制备氧化铜
2017-06-06 17:50:02
氧化铜是初中化学课本中一种普遍的化学药品,氧化铜的性质稳定,用途广泛,在化学试验中利用率高。那当我们在使用氧化铜药品时,除了购买后直接使用之外,有什么办法可以直接制备氧化铜呢?制备氧化铜需要的实验用品:
金属
铜粉、氧气、酒精灯灼热的
金属
铜和氧气反应,就会生成氧化铜。2Cu+O2 =灼热= 2CuO 这个就是实验室制备氧化铜的方法。
稀土元素钆(Gd)的用途
2019-01-30 10:26:34
稀土的分类
1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。
2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。
铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。
稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。
钆(Gd) 1880年,瑞士的马里格纳克(G.de Marignac)将"钐"分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者 研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。钆在现代技革新中将起重要作用。
它的主要用途有:
(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。
(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。
(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。
(4)在无Camot循环限制时,可用作固态磁致冷介质。
(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。
(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。
另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x射线增感屏。 在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。金属钆氧化钆钆铁合金A.增强CT上显示为低密度额叶病灶;B.钆增强MRI上表现为低密度病灶;C.肿瘤在MRI T2W上显示为边缘清晰的高信号影
阳极氧化法制备彩色铝粉
2019-03-11 11:09:41
铝粉的阳极氧化是通过电解液的阳极反响而生成氧化铝膜的电化学进程。这个氧化膜吸附有机染料、无机颜料的色彩而上色。将铝粉置于硫酸电解液中,并不断地加以拌和,使铝粉呈漂浮和半漂浮状况,边活动边随时触摸阳极,并坚持不触摸阳极状况,从而在铝粉表面生成易于上色的氧化铝膜。阳极反响是阳极分出的初生态氧与铝粉表面的铝原子化组成氧化铝的反响,其间部分氧化铝立刻与水化组成水合氧化铝,这就是氧化铝膜的构成进程。一起氧化铝膜可被硫酸电解液溶解,所以阳极氧化进程一起存在成膜反响和溶膜反响,因而有必要操控适合的条件,才干构成必定厚度的氧化铝膜。阴极反响中发生,故使构成的氧化铝膜具有多孔疏松的特色,有利于吸附才能的增强。 铝粉上色是一个物理化学进程,将经阳极氧化处理过的铝粉置于有机染色液中浸泡,使铝粉表面氧化膜吸附有机染料分子,一起氧化铝膜中的氧化铝分子可与有机染料分子以共价键、配位键或氢键等方式结合生成合作物,从而使氧化膜上色。
阳极氧化在铝粉粒子表面构成氧化铝膜的进程中,影响成膜的要素较多,一起不同的上色液导致不同的上色作用,因而应该考虑电解液浓度、反响时刻、温度、上色液等要素的影响。研讨结果标明:(1)硫酸电解液的浓度对氧化膜的生成具有显着的影响。硫酸浓度过低,电解液的导电性不强,氧化铝的成膜速度慢,硫酸浓度过高,生成的氧化膜又溶解,最佳的试验条件:硫酸电解液的浓度应为5-10%。(2)阳极电流密度与氧化铝膜生成速度成正比,因为铝粉在某一瞬间触摸阳极,因而阳极电流密度越大,越有利于铝粉在阳极放电,阳极电流密度越大,生成的氧化铝膜越疏松,有利于上色。试验标明,在7%硫酸电解液中进行阳极氧化,一般操控电流密度为5安/分米2以上,电压不该小于40伏。(3)在阳极氧化进程中,只要通过必定的时刻后,才干使铝粉与阳极充沛触摸,试验标明,氧化时刻以60-90分钟为宜,一起氧化时温度也要坚持在25-35°C为宜。(4)在氧化铝膜上上色,其上色的难易程度与氧化膜的厚度及上色液的浓度有关,氧化膜越厚,越易上色;上色液的浓度越大,越易上色,且色彩越深[4]。因而在上色进程中,一般选用较浓的上色液。试验标明:依据所需色彩的深浅,对上色液浓度加以调整。一起上色液温度为50-60°C,上色时刻为20-40分钟,pH为4.5-6.0为宜。
利用硼泥制备氢氧化镁
2019-02-18 15:19:33
硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。
现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。
现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。
一、试验
(一)试验质料
硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。
表1 硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628
(二)试验内容
将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。
(三)工艺流程
工艺流程见图1。图1 硼泥制备氢氧化镁工艺流程
二、成果与评论
(一)煅烧温度对镁浸出率的影响
在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2 煅烧温度对镁浸出率的影响
(二)煅烧时刻对镁浸出率的影响
在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3 煅烧时刻对镁浸出率的影响
(三)硫酸与硼泥份额对镁浸出率的影响
在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4 硫酸与硼泥份额对镁浸出率的影响
(四)归纳条件试验
依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。
(五)氢氧化镁的检测与分析
1、氢氧化镁的XRD分析 选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5 Mg(OH)2样品XRD图
2、氢氧化镁的检测 对氢氧化镁产品进行成分分析,检测成果如表2所示。
表2 氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008
由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。
3、氢氧化镁的SEM分析 用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6 氢氧化镁SEM相片
(a)未烘干;(b)烘干后
三、定论
(一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。
(二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。
(三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。
铱铝高温抗氧化涂层的制备方法
2019-03-01 09:02:05
1、修正工艺 分化清洗后,对一切零件都进行严厉查看,发现形成柱塞泵内漏的首要原因是:柱塞与柱塞孔磨损后合作空隙过大,缸体球面与配流盘的合作面都磨损不均匀。因而,处理内漏的关键是有必要使柱塞与柱塞孔的合作空隙恢康复标准,缸体球面与配流盘的合作面可用研磨法使其到达合作要求。柱塞孔的圆柱度和圆度差错可在内圆磨床上进行修正,柱塞可用刷镀法康复尺度。具体方法如下: (1)柱塞表面的除油、除锈和加工处理 a.刷镀表面除油可用有机溶剂、常用金属清洗剂和汲取,亦可将油擦洗掉。 b.若柱塞偏磨严峻,应磨削整形,消除偏疼。 c.若柱塞表面有划痕、沟槽和凹坑,应进行整形加工。 (2)柱塞表面的电化学净化和活化处理 a.电净:柱塞接电源负极,镀笔"target=_blank>镀笔接正极,电压8-15V,时刻60-90s,用一号电净液在刷镀表面上重复刷抹,相对速度为4-8m/min。电净处理要完全,一般需处理两遍,以取得较好的结合强度。电净后的柱塞表面应有一层接连的电净液膜存在,且电净液膜不会聚集成小液滴而呈现干斑。电净后使用清水清洗,完全清除电净液和其他"target=_blank>其他污物。 b.表面活化处理:活化时镀件有必要接电源正极,镀笔接负极,电压8-15V,时刻60-90s。活化液"target=_blank>活化液先选用2号,再用3号,处理两遍。2号活化液用电压10-12V,时刻60-90s;3号的用电压16-20V,时刻50-90s。活化的标准为柱塞表面呈现出均匀的银灰色,活化后用清水洗净。
用含锌铅烟灰制备氧化锌的技术
2019-02-21 11:21:37
氧化锌广泛应用于橡胶、涂料、陶瓷、化工、医药、玻璃和电子等职业,跟着工业的飞速发展,国内对氧化锌的需求量日益添加。用低档次含锌物料出产活性氧化锌,既可充分利用锌资源,又可下降出产本钱,因而,现在该研讨范畴反常活泼,归纳利用低档次氧化矿、次氧化矿、锌渣、烟灰等的研讨逐步引起厂商注重。烟灰是铅、锌冶金进程的一种中间产品,是由回转窑蒸发、贫化处理铅鼓风炉渣等含锌物料发作的,其成分杂乱,除含锌、铅外还含有较多的砷、锑等杂质。因为其处理难度大,本钱高,不能直接作为湿法炼锌的质料。但因为其锌含量高,且易于浸出进人溶液,因而,可用作制取氧化锌粉末产品。
处理烟灰现有的办法有酸浸法和配合法两种。酸浸法是以粗氧化锌或锌矿砂为质料,与稀酸混合反响后,经除杂、中和、枯燥和煅烧制得氧化锌。该法除杂量大,工艺杂乱,本钱高,并且废水量大,处理困难,对环境有污染。配合法是以粗氧化锌或脱硫用过的锌触媒焙烧物为质料,用-碳酸氢铵溶液作浸出剂,经浸出、除杂净化、蒸沉锌、洗刷枯燥和煅烧等工艺进程制得活性氧化锌。该法设备出资少,杂质少,可是流程长,并且只适应于富含ZnO的物料,若物料中含有必定量的ZnS,则该法不能直接选用,需用氧化剂先预处理烟灰,将硫化锌转化为氧化锌。因而,实验研讨了用预处理烟灰,然后用溶液浸出,终究制得得氧化锌粉末产品。
一、实验部分
(一)实验质料
实验用烟灰取自广西某工厂,其粒度为65~76μm,首要化学成分见表1。
表1 烟灰的化学成分%ZnPbFeAsCdSbSiS49.8626.890.750.800.030.110.51.81
(二)实验办法
先用水将干烟灰调制成液固体积质量比为1∶1的烟灰浆,然后用3%预处理一段时刻,再在必定温度下参加必定量溶液拌和浸出,然后离心过滤,滤液恰当稀释并拌和一段时刻后再离心过滤,二次滤液作为浸出剂回来浸出,滤饼为氢氧化锌,洗刷、烘干、锻烧后得纯洁的氧化锌粉末。
二、成果与评论
(一)体积分数及预处理温度对锌浸出率的影响
在不同温度下,往100g烟灰浆(液固体积质量比1∶1)中参加必定量,拌和60min后,在60℃温度下,参加3mol/L溶液浸出2h,调查体积分数及预处理温度对烟灰中锌浸出率的影响,成果见表2。
表2 体积分数及预处理温度对锌浸出率的影响实验编号体积分数/%预处理温度/℃锌浸出率/%112538.24232555.67352556.71414040.33534060.01654061.24
