&ldquo;磷(元素符号P)&rdquo;的同素异构体之一,极易燃,剧毒,在空气中可自燃,平常人难以见到。&ldquo;红磷&rdquo;常见。更磷铜颜色请详见上海 有色金属 网&nbsp;

白铜颜色

2017-06-06 17:50:03

白铜颜色白铜以镍为主要合金元素的铜基合金,因多数呈银白色而得名。铜和镍能无限互溶形成连续固溶体。铜中加镍能显著提高耐蚀性、强度、硬度、电阻、热电势,并降低电阻率温度系数。在铜合金中,白铜因耐蚀性优异,且易于塑性加工和焊接,广泛用于造船、石油、化工、电力、精密仪表、医疗器械等部门作耐蚀结构件。某些白铜还有特殊的电学性能,可制作电阻元件、热电偶材料和补偿导线。&nbsp;白铜可分为简单白铜和复杂白铜两类。按用途又可分为结构白铜和精密电阻合金用白铜。在结构白铜中,最常用的是B30、B10和锌白铜,另外,还有铝白铜、铁白铜和铌白铜等。典型白铜的成分和性能见表2。B30在白铜中耐蚀性最强,但 价格 较贵。铝白铜的性能同B30接近, 价格 低廉,可作B30的代用品。锌白铜于15世纪时就已在中国生产使用,被称为&ldquo;中国银&rdquo;,所谓镍银或德银也属此类锌白铜。这种合金具有高的强度和耐蚀性,弹性也较好,外表美观, 价格 低廉。在精密电阻用白铜中,重要的有BMn 3-12锰铜、BMn 40-1.5康铜、BMn 43-0.5考铜以及以锰代镍的新康铜(又称无镍锰白铜,含锰10.8~12.5%、铝2.5~4.5%、铁1.0~1.6%)。这类合金具有高的电阻率和低的电阻率温度系数,适于制作标准电阻和精密电阻元件。康铜和考铜的热电势高,还可用作热电偶和补偿导线。&nbsp;更多关于白铜颜色清详见上海 有色金属 网

铋矿三氯化铁浸出-铁粉置换法

2019-01-31 11:06:17

流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图

铋矿三氯化铁浸出-隔膜电积法

2019-01-31 11:06:04

为了简化流程,研讨用隔阂电积来替代图1流程中的铁粉置换和再生工序。其原理是在操控恰当电位的情况下,让铋在隔阂电解槽的阴极复原:阳极则发生铁的氧化反响:图1  铋锡中矿浸出-铁粉置换提铋工艺流程图 该流程的技能关键是电极电位的操控和溶液透过隔阂速度的操控。在阴极区,溶液中首要的阳离子是Bi3+、Fe2+和H+、在阳极区,溶液中首要的阳离子是Bi3+、Fe3+和H+,为使阳极区的三价铁不致在阴极放电而下降电流效率,应选用恰当的隔阂材料把阴、阳极分隔,阴极区液面应高于阳极区,并操控电解液的浸透速度,使流速与二价铁的氧化速度适当。 此工艺与-铁粉置换法比较,流程简略。但由于溶液中铁离子浓度较高,电积进程在电场力的效果下三价铁会不可避免地透过隔阂在阴扳复原,使电流效率下降(电流效率42%~50%),操作进程比较严厉。