从表2能够看出:体积分数增大,锌浸出率升高;在25℃下,当体积分数从1%添加到3%时,锌浸出率进步17%;体积分数从3%增大至5%时,锌浸出率仅进步1%;当温度升高至40℃时,体积分数从1%增大至3%,锌浸出率进步近20%,并且氧化锌吸附的SO2被氧化成硫酸锌,对环境不形成污染。能够以为:温度对锌浸出率影响不明显,体积分数为3%比较适合。
(二)温度对锌浸出率的影响
在25℃下,用3%预处理烟灰,然后用3mol/L溶液在不同温度下浸出1.5h。实验成果如图1所示。图1 浸出温度对烟灰中锌漫出率形晌
从图1看出:随浸出温度升高,锌浸出率呈线性升高。室温下,锌浸出率只要30.22%,而当温度升高到95℃时,锌浸出率到达89.31%。归纳考虑,浸出温度以85℃为宜。
(三)浓度对锌浸出率的影晌
在25℃下,用3%预处理烟灰,然后在85℃下,用不同浓度的溶液浸出1.5h。实验成果如图2所示。图2 浓度对锌浸出率的影响
从图2看出:随浓度增大,锌浸出率进步,特别是浓度从2mol/L增大至5mol/L,锌浸出率进步了46.54%,到达97%。这是因为烟灰中锌与碱发作反响,生成锌酸钠进入溶液:
2NaOH+ZnO=Na2ZnO2+H2O。
可是,当浓度增大至6mol/L后,锌浸出率仅添加0.52%,不能到达100%,这可能是烟灰中的锌被包裹起来而无法与碱触摸的原因。
(四)浸出时刻对锌浸出率的影响
在25℃下,用3%预处理烟灰,然后在85℃下用3mol/L溶液浸出,调查浸出时刻对锌浸出率的影响。成果如图3所示。图3 浸出时刻对锌浸出率的影响
从图3可知:随反响时刻添加,锌浸出率进步。浸出0.5~1.5h,锌浸出率从73.81%进步至96.92%;但浸出1.5h之后,锌浸出率进步缓慢。所以,浸出时刻以1.5h为最佳。
(五)验证实验
在25℃下,用3%预处理烟灰,然后在85℃下用5mol/L溶液浸出1.5h,
锌浸出率和浸出渣中锌和铅的质量分数见表3。
表3 碱浸出烟灰验证实验成果实验编号锌浸出率/%浸出渣中ωB/%ZnPbAs196.923.9145.330.02297.033.4245.20<0.01396.984.0145.280.01497.133.6646.21<0.01
从表3可知:归纳实验条件下,锌浸出率在97%左右,浸出渣中锌质量分数在3%~4%之间,铅质量分数45%左右,简直不含As。浸出渣可进入铅体系提取铅,完成资源归纳利用。
(六)氧化锌的制备
将上述碱浸出液降温至25℃、稀释1倍,拌和0.5h后离心过滤,滤饼烘干,氢氧化锌沉积率为72.3%。沉积物的XRD分析成果表明其物相组成首要为ZnO;化学分析成果表明,ZnO质量分数为99.58%,Pb0质量分数为0.12%,基本上到达直接法一级品要求。
三、定论
含锌烟灰经在常温下预氧化处理后用溶液浸出,可将其间的97%的锌转入溶液,然后经沉积、过滤、烘干,可制得氧化锌粉末。该办法所得ZnO粉末纯度较高,为充分利用含锌烟灰供给了一条有效途径。
利用油页岩渣制备氧化铝和白炭黑
2019-02-20 11:03:19
油页岩是一种重要的煤、石油及天然气代替资源,其资源储量巨大,若将油页岩折算成页岩油,世界上能够到达4000多亿t,相当于石油资源可挖掘储量的5.4倍。因而开发油页岩具有重要的战略含义。我国油页岩探明储量为329.89亿t,首要散布在吉林桦甸、农安,广东茂名,辽宁抚顺,其间辽宁抚顺也是我国闻名的油页岩加工基地。
油页岩具有很重要的经济价值,现在油页岩首要使用办法是提炼页岩油、制煤气及直接焚烧发电,但因为油页岩中大部分为无机矿物质,使用后会发生很多的灰渣和有害物质,存在着较大的环境问题。国内外关于油页岩固体抛弃物的归纳使用进行了研讨,例如,用油页岩脱油残渣制备白炭黑,油页岩灰用作吸附剂等。
因为我国油页岩的无机矿物质首要为硅铝酸盐,SiO2和Al2O3的含量占绝大部分。因而提取这两种有价元素,制备白炭黑和Al2O3是一项可行的办法。A12O3是一种重要的工业质料,使用高铝固体抛弃
物-粉煤灰、煤矸石等制备A12O3的研讨较多,并现已进入了工业化阶段,而从油页岩渣制备A12O3的研讨还未见报导。白炭黑又称为水合二氧化硅,是橡胶、塑料不行短少的补强剂,也是一种重要的化工质料,近年来以非金属矿为质料的工艺研讨较为活泼。因而本文以油页岩渣为质料,首要选用酸浸法制备A12O3,然后将剩余物用碱溶法制备白炭黑。既进步了油页岩渣的归纳使用程度,又处理了环境污染问题,到达了生态化使用油页岩资源的意图。
一、试验
(一)试验质料与仪器
油页岩渣来源于抚顺页岩油厂,首要组成如表1所示,从表中能够看出油页岩渣中SiO2和A12O3的含量占85%以上,归于高硅铝固体抛弃物。
表1 油页岩渣的化学组成(质量分数)/%SiO2Al2O3Fe2O3K2OMgOTiO2Na2OCaO64.820.68.201.261.090.9620.9340.777
试验仪器有:PW3040/60型X射线衍射仪(荷兰PANALYTICAL公司),S3400型扫描电子显微镜(日本日立公司),ZXS100e型X射线荧光光谱仪(日本理学公司),Nicolet 380型傅立叶改换红外光谱仪(美国TA公司),H800型透射电子显微镜(日本日立公司)。
(二)试验进程
1、A12O3的提取 将油页岩渣破坏后,过筛搜集粒径小于0.15mm的部分。首要,取15.0g油页岩渣、必定量的浓和100mL水参加至三口烧瓶中,加热至设定温度并恒温反响必定时刻。然后,天然降温至60℃过滤,得到滤液与滤饼。经过滴加10mol/L的NaOH溶液,将滤液调整到pH=5,再次过滤后,将滤饼放入烧杯用30.0mL 10.0mol/L NaOH溶液溶解,过滤除去不溶物,得到纯洁的偏铝酸钠溶液。最后用HCl将溶液滴定到pH=8~9时中止,静置顷刻后过滤、洗刷,即得到Al(OH)3,然后在梯度炉中灼烧到800℃即得到γ-Al2O3。
2、白炭黑的提取 称取10g提取Al2O3后的滤饼参加到三口烧瓶中,并参加100mL水和必定量的NaOH溶液,开端拌和并加热到设定温度,保温反响必定时刻后过滤得到Na2SiO3滤液。将滤液静置必定时刻后,缓慢滴加HCl进行酸化处理,至pH值为8~9时中止,得到白色沉积,经过滤、枯燥后即得到白炭黑产品。
二、成果与评论
(一)油页岩渣提取氧化铝试验部分
1、焙烧活化对Al2O3的提取率的影响 从一般高铝固体抛弃物,尤其是从粉煤灰提取Al2O3的工艺中,因为Al2O3首要存在于结构较为安稳的莫来石或许玻璃相中,以Si-Al-O空间网络结构的方式存在,以至于活性较低。因而提取Al2O3有必要经过焙烧活化,使莫来石结构转变为活性较大的霞石结构后,才能用酸浸的办法提取出Al2O3。
但油页岩渣却是在510~550℃下干馏后的残余物,组成颗粒细微,而且具有多孔结构,与经过高温煅烧的粉煤灰结构不同,具有很大的活性。为了分析油页岩渣的活性,经过1000℃焙烧活化得到油页岩灰,比照两者的结构,如图1所示。
图1 油页岩渣和油页岩灰的XRD图
从图1中能够看出,焙烧活化前后油页岩渣结构中都没有莫来石晶相呈现。在油页岩渣结构中,Al2O3首要以高岭石和霞石的方式存在。油页岩渣中的高岭石经过干馏活化,具有较高的化学反响活性;而霞石是一种能够溶于酸的物质,因而有利于Al2O3的提取。经过高温活化之后,油页岩渣变成油页岩灰,Al2O3首要以高岭石的方式存在,可是高岭石含量下降,霞石晶相消失,赤铁矿高温氧化生成氧化铁,这标明油页岩灰的活性尽管存在,但有所下降。比照两者结构,能够阐明选用酸浸法从油页岩灰或油页岩渣中提取出Al2O3都是可行的,可是直接从油页岩渣中制备Al2O3更为适合。
2、酸浸温度对Al2O3提取率的影响 考察了不同温度下Al2O3的提取率,其它条件别离为:15.0g油页岩渣,40.0mL,2.0h的酸浸时刻,试验成果如图2所示。
图2 酸浸温度与Al2O3提取率的联系
由图2可知,温度关于提取率的影响十分显着,升高反响温度能够大起伏添加提取率。但当酸浸温度到达100℃以上,提取率随温度的改动不再显着,因而最佳的酸浸温度为100℃,Al2O3的提取率到达90.6%。
3、用量对Al2O3提取率的影响 取15.0g油页岩渣试样4份,别离参加不同的浓,100℃处理2h,试验成果如图3所示。
图3 用量与Al2O3提取率的联系
由图3所示,跟着用量的添加Al2O3的提取率也逐步添加。当用量添加到40mL时,活性Al2O3反响根本彻底,因而,选用用量为40mL。
4、酸浸时刻对Al2O3提取率的影响 取15.0g油页岩渣试样5份,于100℃40mL的浓中,别离选用不同的酸浸时刻处理,试验成果如图4所示。
图4 酸浸时刻与Al2O3提取率的联系
由图4能够看到,开端阶段,因为浓度较大,活性Al2O3溶解的速度较快,然后提取率添加快速,但跟着酸浸时刻的延伸,浓度下降,化学反响速率下降Al2O3的提取率也随之减缓,当酸浸时刻到达2.0h后,Al2O3的提取率的几乎没有增大,因而适合酸浸时刻为2.0h。
5、Al2O3检测分析经过酸浸法制备的Al2O3 的XRD图谱如图5所示,图中呈现显着的γ-Al2O3衍射峰,因而能够证明本产品为γ-Al2O3此外因为洗刷Al(OH)3絮凝沉积时,未彻底除去杂质,灼烧制备γ-Al2O3后,混有少数的NaCl晶体。
图5 Al2O3的XRD图
经过X射线荧光光谱法测定γ-Al2O3粗产品的纯度到达91.7%。试验标明能够选用重结晶的办法,取得更高纯度的γ-Al2O3,但此办法存在能耗大,工艺繁琐等问题,所以有待于进一步研讨改善。
图6为γ-Al2O3的SEM图,由图中清晰可见γ-Al2O3为立方严密堆积晶体,均匀粒度在2μm左右。
图6 Al2O3的SEM图
(二)油页岩渣提取白炭黑试验部分
油页岩渣在酸浸法制备Al2O3的进程中,Fe2O3等其它物质也在酸浸进程中溶解了,油页岩渣剩余物的首要成分发生了改动,其间SiO2的含量到达90%以上。因而将剩余物用碱溶法处理,制备纯度较高的白炭黑产品,会大大进步油页岩渣的归纳使用价值。
1、反响温度对白炭黑提取率的影响 固定反响时刻为6.0h,碱浓度为6.0mo1/L,别离考察了不同温度下白炭黑的提取率,试验成果如图7所示。
图7 反响温度与白炭黑提取率的联系
由图7可知,跟着反响温度的升高,产品的提取率进步。但当反响温度到达100℃以上,提取率进步起伏较小。因而最佳的反响温度为100℃,白炭黑的提取率到达80.5%。
2、反响时刻时白炭黑提取率的影响 固定反响温度为100℃,碱浓度为6mol/L,别离选用不同的反响时刻处理,试验成果如图8所示。
图8 酸浸时刻与白炭黑提取率的联系
由图岂能够看出,跟着碱处理时刻的延伸,白炭黑的提取率添加。当反响时刻小于6.0h时,白炭黑添加较快。但当反响时刻超越6.0h时,白炭黑提取率添加缓慢。因而适合的碱处理时刻为6.0h。
3、碱浓度对白炭黑提取率的影响 固定反响温度为100℃,反响时刻为6.0h,别离选用不同的碱浓度进行处理,试验成果如图9所示。
图9 碱浓度与白炭黑提取率的联系
由图9可知,白炭黑的提取率随碱浓度的增大而增大。当碱浓度低时,产率低,无实践出产含义;当浓度到达6mol/L后,提取率改动不大。因而从经济方面考虑,选用碱浓度为6mol/L。
4、白炭黑检测分析经过碱溶法制备的白炭黑的XRD图谱如图10所示,图中未呈现尖利的晶体衍射峰,而只在衍射角(2θ)15°~40°区间内呈现非晶峰,产品为无定型非晶体结构,不含其他结晶相。
图10 白炭黑的XRD图
图11为白炭黑产品的红外光谱图,图中的3450cm-1是SiO-H和物理吸附水中HO-H键的弹性振荡吸收,1635 cm-1是物理吸附水的曲折振荡吸收,1090 cm-1为Si-O-Si键的反对称弹性振荡吸收,在968 cm-1呈现一个较弱的吸收峰,是Si-OH的弹性振荡吸收;796 cm-1为-OH的曲折振荡吸收,467 cm-1为Si-O键的弹性振荡吸收;因而能够断定该产品为水合二氧化硅。
图11 白炭黑的FT-IR图
图12为白炭黑的TEM图,从图中能够清楚看出,白炭黑颗粒呈近似球形,大多数颗粒粒径在50nm以下。用BET法测定白炭黑的比表面积为110.5m2/g。经过X射线荧光光谱法测定白炭黑产品中SiO2含量为95.9%。
图12 白炭黑的TEM图
白炭黑的行业标准HG/T3061-1999(橡胶配合剂、沉积水合二氧化硅技能条件)以及其它理化目标的检测成果如表2所示。选用沉积法从油页岩渣制备白炭黑产品契合行业标准HG/T061-1999的要求。
表2 白炭黑理化功能测定成果项目HG/T3061-1999测定成果比表面积(BET法)/(m2·g-1)
SiO2纯度/%
加热减量/%
1000℃灼烧减量/%
pH70~200
≥90
4.0~8.0
≤7.0
5.0~8.0110.5
95.9
5.15
5.78
5.5~6.0
使用油页岩渣制备氧化铝和白炭黑后,灰渣剩余量不到本来的5%,到达了抛弃物的环保处理和归纳使用的意图。
三、定论
(一)油页岩渣不需高温焙烧活化效果,可直接选用酸浸法制备出纯度较高的γ-Al2O3,产品并经XRD、SEM和X射线荧光分析等验证。
(二)制备γ-Al2O3后的残渣,选用碱处理的办法制备出了白炭黑,产品并经XRD、TEM、FT-IR和X射线荧光分析等验证,白炭黑产品契合HG/T061-1999标准。
(三)使用油页岩渣制备氧化铝和白炭黑后,灰渣剩余量不到本来的5%,到达了抛弃物的环保处理和归纳使用的意图。
二氧化锆的相变及其制备
2019-03-08 11:19:22
物理性质
纯洁的ZrO2为白色粉末,含有杂质时略带黄色或灰色,增加显色剂还可显现各种其它色彩。一般含有少数的氧化铪,难以别离,可是对氧化锆的功能没有显着的影响。二氧化锆的相变
氧化锆是一种特殊的材料,增韧的办法,首要是使用氧化锆的相变才干到达的!氧化锆有三种晶相,分别为单斜晶相、四方晶相和立方晶相,三者之间的改变联系如下:因为在单斜相向四方相改变的时分会发作较大的体积改变,冷却的时分又会向相反的方向发作较大的体积改变,简略构成产品的开裂,约束了纯氧化锆在高温范畴的使用。
可是增加安稳剂今后,四方相能够在常温下安稳,因此在加热今后不会发作体积的骤变,大大拓宽了氧化锆的使用规模。市场上用来做安稳剂的质料首要是氧化钇。
二氧化体的首要制备办法
1.中和沉淀法长处:设备工艺简略,出产本钱低价,且易于取得纯度较高的纳米级超细粉体,因此被广泛选用。
缺陷:没有解决超细粉体的硬聚会问题,粉体的涣散性差,烧结活性低。
2.锆盐水解法长处:操作简洁。
缺陷:反响时刻较长(>48小时),耗能较大,所得粉体也存在聚会现象。
3.锆醇盐水解法长处:(1)简直全为一次粒子,聚会很少;
(2)粒子的巨细和形状均一;
(3) 化学纯度和相结构的单一性好。
缺陷:质料制备工艺较为杂乱,本钱较高。
以上三种办法的后工序都是煅烧,其温度越高,则粉体的晶粒度越大,聚会程度越高。这是因为煅烧升温进程当完成了从非晶态改变为晶态的成核进程今后便开端了晶粒长大阶段,而且晶粒中成晶结构单元的涣散速度随温度升高而增大,彼此接近的颗粒简略构成聚会。
4.水热法长处:粉料粒度极细,可到达纳米级,粒度散布窄,省去了高温煅烧工序,颗粒聚会程度小。
缺陷:设备杂乱贵重,反响条件较严苛,难于完成大规模工业化出产。
5.溶胶-凝胶法长处:(1)粒度纤细,亚微米级或更细;
(2) 粒度散布窄;
(3)纯度高,化学组成均匀,可达分子或原子标准;
(4)烧成温度比传统办法低400~500℃。
缺陷:(1)质料本钱高且对环境有污染;
(2)处理进程的时刻较长;
(3)构成胶粒及凝胶过滤、洗刷进程不易控制。
6.微乳液法(反胶束法)长处:可制得
缺陷:出产进程较杂乱,本钱也较高。
用菱锰矿制备四氧化三锰工艺研究
2019-01-17 13:33:17
用菱锰矿制备四氧化三锰工艺研究,中国矿冶网,金属矿产资源矿冶技术中小企业服务平台,国家金属矿产资源综合利用工程技术研究中心,中国矿冶技术中小企业联盟
用菱锰矿制备四氧化三锰工艺研究
高纯四氧化三锰是电子工业生产锰锌氧软磁材料的重要原料之一。随着国家“绿色照明”工程的实施,电视机、移动通讯、计算机与节能灯等迅速发展,软磁铁氧体需求量迅速增长,使得四氧化三锰的需求量迅速增大。因而四氧化三锰的开发具有广阔前景。
目前四氧化三锰生产采用氧化法,此法以纯净的电解金属锰片为原料,制备高纯四氧化三锰,具有工艺简单,操作方便,锰回收高,污染小等优点,但需要使用电解金属锰作原料,生产成本相对较高。
用原生锰矿直接制备四氧化三锰工艺与氧化法相比,省去了电解工序,节省了大量的电力资源,对降低四氧化三锰的生产成本,提高产品竞争力具有重要的意义。
1 原料与试剂
原料:碳酸锰矿粉由金瑞新材料科技股份有限公司贵州分公司提供,粒度:-100目,化学成分列于表1。
试剂:H2SO4工业级、NH3·H2O工业级、SDD工业级、NH 4F工业级、NH4HCO3工业级
2 基本原理
硫酸浸出:用硫酸浸出碳酸锰矿粉的目的就是以硫酸为浸出剂,使碳酸锰矿粉中的低价锰转变成硫酸锰溶液。化学反应为:MnCO3+H2SO4→MnSO4+H2O+CO2↑
硫酸锰溶液净化:碳酸锰矿粉中都不同程度地含有钙、镁、硅、铁、铝、铜、钴、镍和铅等杂质。在浸出过程中,这些杂质的除去是分四步进行的:第一步是氧化中和水解法除铁;第二步是硫化沉淀法除铜、钴、镍等重金属;第三步是氟化沉淀法除钙镁;第四步是浓缩絮凝除硅。
超细氢氧化铝的制备方法
2019-01-10 13:40:32
一种超细氢氧化铝的制备办法,将铝酸钠NaAlO2溶液和含二氧化碳的气体触摸,在超重力条件下碳化反响制备氢氧化铝凝胶,然后再得到不一样晶型的超细氢氧化铝,首要由碳化、过滤、洗刷、枯燥过程构成。本发明可利用中心商品NaAlO2溶液和CO2废气,采用螺旋通道型旋转床RBHC进行碳化反响为首要技术制备纳米级超细氢氧化铝的办法,解决了传统拌和槽法对CO2气体吸收率低,碳化时间长,商品纯度低、粒度不均匀和旋转填充床RPB碳化反响时易于堵塞等技术问题。别离制备出不一样晶型的纳米级超细纤维状和颗粒状氢氧化铝。本发明制备出约10nm颗粒状氢氧化铝可用作杰出的无机阻燃剂;制备出的粒径约5nm、长200~300nm纳米纤维状拟薄水铝石在催化范畴可广泛使用。
1、一种超细氢氧化铝的制备办法,将铝酸钠NaAlO2溶液和含二氧化碳的气体触摸,在超重力条件下以碳化反响方法制备拟薄水铝石凝胶,然后再得到不一样晶型的超细氢氧化铝,首要由碳化、过滤、洗刷、枯燥过程构成,其特征在于: 1)操控铝酸钠NaAlO2溶液浓度为0.05~2mol/L; 2)在铝酸钠NaAlO2溶液中参加质量含量为1~2%的有机高分子分散剂; 3)于反响器(4)中投入上述混合物,开机运转反响器(4),待反响器(4)内液体流量稳定后,向反响器(4)内通入含浓度的CO2气体,操控反响器(4)转速为200~3000rpm,气液比为0.5~20,碳化反响温度操控在0~100℃,守时记载温度和pH值,使pH值到达9~12时中止通入CO2气体,下降反响器(4)转速再循环一段时间,得氢氧化铝前驱体; 4)持续将上述商品作合适不一样晶型的进一步处置,如是不是需求老化的过程;上述的反响器(4)为旋转床超重力反响器(4),首要包含转子(5)、设置于转子(5)中心的散布器(15)以及进液口(8)、进气口(3、9)、废气排口(7)、出料口(14、16)。
微晶氧化铝陶瓷的制备、应用与发展
2019-01-02 15:29:20
20世纪二三十年代以来,科学技术的高速发展,对陶瓷提出了新的挑战。尽管陶瓷中的玻璃相使其变得坚硬致密,然而也正是它妨碍了陶瓷强度的进一步提高。同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能差的根源。随着陶瓷制造工艺的不断进步,特别是对陶瓷烧结过程、显微结构的深入研究,人们已制造出玻璃相含非常低甚至几乎不含玻璃相而由许多微小晶粒结合成的结晶态陶瓷,实现了从传统陶瓷到先进陶瓷的重大飞跃。 先进陶瓷材料是指以精制高纯人工合成的无机化合物为原料,采用精密控制的工艺,经烧结而制得的陶瓷材料,以其具有的高强度、高硬度、耐磨损、耐腐蚀、耐高温及声、光、电、磁等优异性能而区别于传统陶瓷(日用陶瓷、建筑卫生陶瓷等),亦称为高技术陶瓷、精细陶瓷、精密陶瓷、现代技术陶瓷、工业陶瓷、特种陶瓷等。无论从材料本身性能或材料所采用的制备技术来看,先进陶瓷材料已成为陶瓷科学和材料与工程科学领域里非常活跃、极富挑战性的前沿研究学科,微晶氧化铝陶瓷也是先进陶瓷材料中异军突起的重要陶瓷材料之一。 国内微晶氧化铝陶瓷简介 作为引领我国先进陶瓷技术与产业发展方向的中材高新材料股份有限公司,在20世纪末已出色完成一批用于航天等高科技领域和现代军事技术所不可替代的先进陶瓷关键材料,进入21世纪,又依托其在工业陶瓷领域三十多年所取得的一系列科技成果和研发经验等优势,加快了公司一系列陶瓷制品的产业化进程。目前,公司已是国内最大的微精耐磨氧化铝陶瓷生产企业之一,拥有微晶耐磨氧化铝球石、衬砖和衬片三大类产品,其中氧化铝瓷球拥有从φ3到φ80的14种规格,从75MQ到95MQ的9大系列;氧化铝衬砖拥有H40、H50、H60、H70等4种规格,90、95两大系列;氧化铝衬片有5种规格,4大系列。年生产总量可达22000吨,产品规模始终处于国内同行业的领跑地位,并居亚洲第一,产品质量已获中国产品质量协会颁发的最高信誉AAA等级证书。 中材高新微晶耐磨耐腐蚀氧化铝产品具有高强度、高硬度、耐磨、耐腐蚀等特性,作为磨介和研磨护层应用于物料的物理粉碎过程中,广泛用于建筑卫生陶瓷、工业陶瓷、电子陶瓷、高档耐火材料、特种水泥、搪瓷、非金属矿产品深加工、化工及医药、涂料等行业。它不仅可以提高产品质量、大幅度提高化工产品的研磨细度、减少化工产品杂质的引入,而且能提高研磨效率25%-35%,降低能耗30%以上。 近年来,中材高新积极改进生产工艺,提高产品质量。90B系列氧化铝制品(球石、衬砖等)的当量磨耗≤0.2‰,已远远优于行业标准,90G耐磨氧化铝球石已达到与意大利BITOSSI公司高档球相当的质量水平,其当量磨耗≤0.10‰。滚制成型氧化铝小尺寸研磨球系列产品,通过设备改造和工艺改进,其抗冲击性能及其他质量指标稳步提高。
高纯钴的制备技术
2019-01-31 11:06:04
一、前语纯度为 99.9%~99.99%的钴 现已广泛运用于磁性材料、超级合金的制作,99.999%乃至更高纯度的钴则用来做为先进电子元件的靶材。钴靶材中的杂质会影响电子器件的运用功用:碱金属(如 Na,K)、非金属(S,C,P)等杂质能够在半导体之间搬迁,然后影响其功用;Fe会导致电子器件磁功用的不一致;Ti,Cr,Cu元素会影响半导体元件的导电功用;气体杂质(如 O)能够添加半导体元件中的Co和 CoSi2的电阻;Ni会影响半导体的界面功用;放射性元素如U,Th能够辐射出α射线,使半导体失效。因而,研讨高纯钴的制备办法对进步钴靶材的质量有着重要的含义。
在国际上,1956年美国矿业局(Bureau of Mines)初次制备出纯度为 99.99%高纯钴。K.K.Kershner等人通过阳离子交流法和沉淀法除掉四合钴(Ⅲ)盐溶液中的铁、铜、镍等杂质,终究选用阴极电解法制备出高纯钴。跟着离子交流法的开展和高效萃取剂 P507,Cynex272,Cynex301等的呈现,钴溶液提纯技能得到长足开展。美国、加拿大、日本、韩国等国在钴提纯技能上进行了很多研讨工作 ,其间以日本最为杰出。日本 JMc公司于 1997年开端出产高纯钴 ,现有 99.998%高纯钴产品。日矿(Nikko)公司和 日本株式会社化学研讨现已出产出99.999%的高纯钴 ;日本 Furuchi公司出产的高纯钴能够到达 99.999 5%(分析 70种杂质元素),是现在报导中纯度最高的。
在国内,1961年上海有色金属的研讨所以粗钴为质料 ,用次溶液除镍,以离子交流除铝和锌 ,中和水解法除铁,制备高度纯洁的氯化钴溶液进行电解精粹,获得 99.99%高纯钴。金川镍钻研讨设计院的申勇峰等以l#电解钴为质料选用电溶 、离子交流法除掉溶液中的杂质离子电解提纯后的溶液,得到 99.994%的高纯钴。此外北京有色金属研讨总院和北京矿冶研讨总院也正在进行高纯金属的研讨工作。金川有色金属公司是我国镍钴首要出产基地,钴产值居全国之首,并且出产技能也代表了我国最高水平。其选用粗钴阳极隔板膜电解法出产出纯度大于 99.98%的电解钴 ,到达 1#电解钴的标准。
国外首要选用离子交流法除掉溶液中大部分杂质离子,然后通过电解得到金属钴,再选用区域熔炼、电子束熔炼等手法进一步提纯得到高纯钴。国内研讨工作首要会集在离子交流和电解精粹上,现在还没有扩大化出产的报导。