化学氧化技术:铝合金三价铬处理工艺

2019-03-08 12:00:43

一、概述 铝合金作为一种重要金属材料,近年来在在轿车,电子,家电,航空航天,建材等新式工业范畴的运用越来越广。作为铝合金的一种首要防腐技能,铬酸盐钝化工艺被广泛运用达半个多世纪。但是因为六价铬的高危害性和致癌性,严峻阻止了该材料的运用。跟着欧盟RoHS,ELV,WEEE法规的施行,六价铬酸盐将被严厉约束运用,终究将被全面停止运用。近年来,关于六价铬酸盐代替物(或称绿色防腐材料)的研讨开发在全球正方兴未已。现时国际上已开宣布许多新技能并已商业化。首要类型有: 1.锆-钛系统。 2.硅烷偶联剂系统。 3.铈盐系统。 4.三价铬盐系统。 5.钼酸盐系统 6.钒酸盐系统 为点评各种技能代替六价铬酸盐的或许性,由美国国防部牵头安排建立的污染物防治一起小组(JG-PP)对铝合金的非六价铬酸盐转化膜产品进行了很多比照实验,测验结果表明,从工业运用视点看,三价铬系统是现在最有或许全面代替六价铬酸盐的。其它系统现在尚只能满意铝合金表面处理的部分要求,表现在: 1.与铬酸盐比较,运用工艺较严厉,杂乱; 2.本钱较高; 3.在某些功能,特别是裸铝耐蚀功能上还难以满意需要; 4.对原料有选择性。 由珠海市奥美伦公司在吸收国外先进技能基础上开发成功的铝合价铬钝化剂AllmeluxSF-565,选用低浓度三价铬及其它成膜助剂,被验证为可彻底代替六价铬酸盐工艺。到达乃至超越国外同类产品技能水平。首要特点: 1.低污染,无环保约束问题,满意RoHS,ELV,WEEE法则要求。 2.高功能,满意乃至超越MIL-DTL-81706B,MIL-DTL-5541FClass1A&Class3的耐蚀要求 3.运用操控简略,合适工业运用环境。 4.有竞争力的运用本钱。 下面将以数据图解说明SF-565的首要特性及运用。 二、转化膜的质量 按MIL-DTL-81706B4.5.4测得转化膜的质量在20-23mg/ft2 三、转化膜的硬度 与传统六价铬不同,AllmeluxSF-565构成的转化膜枯燥后具有很硬的表面,在批量生产中不易引起工件划伤,下降膜层损害及粘连。

导致铝型材氧化膜颜色不均的三个原因分析

2019-03-12 09:00:00

导致铝型材氧化膜颜色不均的三个原因分析:   (1)铝型材工件面积过大,操作时在槽内摇摆过大,边际和中心部位与溶液的触摸、更新、交流有过大的差异,然后导致氧化膜颜色不一致。.防备办法:铝型材氧化时工件摇摆的起伏要小,静处理也能够,但当溶液温度过低时简单呈现地图状花斑,显得不自然。   (2)包铝型材加工时部分包铝层遭到损坏,被切削掉,外层包铝属优质铝,被包的内层是杂铝,两种铝质差异较大,故氧化后呈现“良癜风”似的斑驳。这一现象客户往往不会太了解,供应商要多做解说作业,阐明原委,避免引起误解。   (3)氧化工艺操作方面问题:   ①工件碱蚀处理不完全,部分处原始氧化膜、污物未能除尽;   ②碱蚀后没有当即进行出光处理,工件表面仍呈碱性;   ③工件在传递过程中触摸过异物。   当遇有膜层颜色不均匀时要从多方面去寻觅原因,采纳针对性办法予以处理。   由碱蚀液中铝离子积累过高引起毛病一位读者来电问询工件经碱蚀后难以获得导电氧化膜的原因,经对导电氧化膜难以构成的许多要素扫除之后,考虑到碱蚀液中是否有过高铝离子问题,对方说碱蚀液很稠。但碱蚀速度不快。其时笔者主张替换碱蚀液,由于碱蚀液使用时间过长之后会积累过多的铝离子,铝离子在工件表面较难洗脱,然后影响铝件表面与导电氧化溶液的触摸,然后影响到氧化膜的构成。另一主张是若其时无条件替换碱蚀溶液,可将碱蚀后的工件经热水漂洗后立即在活动水中漂洗,然后再在含有的浓硝酸中出光,然后经充沛漂洗后进行导电氧化处理。后该读者来电话说碱蚀后用热水洗烫作用很好。笔者经历是,在热水中洗烫后敏捷脱离热水并当即浸入流水中,避免工件干化后因遭到氧化而影响到导电氧化膜的构成。