二、高纯钴的制备制备高纯钴的质料是工业电解钴、钴盐等,运用的冶金办法首要有湿法冶金、火法冶金、电化学冶金等。制备进程分为钴盐溶液净化和钴金属精粹 2个阶段:第 1阶段首要选用湿法冶金办法,如溶剂萃取、离子交流、膜别离、电解等,用以除掉粗钴溶液中的大多数金属杂质,首要是镍、铜、锌、铁等杂质,并经电解得到金属钴;第 2阶段首要选用火法冶金办法,如区域熔炼、真空脱气等,用以进一步脱除金属钴中的碱金属、碱土金属、非金属气体杂质,终究得到高纯金属钴。
(一)钴盐溶液的净化
1、溶剂萃取法溶剂萃取法是运用杂质离子在有机相和水相之间的分配比不同到达别离杂质的意图。Ritcey等在20世纪 70年代研讨了运用 D2EHPA进行钴、镍别离的工艺。N.B Devi研讨了硫酸盐系统中选用D2EHPA,PC88A,Cyanex272萃取 Co的行为,并评论了比较、皂化率对萃取因子的影响。M.V.Rane选用 LIX84从废旧的催化剂中萃取钴,然后用沉淀法除铁和铝 ,得到了纯度大于 99.9%的钴 。N.V.Thakur等选用 P204和 P507完成了钴与镍、铜等杂质的别离。
Wang Guangxin等选用溶剂萃取法和离子交流法净化钴溶液,然后经电解得到金属钴,其成果见表 1。能够看出,溶剂萃取法对大多数金属离子有很好的除杂作用,但对铜、锌、钛、铅等金属离子反而起了富集作用。溶剂萃取法适用于大规模提纯钴溶液,但在制备高纯钴方面作用却不显着。
表1 离子交流和溶剂萃取后的杂质含量(×10-4%)注:①溶剂萃取-电积工艺;② 离子交流-电积工艺;③ 溶剂萃取-4次离子交流-电积工艺。
2、离子交流法离子交流法是运用离子交流树脂的功用基团和溶液中杂质离子的交流、解析才能的差异到达别离的意图。K.Mimura等选用阴离子交流法净化钴溶液,再经电解、电弧熔炼、电子束熔炼得到纯度为99.999 7%的高纯钴。Nagao等选用阴离子交流法除掉 Fe,Zn,Sn,Ni,Ca,Mg,Na等,然后选用有机胺萃取别离其它杂质,得到的高纯钴盐溶液经结晶、枯燥后复原得到高纯钴粉,其间的Fe,Zn,Sn,Ni,Ca,Na,Mg含量都低于 0.000 l%。
钴盐溶液中的铜在酸性条件下始终能弱吸附在树脂上,难以与钴别离。为处理铜的共吸附问题,Masahito等将钴溶液 中的 Cu2+复原为 Cu+,再选用阴离子交流树脂除掉Cu+(Co2+不被吸附),净化后的高纯 CoCl2溶液结晶、枯燥后经复原得到纯度为 99.999 7%的金属钴(RRR=207),成果见表2。由表 2可见,铜杂质含量低于 0.000 005%。
表2 阴离子交流法制备的高纯钴中的杂质含量(×10-4% )离子交流法对 Zn,Mo,W,Cu的别离作用并不显着,对铅有显着的富集作用。
3、萃取色层法萃取色层法是运用吸附在大孔树脂上的萃取剂对溶液中离子的挑选性萃取到达别离意图。刘扬中等研讨了添加配位剂基乙酸 ,以替代传统的树脂转型办法进行萃取色层法净化钴溶液。他们调查了淋洗液 pH值、进样量及料液中Co、Ni比等要素对别离的影响,在 pH值为 3.40的条件下用5 g萃淋树脂完成将钴、镍质量比在 1~100范围内溶液中的钴、镍(总量为 1.6 mg)彻底别离,并研讨了基乙酸的配位、缓冲作用对别离进程的影响。
周移等将 P507萃淋树脂转型为 Mg型 ,进步了对 Co2+的萃取才能 ,完成了钴与镍的彻底别离 ,并进步了柱子运用寿数。周春山等选用转型后的 P204萃淋树脂以 pH值为 2.5的一钠为淋洗液,完成了钴与铜、锌、锰、铬等金属离子的彻底别离。刘展良等具体研讨了 HCl系统中 Zn、Ca、Mg、Fe、Co、Ni和稀土离子在 P507萃淋树脂上的淋洗行为,并探讨了 Fe3+在柱床上或许存在的反响 机理。萃取色层法既具有液一液萃取中萃取剂的高度挑选性 ,又具有离子交流色层别离的多级性,在别离性质附近的元素上有着优 良的功用,因而在湿法冶金中遭到越来越多的注重。一起萃取色层也存在一些 本身的缺陷 ,如柱子萃取容量比较低 ,萃取剂简单丢失 ,寿数相对较短等。进步柱子的萃取容量,战胜萃取剂丢失,开发挑选性更好的萃取剂是往后萃取色层法获得重大突破的要害。4、膜别离法膜别离法是运用液膜能够挑选性地透过离子并在水相富集而到达别离的意图。Jerzy等选用支撑液膜和大块液膜做载体 ,D2EHPA做萃取剂别离钴和镍 ,探讨了溶液酸度 、膜离子载体浓度、金属离子浓度对别离成果的影响。
Li Longquan等研讨了乳化液在硫酸系统中别离钴、镍的进程。他们选用 EDTA作为掩蔽剂掩蔽料液中的镍离子,以P204的乳化液膜作为载体从硫酸盐系统中收回钴。通过调查 pH值、别离时刻等要素,断定了最佳的别离条件。
虽然膜别离法具有高的挑选性和传质快等长处,但因膜的稳定性差、本钱较高级原因,现在还处于实验室中试阶段。5、电解法钴电解是在酸性钴盐溶液中进行的。电解液的组成、浓度、酸度、温度、电流密度等条件应该严格控制。因为溶液中的Cu2+,Cu+,Sn2+,Ni2+,Pb2+,As3+等杂质离子的电势比钴高(正)或许和钴挨近,在电解时会与Co2+一起分出;电势比钴更低(负)的金属离子如 Fe,Mn,Zn,Na等杂质离子的存在对钴的质量影响不大,但含量较高也会带来必定的损害。因而要严格控制溶液中的杂质离子含量。
净化后的钴溶液中溶解的少数萃取剂会添加金属钴的杂质含量经活性炭处理得到的电积钴中的 C,O,N,H含量大大下降,见表3所示。
表3 活性炭处理后电积钴的杂质含量(×10-4%)注:① 溶解的有机相用经6 mol/L的HCl处理过的活性炭除掉,经电解、EBM后得到的数据;② 进程相似Example 2经电积得到数据,运用的活性炭未经酸处理;③ 进程相似 Example 2,经电积得到数据,溶液未经活性炭处理。
Isshiki等选用聚乙烯电解槽,用直径为1 mm的高纯钴丝(99.998%)做 阴极,用铂板做阳极,电解高纯 COC12溶液得到直径 5 rain的钴棒。
Shindo等选用离子交流法除掉溶液中的杂质,然后经屡次电解和电子束熔炼得到金属钴 。屡次电解和电子束熔炼后的杂质含量见表4。
由表4能够看出,电解能够别离 Ni,Fe,K,U,Th等杂质,屡次电解精粹能够进一步下降杂质含量;电解精粹后的电子束熔炼能够有用去除Na杂质。
表4 钴电解精粹和电子束熔炼后的杂质含量(二)钻金属精粹为脱除金属钴中剩余的碱金属杂质和部分气 体杂质 ,电解得到的金属钴还需要通过火法精粹。常用的办法有电子束熔炼 、区域熔炼等。区域熔 炼是依据杂质元素在液态和固态平分配系数的差 别,使金属得到提纯。可是 ,对分配系数挨近 1 的元素,如 Fe,Ni,Co,Cr,Mn,A1,Cu,Si很难用区域熔炼法相互提纯。电子束悬浮区熔是制 备高纯金属常用的办法,它能够成长完好的单晶,显着进步金属的 RRR值,如表 5所示。通过区域 熔炼后 ,金属钴的 RRR值分别由236和 116进步到 334和 245。
表5 不同工艺下杂质含量及RRR值的改变(×10-4%)注:A,CoCl2质料;B,氢复原钻;C,电解+6次电子束悬浮区域熔炼;D,氢复原+4次电子束悬浮区域熔炼;E,氢复原+8次电子束悬浮区域熔炼 ;F,氢复原-处理+4次电子束悬浮区域熔炼。
Miller等运用真空脱气烧结法使金属钴中的Zn,Cd,S,O,C等杂质元素含量显着下降,成果如表6所示。
由表6能够看出,真空脱气烧结法能够有用地脱除金属中的 C,O,N等非金属杂质 ,但关于金属杂质作用并不显着。
表6 真空烧结脱气作用(×10-4%)三、结语
单一的提纯办法无法满意制备 5N以上高纯钴的要求。溶剂萃取法对大多数金属离子有很好的作用的,但对 Ni,Cu,Zn等金属离子的别离作用相对较差;膜别离法存在稳定性差 、本钱高的缺陷。离子交流和萃取色层法对别离性质附近的元素上作用杰出 ,但存在容量低一级问题。火法精粹进程中,区域熔炼可去除金属钴中的碱金属、碱土金属和气体杂质,并有利于生成纯度高、值大的完好钴单晶。因而,制备 5N以上的高纯钴合理的工艺流程为:首要选用离子交流或萃取色层法除掉钴盐溶液中的镍、铜、铁、锌等杂质,然后选用电解进一步除掉 Ni,Fe,K,U,Th等杂质得到高纯金属钴,终究选用区域熔炼除掉其间的碱金属和蒸气压较大的杂质,得到晶型完好的高纯钴产品。
钛液的制备
2019-02-13 10:12:38
在硫酸法钛出产中,第一步就是先把固体的钛铁矿经过酸分化制备成可溶性钛的硫酸盐溶液,一起钛铁矿中的铁和大部分金属杂质也变成可溶性的硫酸盐,以便今后将各种杂质别离。因为偏铁酸亚铁(钛铁矿)是一种弱酸弱碱盐,用强酸(H2SO4)与它反响基本上是不可逆的,反响能够进行得比较彻底。
钛铁矿的酸分化(简称酸解)有干法和湿法。干法是把磨细后的钛铁矿与硫酸混合进行加热、焙炒,待分化完结后加水稀释浸取,取得钛的硫酸盐溶液。该法不能进行大规模的工业化出产,现在在实验室中制备钛的硫酸盐溶液有时还用这种办法。
湿法就是现在遍及选用的硫酸法。湿法从开展的前史来看,曾有过5种不同办法:即液相法、固相法、两相法、加压法和接连法。
液相法:反响一直在液相状态下进行。在这里,硫酸(有用酸)浓度与钛总含量之比值非常重要叫做酸比值,一般以F来表明。选用55%~65%的硫酸酸比值较高(F值3~3.2),所以得到的钛液绝大部分以正硫酸钛—Ti(SO4)2的方式存在。该办法因为反响时间太长,耗酸、耗蒸汽多,加上F值太高形成今后水解困难,水解率低,工业出产一般不选用此法。实验证明液相法的硫酸浓度即便只要10%,也能取得硫酸钛溶液,但反响时间更长,因为10%硫酸的沸点只要10℃,在98℃下反响8h,酸解率只要30%。
两相法:两相法选用的硫酸浓度为65%~80%,F值操控在1.8~2.2之间,操作时先把硫酸加热至120℃左右,然后参加矿粉持续拌和加热到150~200℃,主反响3h,反响物为糊状物,接着冷却、加水浸取坚持必定的悬浮液浓度,至酸解率到达85%~90%时停止。两相法虽比液相法耗用硫酸少,但反响时间长,酸解率低仍不经济。
固相法:该法是现在硫酸法钛工厂遍及选用的办法,因为它与前两种办法比较具有反响温度高、反响进程短、耗用硫酸少的长处。用这种办法出产的硫酸浓度一般在85%~95%,反响剧烈、敏捷,因为浓硫酸的沸点高,最高反响温度可高达200~250℃,反响一般在5~15min内即可完结,反响放出很多的热,因而动力较省,耗酸也较少,F值一般操控1.7~2.1,所得产品为多孔的固相物,简单加水浸取,酸解率一般能够到达95%以上。
加压法:选用20%~50%浓度的稀硫酸,在一耐腐蚀的受压设备中进行,一般出产人工金红石或电焊条用的金红石有时选用此种办法。
接连法:该法运用和20%硫酸的混合酸,先制得半流体状的反响物,然后再高温固化。加压法、接连法对反响设备的原料要求很高,操作杂乱,在工业化钛出产中没有采用。
雾化热解法制备活性氧化锌
2019-02-11 14:05:30
超细氧化锌是一种近年来开展的新式高功用无机产品,它具有了其本体块状物料所无法比拟的优异功能。现在氧化锌的制备办法首要有:直接沉淀法、均相沉淀法、溶胶-凝胶法、微乳液法、水热法、醇盐水解法、溶剂蒸腾法等。
雾化热解进程作为一种新式的超细粒子制备技能,遭到材料、化学工程、气溶胶、超导等范畴研究人员的广泛重视。本文以锌焙砂为质料,用NH3-NH4·HCO3-H2O系统作为浸出剂,经浸出-雾化热解-锻烧制取活性氧化锌。
一、实验
(一)实验原理
锌焙砂的首要成分为ZnO,并伴有少数的ZnSO4、ZnO·SiO2、ZnO·Fe2O3及ZnS,在性系统中浸出时,锌焙砂中Cu、Ni、Cd、Co等杂质元素也生成合作物进入溶液,ZnO·SiO2、ZnO·Fe2O3及ZnS等不溶解,残留在渣中。
在净化进程中,因系统呈弱碱性,Cu、Ni、Cd、Co等杂质均易被锌粉置换除掉,净化后液选用并流式离心雾化枯燥器雾化枯燥,溶液通过高速旋转的离心盘雾化成微米级液滴,当即与热风触摸,在枯燥器中呈螺线型运动,而且随同枯炎热分化进程。雾化后的每一个球形液滴能够作为一个反响器,其阅历三个阶段,首要因为NH3蒸腾温度低,在高温下NH3敏捷蒸腾,导致溶液中[Zn(NH3)m]2+合作物失去平衡,分出碱式碳酸锌前躯体,此阶段相当于蒸进程;第二阶段为水的蒸腾,粒子表面的水蒸气分压远大于空气中的水蒸气分压,枯燥进程持续进行,分压差为枯燥进程的推动力;第三阶段为降速阶段,粒子表面的水蒸气分压等于空气中的水蒸气分压,两者之间的分压差等于零,不再进行枯燥,可是此刻物料分化敏捷,而得到高活性氧化锌。
因碱式碳酸锌分化不彻底,将前躯体在马弗炉中锻烧,锻烧温度300~600℃,锻烧时刻30~60min,而得到高活性氧化锌。
(二)试剂及试料
(25%~28%)、碳酸氢铵,分析纯;实验质料取自江西某炼锌厂的锌焙砂,其化学成分(%):Zn 53.17、S 2.58、Cu 1.03、Pb 1.48、Cd 0.09、Fe13.06、As 0.24、Sb 0.08。
(三)实验装置
浸出实验在1 L圆底三口烧瓶中进行,选用恒温磁力拌和器坚持稳定的反响温度,操控温度差错士1℃,拌和速度为450 r/mine
(四)实验及分析办法
每次取40 g氧化锌焙砂,按必定的液固比参加配好的及碳酸氢铵混合液,通过必定时刻的浸出后过滤,用EDTA滴定法分析滤液中Zn的浓度,核算Zn的浸出率。锌粉置换除杂反响所用锌粉粒度为145~175μm,在快速拌和下缓慢参加。净化液通过滤后在离心喷雾枯燥器中雾化、枯燥、分化得到中间产品,最终在马弗炉中煅烧得到活性氧化锌。以SEM、XRD等分析手法分析产品的粉体结构、描摹特征。
二、成果与评论
(一)浸出
1、 NH3/NH4+对Zn浸出率的影响
在总浓度8mol/L,液固比8∶1,温度35℃、时刻lh的条件下,调查NH3/NH4+对Zn浸出进程的影响,成果见图1。从图1可知,NH3/NH4+对Zn浸出率的影响显着,当NH3/NH4+从1∶1添加到2.5∶1时,Zn浸出率显着进步,通过预订的浸出时刻,Zn浸出率由75.96%添加到82.56%,当铵比持续增大,Zn浸出率缓慢下降。其原因首要是因为NH3/NH4+的改变,引起浸出液pH的改变,依据Zn浸出电位-pH图,pH的巨细直接影响ZnO的浸出进程,在NH3/NH4+=2.5∶1时,浸出液pH=12。因而断定浸出液NH3/NH4+=2.5∶1。图1 铵比对Zn浸出率的影响
2、液固比对Zn浸出率的影响
在总浓度8 mol/L、NH3/NH4+=2.5∶1、温度35℃,时刻1h的条件下,调查液固比对Zn浸出进程的影响,成果如图2所示。从图2可看出,液固比对Zn浸出率的影响非常显着,当液固比低于8∶1时,跟着液固比的添加,Zn浸出率显着添加;可是当液固比大于8∶1后,Zn浸出率改变不大。因而断定液固比为8∶1。图2 液固比对Zn浸出率的影响
3、总浓度对Zn浸出率的影响
在液固比=8∶1、NH3/NH4+=2.5∶1、温度35℃、时刻1h的条件下,调查总浓度对Zn浸出进程的影响,成果如图3所示。从图3可看出,总浓度对Zn浸出率的影响显着,当总浓度小于8 mol/L时,跟着总浓度的添加,Zn浸出率显着进步;可是总浓度大于8mol/L后,Zn浸出率改变不大。因而断定总浓度为8mol/L。图3 总浓度对Zn浸出率的影响
4、浸出时刻对Zn浸出率的影响
在总浓度8mol/L、NH3/NH4+=2.5∶1、液固比=8∶1、温度为35℃的条件下,调查浸出时刻对Zn浸出进程的影响,成果如图4所示。从图4可看出,浸出时刻对Zn浸出率的影响显着。在NH3-NH4·HCO3-H2O系统中,Zn浸出反响敏捷,在浸出时刻为10min时,Zn浸出率就到达72.28%,而且跟着时刻连续,浸出率快速进步,浸出40min时,Zn浸出率到达82%。当浸出时刻到60min,Zn浸出率到达82.34%,可浸Zn根本浸出彻底。
5、浸出归纳条件实验
依据以上实验成果,断定最佳浸出的归纳条件为:总浓度8 mol/L、NH3/NH4+=2.5∶1、液固比=8∶1,时刻1h。浸出液锌含量为54.34g/L,浸出率为82.56%,首要杂质元素含量(mg/L):Cu250、Pb 25.1、Co 0.52、Cd 31.6、Fe 3.3、As 0.43、Sb 0.15。按可溶性的氧化锌、硫酸锌核算,可溶锌浸出率大于97%。形成浸出率低的原因是焙砂中铁酸锌、硅酸锌含量较高。浸出液进行二次浸出,锌含量可到达97.62 g/L。图4 浸出时刻对Zn浸出率的影响
(二)净化
由上述成果可知浸出液中Cu、Ni、Cd、Co等杂质元素含量较高,本实验选用锌粉置换法除掉这些杂质,净化实验在高拌和强度下进行,选用的锌粉粒度为145~175μm,温度操控在50℃左右,反响时刻1h。在此条件下,溶液中Cu、Cd、Co、Fe等杂质均可被置换除掉,净化后液杂质元素含量(mg/L):Cu 0.32、Pb 0.79、Co 0.02、Cd 0.68、Fe 1.3、As0.06、Sb 0.0。Cu净化率到达99.87%,一起Co净化率为96.15%,净化后液中Fe含量为1.3 mg/L,
到达净化要求。
(三)雾化分化
雾化分化在并流式离心喷雾枯燥器中进行,溶液通过蠕动泵泵入雾化器中,经高速离心效果,将机械能转化成细微雾滴的表面能,而且在极短的时刻内完结蒸腾、水蒸腾、碱式碳酸锌的分出及分化进程。溶液的黏度及表面张力对雾化起阻止效果,其首要由物料的性质及组成操控。
雾化热解进程在人口温度为340℃,出口温度180℃以上,雾化转速为400n/s,进料速度为60mL/min;料液浓度为100g/L的条件下进行,产品进行SEM分析,成果如图5所示。从图5可看出,大部分为长度不大于2μm的针状物,其为前期跟着气蒸腾而分出的碱式碳酸锌,通过水分蒸腾枯燥分化而得的氧化锌。还有少部分为未彻底分化的前躯体,为表面润滑的实心球体。这是因为物料在枯燥器内与执风并行活动,目在枯燥器内只逗留20~30s,热风温度跟着水分的蒸腾直线下降,在出口温度仅能到达180℃左右,低于碱式碳酸锌的分化温度,所以有部分不能分化。图5 雾化分化粉体的SEM图
(四)煅烧
锻烧在马弗炉中进行,温度设定为400℃,时刻1h。锻烧后的粉末XRD谱图与ZnO的XRD标准卡片(JCPDS)对照分析标明,煅烧后制备的氧化锌微粒与JCPDS标准卡片相符,这阐明得到了六方晶系结构的氧化锌粉体,衍射峰都很尖利,而且几乎没有杂质衍射峰,阐明结晶程度和纯度都较高。
锻烧后描摹及粒度经电镜分析,其成果如图6~7。如图6所示,其间大部分针状物的描摹、粒度都没有发作显着的改变,少部分发作聚会现象。从图7能够看出,前躯体中的球形碱式碳酸锌则生成蜂窝状,增大了其比表面积。图6 400℃煅烧后针状ZnO粉体的SEM图图7 400℃煅烧后蜂窝状ZnO粉体的SEM
三、定论
(一)在总浓度8 mol/L,液固比=8∶1、NH3与NH4+的比为2.5∶1,温度35℃、时刻1h的条件下,一段浸出液锌含量为54.34 g/L,浸出率为82.56%,两段浸出液进锌含量可到达97.62 g/L,平均可浸锌浸出率到达97%以上;
(二)在性条件下,Fe根本不会浸出,浸出液铁离子浓度仅为3.3 mg/L,净化液中Co的净化率到达96.15%;
(三)在进口温度为340℃,出口温度为 180℃,雾化转速400n/s,进料速度为60mL/min,料液浓度为100g/L的条件下进行为行雾化热解,能够得到长度不大于2μm的针状活性氧化锌。可是因为温度不行,有部分前躯体没有分化彻底,有必要进行煅烧处理;
(四)前驱体在马弗炉中400℃煅烧1h后,为蜂窝状氧化锌。
高温热分解锆英砂制备二氧化锆
2019-01-07 17:38:27
从图1示出的ZrO2-SiO2状态图中可看出,当温度在1175℃以上时,ZrSiO4可分解为ZrO2和熔融态SiO2,热源为高温等离子。反应产物经NaOH处理即可获得二氧化锆,工艺流程见图2,主要工艺条件见表1。
表1 等离子分解锆英砂主要工艺条件工艺步骤工 艺 条 件备 注熔 炼 300kW;225kg/h 反应为: >1175℃ ZrSiO4分解率大于96%碱浸出NaOH 50%;145~150℃ 反应为:SiO2(g)+2NaOH=Na2SiO3(1)+H2O,产品含ZrO2>99%;粒径小于0.189nm占95%;ZrO2 NaOH 50%;热溶液 ZrO2纯度为96%~99.6%图1 ZrO2和SiO2平衡相图图2 高温等离子法分解锆英砂原则流程
高纯钴的制备
2018-12-10 14:19:22
高纯钴的制备.pdf
常压下微波辅助还原法制备纳米氧化亚铜技术
2019-02-11 14:05:38
氧化亚铜是较硫酸铜附加值更高的一种铜类无机盐,广泛使用于涂料工业、玻璃工业、农业等范畴。近年来,跟着氧化亚铜的超细化、高纯度,极大地提高了其使用价值。国内已有的几种Cu2O粒子的制备办法所制得的Cu2O粒径通常在几微米到几十微米范围内,涣散性较差。本研讨在常压下凭借微波辅佐钠复原硫酸铜制备了纳米氧化亚铜,一起调查了影响氧化亚铜收率的几个要素,并对所得Cu2O表面描摹及粒度散布进行了表征。
一、试剂及仪器
试剂:自产硫酸铜,钠,自配涣散剂。
仪器:NN-S3440WF型家用改装微波炉,电子恒速搅拌器,电热恒温水浴槽,XL30W型扫描电镜,LS800型激光粒度测试仪。
二、实验原理
将硫酸铜和钠别离制成必定浓度的溶液,过滤除掉溶液中的机械杂质。将参加涣散剂并调理pH的硫酸铜和钠溶液别离装入加液瓶中,待反响开端后,将2种溶液经过Y型管以并流方法参加到微波炉内的锥形瓶中。反响完毕后,取出锥形瓶,弄清、过滤,用酒精重复洗刷至硫酸根合格停止。产品保持在介质中避免氧化。其反响式发下:
2CuSO4+3Na2SO3→Cu2O+3Na2SO4+2SO2(g)
三、成果与评论
(一)单要素实验
1、微波功率对氧化亚铜收率的影响
钠过量系数 ,系统pH调至3,微波加热40min,微波功率对氧化亚铜收率的影响实验成果见表1。
表1 微波功率对氧化亚铜复原反响的影响微波功率/w剩下溶液色彩实验中的现象产品特征140浅绿色杯壁有少数白色物质泥巴赤色,产品较少320无色少数刺激性气体蒸发,杯壁有少数白色物质泥巴赤色530无色很多刺激性气体蒸发、杯壁、U形管内有很多绿白色物质暗赤色
由表1可知:微波功率为140W时,反响后溶液色彩为浅绿色,阐明反响后的溶液中还有一部分未反响的铜离子,铜的收率较低;微波功率为530W时,反响过程中发生很多SO2气体,操作环境恶化,并且杯壁、U形管内有很多绿白色粉状物,阐明大功率微波辐射会使溶液到达欢腾状况,溶液很多蒸发,这不只使铜丢失大,且出产设备腐蚀严峻;而微波功率为320W时,反响后溶液无色,产品为泥巴赤色。所以,微波辐射功率以320W为宜。
2、溶液pH对氧化亚铜收率的影响
微波辐射功率320W,钠用量为理论用量的1.3倍,复原时刻40min,溶液pH对氧化亚铜收率的影响如图1所示。 由图1可知:跟着溶液pH增大,氧化亚铜回收率逐步添加;pH
因而,复原时,溶液pH宜保持在3.0,反响后溶液pH保持在3.5~5.5之间。
3、钠过量系数对氧化亚铜收率的影响
微波辐射功率320W,溶液pH=3,微波辐射40min,钠过量系数对氧化亚铜回收率的影响如图2所示。能够看出,跟着钠用量添加,氧化亚铜收率逐步增大。从反响动力学视点看,复原剂用量越多,复原作用越好,并且生成的氧化亚铜浸泡于复原性溶液中,能够削减氧化亚铜的氧化。但从另一方面考虑,复原剂用量太多,产品中简单分出钠,且易氧化成硫酸钠,导致产品中硫酸钠超支。因而,钠实践用量为理论用量的1.3倍较为适合。 4、复原时刻对氧化亚铜收率的影响
微波辐射功率320W,溶液pH=3,钠用量为理论用量的1.3倍,反响时刻对氧化亚铜收率的影响实验成果如图3所示。 由图3可知,跟着复原反响的进行,氧化亚铜收率逐步增大。在足够的反响时刻条件下,钠和硫酸铜能充沛触摸,复原反响进行得比较彻底。反响必定时刻后,溶液系统趋于平衡,再延伸反响时刻也不会增大氧化亚铜收率。归纳考虑,反响时刻以40min为最佳。
(二)产品表征
对在钠用量为理论用量的1.3倍、微波辐射功率320W,系统pH=3、反响时刻40min、参加必定量涣散剂、并流加液的最佳条件下制备的氧化亚铜,使用扫描电镜和激光粒度仪表征描摹和粒度,成果如图4和图5所示,化学组成分析成果见表2。表2 产品的化学成分分析数据目标称号一级品检测成果ω(氧化亚铜)/%
ω(总铜)/%
总复原率(以Cu2O计)/%≥95.0
≥86.0
≥97.0≥97.2
≥87.5
≥98.4