白铜的颜色

2017-06-06 17:50:04

&nbsp;白铜的颜色?答:&nbsp; 白铜以镍为主要合金元素的铜基合金,因多数呈银白色而得名。铜和镍能无限互溶形成连续固溶体。铜中加镍能显著提高耐蚀性、强度、硬度、电阻、热电势,并降低电阻率温度系数。在铜合金中,白铜因耐蚀性优异,且易于塑性加工和焊接,广泛用于造船、石油、化工、电力、精密仪表、医疗器械等部门作耐蚀结构件。某些白铜还有特殊的电学性能,可制作电阻元件、热电偶材料和补偿导线。&nbsp;白铜可分为简单白铜和复杂白铜两类。按用途又可分为结构白铜和精密电阻合金用白铜。在结构白铜中,最常用的是B30、B10和锌白铜,另外,还有铝白铜、铁白铜和铌白铜等。典型白铜的成分和性能见表2。B30在白铜中耐蚀性最强,但 价格 较贵。铝白铜的性能同B30接近, 价格 低廉,可作B30的代用品。锌白铜于15世纪时就已在中国生产使用,被称为&ldquo;中国银&rdquo;,所谓镍银或德银也属此类锌白铜。这种合金具有高的强度和耐蚀性,弹性也较好,外表美观, 价格 低廉。在精密电阻用白铜中,重要的有BMn 3-12锰铜、BMn 40-1.5康铜、BMn 43-0.5考铜以及以锰代镍的新康铜(又称无镍锰白铜,含锰10.8~12.5%、铝2.5~4.5%、铁1.0~1.6%)。这类合金具有高的电阻率和低的电阻率温度系数,适于制作标准电阻和精密电阻元件。康铜和考铜的热电势高,还可用作热电偶和补偿导线。白铜多数是呈银白色的.更多白铜信息请详见上海 有色金属 网&nbsp;&nbsp;&nbsp;

铜合金颜色

2017-06-06 17:50:04

铜合金颜色&nbsp;&nbsp;&nbsp; 纯铜外观呈紫红色,密度为8.92g/cm3,熔点1083℃,导电、导热性能很好;面心立方晶格,无同素异构转变;塑性高,强度低,低温下塑性、韧性好。&nbsp;&nbsp;&nbsp; 铜(Copper)及铜合金(Copper-based alloys)按颜色分为:紫铜(Red Copper),黄铜(Brasses),青铜(Bronzes)和白铜(Copper-nickel alloys)。&nbsp;&nbsp;&nbsp; 紫铜又分为工业纯铜(含氧铜)和无氧铜二种。&nbsp;&nbsp;&nbsp; 目前,我国工业纯铜有四个牌号:T1(99.95%Cu), T2(99.90%Cu), T3(99.70%Cu), T4(99.50)。T1, T2主要用作导电材料和配制高纯度铜合金;T3, T4用作一般铜材及铜合金。工业纯铜的含氧量为:0.02% ~0.1%,氧在铜中以氧化铜的形式存在。&nbsp;&nbsp;&nbsp; 无氧铜的含氧量极低(&le;0.003%),其牌号用TU表示,如TU1, TU2。用真空去氧得到的无氧铜称为真空铜,用TK表示。无氧铜主要用于电真空器件,仪器、仪表材料。&nbsp;&nbsp;&nbsp; 黄铜是以锌(Zn)为主要合金元素的铜合金,牌号用H表示,后面的数字为平均含铜量。如H62,表示平均含铜量为62%的普通黄铜。在Cu-Zn合金基础上加入其他合金元素的黄铜,称为特殊黄铜。其牌号中标出所加合金元素的符号及含量,如HPb59-1,表示平均成分为59%Cu, 1%Pb, 其余为锌(40%Zn)的特殊黄铜(又称为铅黄铜。另外还有锰黄铜、锡黄铜、硅黄铜、铝黄铜等)。&nbsp;&nbsp;&nbsp; 白铜是以镍(Ni)为主要合金元素的铜合金,其牌号用B表示,后面的数字为镍的平均含量。如, B19, 表示含镍19%的普通白铜。特种白铜白铜有铁白铜、锌白铜、铝白铜、锰白铜等。如BFe5-1,表示含镍5%,含铁1%,余为铜的铁白铜。&nbsp;&nbsp;&nbsp; 白铜根据用途不同又可以分为耐蚀结构用白铜和电工白铜两类。常用的耐蚀结构白铜有B5、B19和B30等牌号。这类白铜最大的特点是在各种腐蚀介质,如海水、有机酸和各种盐溶液中具有高的化学稳定性,适宜用作船舶用耐蚀零件及高温高压下工作的管道。&nbsp;&nbsp;&nbsp; 电工白铜具有极高的电阻、电阻温度系数极小。广泛用来制造电阻器、热电偶、补偿导线和精密测量仪器的电工材料。常用的电工白铜有B0.6、B16、BMn3-12(锰铜)、BMn40-1.5(康铜)及BMn43-0.5(考铜)等。&nbsp;&nbsp;&nbsp; 青铜是以除锌、镍以外的合金元素作为主要合金元素的铜合金。青铜又分为锡青铜和无锡青铜(又称为特殊青铜)。无锡青铜有铝青铜、铍青铜、铅青铜、硅青铜等。

纯铜颜色

2017-06-06 17:50:03

纯铜颜色为紫红色。铜是古代就已经知道的 金属 之一。一般认为人类知道的第一种 金属 是金,其次就是铜。铜在自然界储量非常丰富,并且加工方便。铜是人类用于生产的第一种 金属 ,最初人们使用的只是存在于自然界中的天然单质铜,用石斧把它砍下来,便可以锤打成多种器物。随着生产的发展,只是使用天然铜制造的生产工具就不敷应用了,生产的发展促使人们找到了从铜矿中取得铜的方法。含铜的矿物比较多见,大多具有鲜艳而引人注目的颜色,例如:金黄色的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3Cu(OH)2,深蓝色的石青2CuCO3Cu(OH)2,赤铜矿Cu2O,辉铜矿Cu2S等,把这些矿石在空气中焙烧后形成氧化铜CuO,再用碳还原,就得到 金属 铜。纯铜是一种坚韧、柔软、富有延展性的紫红色而有光泽的 金属 ,又被称为紫铜。铜的颜色很像金,但发红,铜离子的颜色为蓝色。有剧毒,不过,用特定加工法加工的铜没有毒。铜在干燥空气中安定,可保持 金属 光泽。但在潮湿空气中,表面会生成一层铜绿(碱式碳酸铜,分子式:Cu2(OH)2CO3),保护内层的铜不再被氧化。铜是人体健康不可缺少的微量营养素,对于血液、中枢神经和免疫系统,头发、皮肤和骨骼组织以及脑子和肝、心等内脏的发育和功能有重要影响。铜主要从日常饮食中摄入。世界卫生组织建议,为了维持健康,成人每公斤体重每天应摄入0.03毫克铜。孕妇和婴幼儿应加倍。缺铜会弓I起各种疾病,可以服用含铜补剂和药丸来加以补充。铜在人体内含量约100~150mg,血清铜正常值100~120&mu;g/dl,是人体中含量位居第二的必需微量元素。含铜的酶有酪氨酸酶、单胺氧化酶、超氧化酶、超氧化物歧化酶、血铜蓝蛋白等。铜对血红蛋白的形成起活化作用,促进铁的吸收和利用,在传递电子、弹性蛋白的合成、结缔组织的代谢、嘌呤代谢、磷脂及神经组织形成方面有重要意义。铜缺乏可引起如下疾病:1、贫血   一般最常见的临床表现为头晕、乏力、易倦、耳鸣、眼花。皮肤黏膜及指甲等颜色苍白,体力活动后感觉气促、心悸。严重贫血时,即使在休息时也出现气短和心悸,在心尖和心底部可听到柔和的收缩期杂音。   2、骨骼改变   临床表现为骨质疏松,易发生骨折。   3、铜与冠心病   4、铜与白癜风病   5、女性不孕症   人体缺铜可适量增加摄入含铜较高的食物,如鱼、虾、蟹、玉米、豆制品等。铜离子可以消毒杀菌、卫生防疫。例如:可以杀灭易于在水中滋生的大肠杆菌和痢疾等病菌,清除水中传播血吸虫病的蛞蝓和螺等软体动物,以及传播疟疾的蚊子幼虫等疾病携带体。它还可以应用在游泳池内,防止绿藻污染和通过地板传染足癣等等。纯铜颜色根据纯度的不同以及杂质的不同又会有黄色、绿色。&nbsp;

铋矿三氯化铁浸出-水解沉铋法

2019-01-31 11:06:04

此法实质上是使用氯氧铋的水解性,在弱酸性溶液中水解铋氧络合物,生成氯氧铋白色沉淀物,制取氯氧铋精矿。 为使水解彻底,溶液pH值一般控制在2,这就要求很多的水稀释溶液,形成酸耗高、水耗大、试剂耗量大、铋回收率低、废水排放量大的缺陷。某小型铋冶炼厂曾选用此法出产氯氧铋精矿,但作用不抱负,其技能经济指标为:吨精矿耗工业800kg,铋回收率为60%~70%。