能够看出,微波条件下复原制备的氧化亚铜描摹较规整,并且涣散均匀;颗粒粒径在0.4~0.9μm之间,比较小,散布也比较窄。产品质量根本满意工业氧化亚铜一级品标准。
四、定论
(一)常压下,选用微波辅佐复原法制备纳米氧化亚铜,以单要素实验法断定最佳实验条件:钠过量系数1.3,微波辐射功率320W,系统pH=3,复原时刻40min。
(二)最佳条件下,氧化亚铜收率为95.3%,纯度可达97.2%,产品质量满意职业产品质量标准。
(三)微波特有的加热方法使制备的氧化亚铜颗粒更细微、更均匀、涣散性更好,描摹呈近球形,粒径在400~900nm之间。
一种氧化锌矿捕收剂及其制备方法
2019-02-26 16:24:38
本创造归于氧化锌矿浮选技能领域,详细触及一种选别氧化锌矿的捕收剂及其制备办法。
布景技能
含锌矿石按氧化程度可分为硫化锌矿石(氧化率小于10%)、混合锌矿石(氧化率为10%~30%)、氧化锌矿石(氧化率30%以上)。氧化锌矿藏品种许多,常见的最有工业价值的氧化锌矿是菱锌矿(ZnCO3)和异极矿(Zn4[Si2O7](OH)2H2O)。
现在,收回氧化锌矿的首要办法是硫化后用伯胺类捕收剂捕收。惯例的药剂准则存在的问题首要有:
1)Na2S用量的操控及增加办法。在氧化锌矿硫化时,要合理操控Na2S用量,过大会引起抑制作用,过小又达不到硫化的作用;增加Na2S一般需求分段增加,形成流程较长。
2)惯例流程较为杂乱。现有的选锌流程为先选硫化矿后选氧化矿的分段浮选,即硫化锌-氧化锌,流程较长。
创造内容
本创造所要处理的技能问题在于针对上述现有技能的缺乏,供给一种选别氧化锌矿的捕收剂。该捕收剂对硫化锌和氧化锌都有捕收功能,能够一起选别硫化锌和氧化锌,不需求先选硫化锌后再选氧化锌;该捕收剂挑选性强,与常用的捕收剂十八胺等药剂比较,关于氧化锌的捕收作用愈加显着,选别目标更好,且选矿工艺流程简略,本钱低价,浮选得到的锌精矿档次大于35%,档次和收回率均显着高于惯例药剂。
为处理上述技能问题,本创造选用的技能计划是:一种选别氧化锌矿的捕收剂,其特征在于,首要由以下分量份的质料制成:50—100份,苛性钠50—120份,60—120份,1-10—200份,丙三醇50—100份,水杨羟肟酸50—120份,碳酸钠10—30份,20—100份,水玻璃溶液50—150份,火油10—40份。氧化锌捕收剂
代号 ZNY
有用物质含量 90(%),外观为淡黄色膏状
首要用途:氧化锌矿浮选(菱锌矿等氧化锌矿)
浮选功能:具有杰出的浮锌挑选功能,耐低温功能(最低温度5℃)。
运用办法:将药剂用水兑成2%水溶液运用,用40℃温水溶解即可。
适用范围:菱锌矿等,锌10%左右的氧化矿能够选到含锌40%的锌精粉,锌收回率70%以上。
环保功能:药剂无毒无害,易生物降解,对环境友好,契合环保要求。
产品特色:
1.不脱泥优先浮选办法;
2.可常温浮选,节能降耗;
3.泡沫适中,浮选安稳,易于出产操作;
4.对各类氧化锌矿有特效,可完成氧化锌矿资源加工工业化。
产品质量标准:
Q/HS001-2008
项目 质量标准 实验办法
外观(250C) 粘稠物 目测
活性物含量,% ,≥ 90
PH值(5%水溶液) 8-9 PH试纸法
包装规格:200公斤/桶。
运送与储存: 不燃不爆,按一般化工产品运送。
密封,贮于阴凉枯燥处。
熔盐法制备氧化镁粉体及其反应机理
2019-02-21 11:21:37
跟着高技术陶瓷、橡胶、塑料、催化剂、环保材料、航天材料的不断发展,氧化镁晶体材料、特别是高纯氧材料(MgO含量不低于98%)的使用越来越广。例如用于医治胃酸过多及十二指肠溃疡患者,用作硅钢制作进程中的高温退火阻隔剂,用于制作电子管、滤光器、滤色器、滤波器等。此外作为灵敏型高效催化剂及功用体良的掺杂材料,高纯氧化镁有很多使用于工业催化及材料改性和高功用复合材料的制备。已报导的高纯氧化镁制备办法较多,例如菱镁矿(白云石)碳化法、卤水(海水)-石灰()法、卤水(海水)-碳按法及镁盐直接热解法等。
熔盐法选用一种或几种低熔点的盐类作为反响介质,在高温熔融盐中完结组成反响,然后选用适宜的溶剂将盐类溶解,经过滤、洗刷得到组成产品,它在高熔点氧化物粉体和电子陶瓷粉体及其它功用粉体材料组成等范畴广泛使用。熔盐法具有工艺简略、组成温度低、保温时刻短、本钱低价、组成粉体的化学成分安稳均匀等长处。
对熔盐法制备MgO粉体的不同熔盐系统进行了比照,发现NaCl-KCl盐类熔点适中,功用相对安稳,洗刷进程中NaCl、KCl溶解于水,滤液经枯燥后得到NaC1、KC1等盐类可回收使用,是一种优秀的反响介质。当选用NaN03-KN03盐类作反响介质时,与镁盐直接热解法相同,反响进程中发作腐蚀性气体,不适合工业化出产。可是NaN03 -KN03盐类熔点较低,有利于分析质料系统在熔盐中的反响进程,进而对反响机理进行评论,因而本文以MgCl2、 CaCO3和NaN03、KN03为质料制备Mg0粉体。
一、试验
(一)质料
试验所用无水氯化镁、碳酸钙、、、无水乙醇等均为分析纯。
(二)氧化镁粉体的制备
将MgCl2、CaCO3及NaN03、KN03按1.1︰1︰2︰2配比置于碾钵中碾磨,使质料混合均匀并磨细至-0.074mm粒级,550℃下保温3h热处理,经水浸泡、洗刷、减压过滤、110℃枯燥,再在600℃下保温3h热处理。
(三)反响机理分析
作CaCO3和MgCl2-CaCO3-NaN03-KN03的TG-DSC曲线,分析质料热反响进程;依据TG-DSC曲线,将质料在不同温度和保温时刻下热处理,断定产品组成,分析熔盐法制备氧化镁的反响机理。
(四)表征
用德国NETZSCH公司STA449/6/G型热重-差示扫描归纳热分析仪对试样进行热效应分析。
用荷兰Philips公司出产的X′Pert Pro型X射线衍射仪对产品进行物相判定。
用荷兰Philips公司出产的Nova400NanoSEM型场发射扫描电子显微镜调查粉体描摹及巨细。
二、成果及评论
(一)试样的组成与描摹分析 图1为S11试样和S12试样的XRD图谱,其间S11试样为质料在550℃下保温3h热处理,用水洗刷后经110℃枯燥的前驱物,S12试样为S11试样在600℃温3h热处理的产品。
从图1可见,质料在550℃下保温3h热处理,用水洗刷后的前驱物主要为氢氧化镁,其间尚有少数氧化镁没有水解,经600℃保温3h热处理,氢氧化镁分化为氧化镁。图2 试样TEM
(a)S11;(b)S12
图2为S11试样和S12试样的SEM图。从图2可见,氢氧化镁前驱物主要为层状描摹,形状不规整,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;氢氧化镁分化后得到的氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。
表1为S12试样的化学成分分析成果。从表1可知,所制备的氧化镁粉体纯度高,可满意医药、冶金、工业催化、量子器材、微电子等职业要求。
表1 S12试样化学成分分析成果(质量分数)/%Mg0CaC03A1203Si02Fe203IL98.820.520.100.090.060.41
(二)反响机理分析
图3为CaCO3和MgC12-CaC03-NaN03-KN03质料的TG-DSC曲线。
由图3(a)可见,从700℃至800℃失重37.08%,CaC03分化为CaO和CO2,对应的DSC曲线在769.2℃有一个吸热峰。 由图3(b)可见,从室温至400℃失重18.90%,该温度范围内质料失掉悉数物理水及结构水,NaN03-KNO3熔融,对应的DSC曲线上有3个吸热峰;从400℃至530℃失重8.10%,对应的DSC曲线上在490.5℃有一个吸热峰,该温度范围内可能发作了分化反响;从530℃至700℃失重23.20%,对应的DSC曲线上在660.4℃有一个吸热峰,该温度范围内可能发作了分化反响;温度大于700℃后,失重持续加大,主要是熔盐在高温下加速蒸腾。对照图3(a),没有呈现CaCO3分化的吸热峰,阐明在700℃曾经CaCO3已彻底反响。
图4为试样的XRD图谱。其间M11试样为质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品;Ml2试样为质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品;M14试样为质料在900℃下保温3h热处理,用无水乙醇洗刷后产品的XRD图谱。由图4可见,质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品主要为碳酸镁和白云石及少数的氢氧化镁;质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品主要为碳酸镁;质料在900℃下保温3h热处理,用无水乙醇洗刷后产品悉数为氧化镁。 结合S11试样和S12试样的XRD图谱,以MgC12、CaCO3和NaNO3、KNO3为质料,选用熔盐法制备Mg0粉体的反响机理如下:
1、 熔盐环境下Mg2+与Ca2+发作置换反响,其产品组成与反响温度和反响时刻有关。
MgCl2←→Mg2++2Cl-
xMg2++CaCO3→MgxCa1-xCO3
当x<0.5时.产品为碳酸钙的置换型固溶体,当x=0.5时,产品为CaMg(C03)2,当0.5<x<1时,产品为CaMg(C03)2和MgC03混合物,跟着反响的不断进行,当x=1时,产品为MgC03。
2、碳酸镁分化。
MgC03→Mg0+C02↑
3、水洗进程中氧化镁水解。
Mg0+H20→Mg(OH)2
4、氢氢氧化镁分化。
三、结语
(一)MgCl2-CaC03-NaN03-KN03质料制备氧化镁进程中,在熔盐环境下Mg2+与Ca2+发作置换反响,生成白云石和碳酸镁等中间产品,跟着反响的不断进行,白云石终究转变为碳酸镁;550℃热处理碳酸镁分化为氧化镁,经水浸泡后氧化镁水解生成氢氧化镁,600℃热处理氢氧化镁分化为氧化镁。
(二)氢氧化镁前驱物为不规整的层状描摹,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;产品氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。
纳米二氧化硅粉体的制备研究进展
2019-03-06 10:10:51
导读纳米二氧化硅粉体是一种质轻无定形的白色非金属材料,广泛运用于催化剂载体、高分子复合材料、电子封装材料、精细陶瓷材料、橡胶、造纸、塑料、粘结剂、高级填料、涂料、光导纤维、精细铸造等产品中,简直触及一切运用二氧化硅粉体的职业。1纳米二氧化硅的制备办法在很多研讨者的不断尽力下,二氧化硅粉体在制备办法的研讨上有了长足开展,以不同的原材料为根底, 构成了许多各具特色的物理及化学制备办法(见表1),极大地促进了二氧化硅粉体的运用与自然资源的有用运用。
1. 1 物理办法
纳米二氧化硅的物理制备办法首要为机械破坏,经过超细破坏机械发作的冲击、剪切、冲突等力的归纳效果对大颗粒二氧化硅进行超细破坏,然后运用高效分组设备别离不同粒径的颗粒,然后完成纳米二氧化硅粉末粒度散布的均匀化与特定化。物理办法的出产工艺简略、出产量大、出产进程易于操控,但对质料要求较高, 且跟着粒度减小, 颗粒因表面能增大而聚会,难以进一步缩小粉体颗粒粒径。
为了处理这一对立,任振等交融了功率超声和拌和破坏,运用研磨介质相互磕碰发作的揉捏、剪切、冲击等效果力, 以及超声空化效果发作的高能冲击波和微射流的一起效果,使必定浓度的质料在破坏筒中被同步破坏与涣散。该办法归纳了功率超声与机械拌和破坏的长处,使产品易于到达纳米级且介观涣散均匀、散布窄。
1. 2 化学办法
1. 2. 1 化学气相反响法
此法运用有机硅化合物(如有机卤硅烷、硅烷等)、与氧气或空气混合焚烧,有机硅化合物在高温焚烧后,在反响生成的水中进行高温水解,然后制得纳米二氧化硅。组成的纳米颗粒具有粒度均匀、粒径小且成球形、产品纯度高、表面羟基少等长处。
但此法要使化学反响发作,还必须运用加热、射线辐照或等离子体等办法将反响物活化成分子, 因此此法所用设备要求高, 所用质料贵,产品报价较高,且其制备核心技能和商场首要由德国、美国和日本几大公司操控, 约束了它的运用。为了下降其出产本钱,完成大规模出产,此法在质料挑选、反响条件与设备要求等方面需求更深化的研讨。
1. 2. 2沉积法
沉积法是将反响物溶液与其它辅助剂混合,然后在混合溶液中参加酸化剂沉积,生成的沉积再经枯燥与煅烧得到纳米二氧化硅。此法因其工艺简略、质料来历广泛而得到广泛地研讨与运用,但其产品性状难以操控的问题尚没得到较好处理,所以现在对此法的研讨要点多为将其它操控手法与沉积法结合,加强对反响及沉积进程的操控,使产品的性状得到改进。
何清玉等将沉积进程置于超重力反响器中,运用比地球重力大数百倍至千倍的超重力环境,强化微观混合和传质进程,可使反响时刻大大缩短,使制得的产品粒径小、粒度散布窄。此外,亦可运用超声波等涣散手法, 使沉积进程得到操控,然后避免颗粒聚会, 使产品性状得到改进。
1. 2. 3 溶胶- 凝胶法
此法一般以硅酸盐或硅酸酯为前驱物溶于溶剂中构成均匀溶液,然后调理pH值,使前驱物水解聚合构成溶胶。跟着水解的进行,水解产品进一步集合构成凝胶,滤出凝胶再经枯燥及煅烧,制得所需的纳米二氧化硅粉体。此制备办法选用的前驱物中,正硅酸乙酯( TEOS )因其水解及溶胶凝胶化进程易于操控而得到广泛研讨。
TEOS的水解进程依据催化剂的不同可分红酸催化和碱催化,两者的催化水解进程有必定的差异。在碱催化下,TEOS的水解较彻底,易于构成球形粒子;在酸催化下,因为单体聚缩速率较大,水解反响进程易发作线性缩合,构成三维空间网络结构而难以构成球形粒子。所以,现在制备纳米二氧化硅的研讨首要为碱性催化, 吸附功能更优越的酸性纳米二氧化硅的研讨较少。
陈小泉等在非极性有机溶剂中,运用乙酸和醇在没有酸性催化剂下发作酯化反响,然后TEOS被约束在酯化生成水的水滴反响单元中充沛水解,构成单涣散纳米二氧化硅粒子,再经真空蒸发即可得制品。此办法运用乙酸和醇的酯化反响避免TEOS在乙酸存鄙人的线性缩合,使缩聚以多维的办法进行,然后制备了单涣散的酸性纳米二氧化硅粉体。
SungSoo等研讨了在纳米二氧化硅制备进程中一价电解质所起的效果。研讨发现, 以TEOS为前驱体、为催化剂,在没有增加一价电解质时,所得颗粒粒径为35 nm 到几百纳米;而少数一价电解质的增加, 则可使颗粒表面电荷得到加强,阻挠颗粒聚会成长, 使产品粒径缩小至17. 5 nm。可是当增加电解质的浓度超越最佳浓度时, 颗粒表面电荷受中和而聚会, 使颗粒粒径增大。一起, 作者还研讨了不同一价电解质的效果效果, 其间, 对缩小颗粒粒径所起的效果最显着, 而氯化所起的效果最小。
李德慧等在醇类有机溶剂中, 以为催化剂, TEOS 在涣散剂效果下水解, 经真空低温冷冻枯燥制得了单涣散、球形实心、粒度散布极窄的高纯纳米二氧化硅颗粒。此法运用真空低温冷冻枯燥, 使二氧化硅水悬浮液中冻住的水分在低温低压下进步而脱去, 最大极限地避免了枯燥进程中二氧化硅粒子的聚会, 然后得到单涣散的二氧化硅粉体。溶胶- 凝胶法的制备反响较易进行与操控所得产品具有较大的比表面积, 可是洗刷困难、对质料要求较高且枯燥时刻太长等约束了它的运用, 在质料的广泛性上需进一步研讨, 以下降工艺本钱, 进步此办法的适用性。一起, 怎么改动工艺操控(如水解环境、枯燥办法及热处理途径等)以缩短出产周期仍是一个有待处理的难题。
1.2.4 微乳液法
微乳液一般由表面活性剂、助表面活性剂、油、水组成, 剂量小的溶剂被包裹在剂量大的溶剂中构成一个个纳米级的、表面由表面活性剂组成的微泡。微乳液法就是经过向由前驱物制得的微乳液中滴加酸化剂或催化剂, 使制备反响在微乳液泡内发作, 运用微乳液使固相的成核成长、凝聚、聚会等进程限制在一个细小的球形液滴微泡内, 然后构成纳米球形颗粒, 又避免了颗粒之间进一步聚会, 易完成粉体粒径的可控性出产。
微乳液在整个制备进程中是作为一个微反响器和模板, 其制备效果对产品的质量起了关键效果。为了能够到达抱负的效果, 制造微乳液所选取的表面活性剂的HLB (亲水亲油平衡值)应该与微乳液中油相的HLB 相匹配, 一起, 归纳运用多种表面活性剂可使微乳液愈加安稳。此外, 助表面活性剂和油相也起着十分重要的效果, 油的碳原子数加上助表面活性剂的碳原子数等于表面活性剂的碳原子数是微乳液构成的最佳条件。假如选用高速拌和器或超声波等混合手法, 更能在最短的时刻内制得液滴最为均一且尺度为纳米级的微乳液。经过微乳液, 再结合恰当的后处理工序, 将能够制得描摹及粒径都较为均一的纳米二氧化硅粉体。 如骆锋等以硅酸钠为前驱体, 以OP乳化剂为表面活性剂,为助表面活性剂, 为油相制备微乳液, 然后以浓硫酸为酸化剂得到白色沉积, 再经共沸蒸馏、真空枯燥与高温焙烧制得了15-30nm 的二氧化硅白色粉末。此法在微乳液的根底上, 选用了共沸蒸馏工艺脱去凝胶中剩余的水分,避免含水胶体在枯燥进程中发作粉末硬聚会现象, 使粉末的功能得到了进步。
微乳液法作为一种新式的制备办法, 因为其具有纳米级的自安装才能, 易于完成粒径与描摹的可控性制备而引起很多研讨者的爱好, 成为近年的研讨热门。可是因为其本钱高、产品的有机成份难以去除且易形成环境污染, 而尚未在工业上广泛运用。为了完成工业化出产, 在工艺上需求进一步研讨, 完成有机组分的别离与收回, 以及寻求有用的途径完成去除产品有机杂质的一起避免颗粒聚会等。2制备纳米二氧化硅的质料现在, 国内外对纳米二氧化硅的研讨首要选用硅酸钠和正硅酸乙酯为质料, 而工业出产的质料则以低价的硅酸钠为主。部分研讨者为了完成资源的收回运用, 运用煤酐石、稻壳等废弃物为质料, 成功制备了纳米二氧化硅; 咱们亦能够尾矿为质料制备纳米二氧化硅, 到达变废为宝的意图。运用各种硅含量较高的废弃物为质料制备纳米二氧化硅, 为部分废弃物供给了实际牢靠的出路, 完成资源增值, 缓解了工业出产对环境所形成的压力。3小结综上所述, 因为纳米二氧化硅被广泛地运用于各行各业, 对其制备办法的研讨得到了广泛的展开, 构成了多种多样的制备办法, 且跟着科技的开展与研讨的深化, 新的制备工艺将会不断被开发出来。可是, 现在纳米二氧化硅的制备技能仍难以满意各职业运用的需求, 面对许多有待处理的问题: 有用地处理颗粒硬聚会问题, 使其在制备与贮运进程中均匀涣散; 更有用地操控粉体的描摹, 下降本钱, 完成粉体粒径的可控性出产。
锰阳极泥焙烧酸浸氧化法制备化学二氧化锰
2019-02-20 11:59:20
我国是世界上首要锰资源国和产锰国之一,锰矿储量居世界前列.电解锰工业开展40多年来,电解锰产值、出口量和国内消费量迅速添加,这3项目标均跃居世界第一.至2003年年末,我国电解锰的出产能力已到达45万t.我国由此成为全球最大的电解锰出产、出口和消费国.在电解锰的出产进程中,电解槽的阳极会有很多废渣发生,其间二氧化锰质量分数达42%~48%、因其组成杂乱,电解进程严峻改变了化合物性质,使用难度大,一直以来都是作为一种工业废渣丢掉或廉价出售.一起还有适当一部分阳极渣糊状物被水冲刷排放,未能得到很好的开发和综合使用,形成资源糟蹋和适当程度的环境污染,损坏生态平衡.本研讨选用焙烧-酸浸-氧化法处理电解金属锰阳极泥(简称锰阳极泥)废渣.首先在高温下焙烧阳极泥,使其间的MnO2转化为Mn2O3.然后用硫酸浸取,使焙烧产品岐化转变为Mn2+.最后用氧化歧化液得到活性二氧化锰.本工艺不只能够处理阳极泥环境污染问题,还可变废为宝,发生必定的经济效益.
一、试验部分
(一)试验仪器和药品
1、试验仪器。循环水式多用真空泵,郑州长城特科工贸有限公司出品;马沸炉,天津泰斯特仪器公司出品;集热式恒温磁力拌和器,浙江省乐清市乐成电器厂出品.
2、试验材料和药品锰阳极泥,湖南省湘西土家族苗族自治州某电解锰厂供给.、硫酸、醋酸、、氯化铵、三乙醇胺、羟胺、、草酸钠、EDTA等均为国产分析纯试剂.
(二)质料性质分析
该电解锰厂出产进程中发生的阳极泥中水质量分数约为3%.阴离子首要为硫酸根离子.锰含量用文献办法进行定量分析,其它离子用原子吸收分光光度计作定量分析,其金属离子质量分数见表1.
表1 阳极泥中首要金属离子分量百分比含量(三)工艺道路规划
将电解锰阳极泥烘干,操控温度焙烧必定时刻,再将焙烧后的固体移入烧杯,用不同浓度的H2SO4酸浸必定时刻,然后分批次参加必定量浓度1mol/L的NaClO3进行氧化,过滤烘干得到初级二氧化锰,详细工艺流程见图1.图1 锰阳极泥煅烧氧化制取活性二氧化锰工艺流程
(四)产品分析
产品MnO2含量选用接连两步滴定办法测定.视比重的测定是精确称取4g MnO2,倒入10mL量筒中,轻敲量筒壁20次,测出其体积,质量除以体积即得其视比重.
二、成果与评论
(一)焙烧温度和时刻对转化率的影响
在不同焙烧温度下阳极泥中的MnO2转化成Mn2O3的程度不同,从而使转化率有所差异.为了断定焙烧转化的最佳温度,依据经历取反响时刻2h,在600~800℃的温度范围内,调查了焙烧温度对MnO2转化率的影响,其试验成果如图2所示.由图2可知,温度低于700℃时,MnO2转化成Mn2O3的转化率随温度升高而添加,当温度超越700℃时,转化率根本坚持不变乃至略有削减,这可能是少数MnO2转化为Mn3O4原因,由此可知,焙烧温度为700℃时MnO2的转化率最高,图2 焙烧温度与转化率联系
在焙烧温度700℃下,研讨了不同焙烧时刻对转化率的影响,其成果如图3所示,当焙烧时刻低于3h时,转化率呈上升趋势,到3h抵达最高,当焙烧时刻大于3h,MnO2的转化率没有发生多少改变,而焙烧的时刻越长,从经济考虑也不可取,因而,能够得出电解锰阳极泥的最佳焙烧时刻为3 h.图3 焙烧时刻与转化率联系
(二)硫酸质量浓度及酸浸时刻对转化率的影响
硫酸的浓度关于Mn(Ⅲ)的溶出有较大的影响,经过选用相同体积不同质量浓度的H2SO4溶液处理定量的电解锰阳极泥焙烧物,来调查硫酸浓度对转化率的影响,在酸浸温度为95℃,液固比为3∶1,酸浸拌和时刻为120 min,硫酸质量浓度对歧化作用影响的试验成果示于图4.成果标明,当H2SO4百分比为10%时,Mn(Ⅲ)的溶出量最多,当硫酸质量浓度小于10%,酸用量缺乏,歧化反响不完全,MnO2的转化率下降.当酸浓度大于10%,酸用量过大,溶液酸性增强,使Mn3+稳定性增强,歧化反响向逆反响方向进行的程度增大,相同使MnO2的转化率下降。图4 硫酸体积百分比与转化率联系
断定H2SO4质量浓度10%,坚持其它条件不变,改变酸浸时刻,研讨Mn(Ⅲ)的溶出量.反响时刻对转化率影响的试验成果如图5所示.成果标明跟着反响时刻的添加,MnO2的转化率不断提高,当酸浸时刻到达2h时,转化率添加的速度减缓,由此能够得出电解锰阳极泥的最佳酸浸时刻为2h.图5 酸浸时刻与转化率联系
(三)NaClO3的参加量及参加次数对转化率的影响
将酸浸后的溶液过滤,滤液pH值调到5.5~6.5,操控氧化时刻为6h,经过参加不等的浓度1mol/L的NaClO3调查用量关于Mn2+氧化作用,试验成果标明,跟着氧化剂用量的添加,MnO2的转化率逐步添加,当氧化剂的用量超越理论值120%时,MnO2的转化率根本不发生改变.由此能够得出NaClO3的参加量为理论值的120%。
经过试验发现,NaClO3的参加次数也直接影响产品MnO2的转化率,在NaClO3参加量相同的情况下,进行分批参加试验,能够发现分2次参加时(每3h 1次)产品MnO2的产率最大,其视比重也最大,为1.54g/cm3.经过X射线衍射分析(见图6)能够看出样品中的首要成分为γ-MnO2,此外还有一小部分为α-MnO2,研讨标明:MnO2有5种不同的晶体构型,在电化学功能方面,γ- MnO2活性最高,放电功能最好,本产品中γ型为主阐明所得产品具有较高的活性和较好的放电功能.图6 产品X射线衍射图
三、定论
经过很多的平行试验及数据分析,能够得出锰阳极泥焙烧-酸浸-氧化法制备活性二氧化锰最优的组合工艺条件为:操控焙烧温度在700℃,焙烧3h,将焙烧后的固体移入烧杯,控温95℃,液固比为3∶1,用质量浓度10%的H2SO4酸浸2h,分2次将用量为理论值120%的NaClO3参加氧化,可得到具有较高产率和较大视比重化学二氧化锰,其转化率到达84.6%,视比重为1.54 g/cm3.焙烧酸浸氧化法工艺能到达对电解锰阳极泥的收回再使用的意图,得到的化学二氧化锰经进一步处理,能够作为电池级的化学二氧化锰使用.
纳米钛白粉的制备方法---TiCl4气相氧化法
2019-02-13 10:12:38
此法与氯化法制作普通金红石型钛的原理相相似,仅仅工艺操控条件愈加杂乱和准确。在反响初期,TiCl4和氧气发作均相化学反响,生成TiO2时前体分子,通过成核构成TiO2的分子簇或粒子。因为非均相成核比均相成在热力学上更简略,跟着反响的进行,TiCl4在TiO2粒子表面吸附并进行在非均相反响,使粒子变大,其反响式如下
TiCl4 (g)+O2(g)===TiO2(s)+2Cl2(g)
施利毅等使用N2带着TiCl4气体,经预热到435℃后,经套管喷嘴的内管进入高温管式反响器,氧气经预热到870℃后,经套管喷嘴外管而也进入反响器,TiCl4和O2在900~1400℃下反响,反响生成的纳米钛微粒经粒子捕集体系完成气固别离。他们研讨了氧气预热温度、反响器尾部氮气流量、反响温度、停留时刻和掺铝量对TiO2颗粒巨细、描摹和晶型的影响。结果表明,进步氧气预热温度和加大反响器尾部氮气流量对操控产品粒径有利,纳米TiO2颗粒的粒径随反响温度升高和停留时刻延伸而增大,当反响温度为1373K,AlCl3与TiCl4的摩尔比为0.25:1、停留时刻为1.73s时,纯金红石型纳米TiO2颗粒的粒径散布为30~50mm。
华东理工大学首要将可燃气体与过量氧气混合焚烧,生成高温含氧气流,然后再与通过预热的气态TiCl4 (含微量晶型 转化促进剂)呈必定视点穿插混合,使反响在高速下进行。一起选用外部急冷的办法,使反响物敏捷冷却,然后取得高金红石型含量的纳米钛。
TiCl4气体氧化法 ,因为能够循环使用,具有节能、环保、成本低和自动化程度高的长处,能够别离制备出锐钛型、混晶型 和金红石型纳米钛。可是因为这种工艺进程的杂乱性,一方面是在发作化学反响和成核、成长的一起,TiO2分子、分子簇和粒子之间会发作磕碰、凝集并构成聚会体,在高温下还会发作烧结和晶型转化等固相反响,并且各进程并非是简略的并联和串联进程;另一方面因为反响器触及杂乱的活动、传递、混合等工程问题,这些问题也会影响纳米钛的结构和功能。为了完成对纳米钛粒子状况、粒径散布、比表面积和晶型的有用操控,有必要对进程的特色、动力学规则和影响要素进行进一步研讨。
现在,完成TiCl4气相氧化法的规模化出产的关键是要处理氧化反响器的结构设计,反响器有必要到达以下两个意图:①使反响物在极短的时刻到达高度的湍动和剧烈的动量交流,使反响物到达预订的温度和人子水平的混合均匀,一起防止任何宏的逆向活动,以保证均一的反响条件;②反响器内有较大的温度梯度,使粒子的成核与成长尽可能分隔进行。反响进程既要在较高的温度下进行,使反响速率增大,然后添加产品的过饱和度,有利于构成纳米钛,促进锐钛型向金红石改变,反响完毕后,又有必要使产品敏捷冷却,防止纳米粒子的凝集和烧结,使粒子变大。
该法副产品的腐蚀性强,出资大,设备结构杂乱,对材料要求高,需求耐高温、耐腐蚀,设备难以修理,研讨开发难度大。
铋的加工和制备
2019-02-14 10:39:59
古代用木炭复原辉铋矿Bi2S3制得铋,1737年J.埃洛用火分化铋矿,得到一小块金属铋;1757年法国的C.J.日夫鲁瓦用木炭复原辉铋矿也制得金属铋。其称号来自德文矿藏名,意为白色物质,因铋的化合物可作白色涂料。铋在地壳中的含量为2×10-5%。铋在天然界既有游离状况的,亦有化合物方式的,化合态首要有铋赭石也称泡铋矿Bi2O3和辉铋矿。游离态铋具有显着菱形结构,是亮光的粉红色脆性金属,熔点为271.3℃,沸点为1560 ℃,相对密度为9.8。熔融的金属铋在凝结时胀大约3.3%,铋对磁力线成直角方位时,受磁场激烈排挤。室温下铋在空气中不氧化,强热时焚烧,生成三氧化二铋。铋不与和稀硫酸效果,但能溶于浓度不大的硝酸和热浓硫酸,铋也能与氢、卤素、氧、氮及硫构成化合物。铋的氢化物BiH3很不安稳,室温即分化。三氧化二铋具有碱性,溶于酸生成铋(Ⅲ)盐。将碱效果于铋(Ⅲ)的可溶盐可制得白色沉积氢氧化铋(Ⅲ):
Bi+4HNO3=Bi(NO3)3+NO↑+2H2O
2Bi+6H2SO4=Bi2(SO4)3+3SO2↑+6H2O
Bi(NO3)3+3NaOH=Bi(OH)3↓+3NaNO3
氢氧化铋(Ⅲ)是很弱的碱,所以铋(Ⅲ)盐简单水解,转变成难溶于水的碱式盐。从铋和硝酸相互效果的溶液中结晶出五水,可溶于硝酸酸化的少数水中。用水稀释溶液时发作水解,分出碱式盐,其组成取决于条件,常常生成组成为BiONO3的盐。BiO+称为铋酰,也叫铋氧离子:
Bi(NO3)3+H2O=BiONO3+2HNO3(可逆)
三氯化铋是吸湿性晶体,水解为氯化铋酰(或氯化氧铋)BiOCl。将通入铋盐溶液可得黑褐色沉积三硫化二铋,与砷、锑不同,铋不生成硫代酸盐,所以三硫化二铋不溶于碱金属或铵的硫化物溶液中。铋(Ⅴ)的化合物中最重要是铋酸盐。如铋酸钠。这些化合物是强的氧化物,铋酸钠可将硫酸锰中Mn(Ⅱ)氧化成Mn(Ⅶ)的高锰酸盐。铋也存在于一些有机化合物,尤其为化学医治而制备的有机物(酒石酸盐)中。
铋的首要用途:①为防火设备、金属接点、导热介质用低熔(易熔)合金的组分;②用于制备医治胃病和梅毒的药;③用于电设备(热门合金和永久磁体);④用作催化剂,特别用在腈制备中;⑤制造高温陶瓷和颜料;⑥是有机组成中常用的氟化剂。
金属铋可由硫化物矿煅烧后成三氧化二铋,再与碳共热复本来制得
叶碲铋矿极为稀有,矿藏学材料匮乏。高庄金矿的叶碲铋矿为我国初次发现,它首要产于磁黄铁矿多金属阶段,与磁黄铁矿、黄铁矿、黄铜矿、碲银矿、天然金等共生。经电子探针分析,高庄金矿有多种铋碲化物,有三粒矿藏的成分与标准叶碲铋矿完全一致。对一较大颗粒的叶碲铋矿做了单晶X射线衍射分析。Au与Bi在矿石和围岩中的含量呈共消长联系,Te与Bi可能对Au、Ag的搬迁富集起了重要效果。
金电解液的制备
2019-03-06 09:01:40
制备金电解液的最好办法是电解法,俗称电解造液。别的,还可运用法。
电解造液均运用隔阂电解法。这种办法是在与金电解相同的槽中,选用与金电解根本相同的技能条件进行的。其最大不同点是纯金阴极很小且装于未上釉的耐酸素瓷隔阂坩埚中(图1)。此法广泛应用于工业出产中,当运用25%~30%的液,在面积电流1000~1500A∕m2和槽电压不大于3~4V条件下,可制备出含金380~450g∕L的浓溶液。图1 金的隔阂造液
1-阳极;2-阴极;3-隔阂坩埚
某厂电解造液是在电解槽中参加稀(化学纯或蒸馏),槽中装入粗金阳极板,在素瓷隔阂坩埚中装入105mm×43mm×厚1.5mm的纯金阴极板。素瓷坩埚内径为115mm×55mm×深250mm,壁厚5~10mm。坩埚内的阴极液为1∶1的稀。阴极液面比电解槽阳极液面高5~10mm,以避免阳极液进入阴极区。
电解造液的条件一般选用面积电流2200~2300A∕m2,槽电压2.5~4.5V,分量沟通电为直流电的2.2~2.5倍,沟通电压5~7V,液温40~60℃,同极距100~120mm。当接通电流时,阴极上开端放出,而阳极则开端溶解。造液44~48h,即取得密度1.38~1.42g/m3、含金300~400g∕L(延伸周期最高可达450g∕L)、含250~300g/L的溶液,通过滤除掉阳极泥后,贮存在耐酸瓷缸中备用。作业停止后,取出坩埚,阴极液会集进行置换处理,以收回或许穿透坩埚进入阴极液中的金。
鉴于金价贵重,为进步金的直收率,使金不致积压于出产过程中,某些厂曾运用含金95~120g∕L、120~150g∕L的电解液。
造液,是将复原的金粉加溶解而制得。一份金粉参加一份,经溶解后过滤除掉杂质。为了除掉溶液中的硝酸一般在金粉悉数溶解后,持续加热赶硝以使其分解成氧化氮而被除掉。在苏联曩昔多运用造液,南非和日本如今仍多选用之。此法的长处是速度快,但溶液中的硝酸不或许彻底被扫除,用此溶液进行电解时,因为硝酸根离子的存在,会使电解过程中呈现阴极金反溶解的不利因素。
近代金电解工艺中,还有选用离子交换膜造液的。
氢氧化钠或碳酸钠烧结分解锆英砂制备二氧化锆
2019-03-05 10:21:23
一、工艺流程
工艺流程见图1。各过程中首要反响举例如下:图1 碱分化锆英砂工艺流程
二、烧结
首要反响:
ZrSiO4+2NaOH=Na2ZrSiO5+H2O
ZrSiO4+4NaOH=Na2ZrO3+Na2SiO3+2H2O
ZrSiO4+6NaOH=Na2ZrO3+Na4SiO4+3H2O
ZrSiO4+2Na2ZrSiO5=Na4Zr2Si3O12+ZrO2
ZrSiO4+Na2ZrO3=Na2Zr2SiO5+ZrO2
2ZrSiO4+3Na2SiO3=Na4Zr2Si3O12+Na2SiO5
反响过程中ZrSiO4与各反响物的反响速度为:
ZrSiO4/Na2ZrO3>ZrSiO4/Na4SiO4>
ZrSiO4/Na2SiO3>ZrSiO4/Na2ZrSiO5>
三、碳酸钠烧结
首要反响:
ZrSiO4+Na2CO3=Na2ZrSiO5+CO2
ZrSiO4+2Na2CO3=Na2ZrO3+Na2SiO3+2CO2
四、水浸
假如碱度不行,则部分发作下列水解反响:
Na2ZrO3+2H2O=ZrO(OH)2+2NaOH
Na2SiO3+2H2O=SiO2·H2O+2NaOH
五、浸出
Na2ZrO3+4HCl=ZrOCl2+2NaCl+2H2O
Na2ZrSiO3+4HCl=ZrOCl2+SiO2·2H2O+2NaCl
ZrO(OH)2+2HCl=ZrOCl2+2H2O
六、煅烧
ZrOCl2·8H2O=ZrO2+2HCl+7H2O
ZrO(OH)2·nH2O=ZrO2+(n+1)H2O
七、首要工艺条件
碱分化锆英砂制备锆、铪化合物的首要工艺条件见表1。
表1 碱分化锆英砂制备锆、铪化合物的工艺条件工艺过程工 艺 条 件备 注烧结ZrSiO4∶NaOH=1∶1.3(质量比);700~800℃,1.5h 分化率95% ZrSiO4∶NaOH=1∶1.1(质量比);650℃,1~2h 分化率90% ZrSiO4∶NaOH=1∶(3~4)(摩尔比);600~700℃,2~3h 分化率95% ZrSiO4∶Na2CO3=1∶1.1(摩尔比);1050℃,2h水浸 1%~3% NaOH;60~80℃;20min;固液比(质量比)1∶5 水浸沉积物Na2ZrO3,Na2ZrSiO5,ZrO(OH)2,Fe2O3,NaTiO3,H2SiO3;浸洗三次,除硅率大于98%酸浸 5~5.5mol/L HCl;100℃;ZrO2∶HCl=1∶5(摩尔比);0.5h 锆转化率大于98%碱式硫酸锆水解分出① Zr4+=40~60g/L;70~80℃;HCl=1~1.5g/L;SO42-∶Zr4+=0.55∶0.6∶1(摩尔比) 碱式硫酸锆组成为:2ZrO2·SO3·5H2O硫酸锆结晶分出② Zr4+=120~130g/L(对硫酸锆溶液);
Zr4+=200~220g/L(对氧氯化锆溶液);
VH2SO4浓∶VZr液=1∶2(体积比);洗液H2O∶H2SO4∶HCl=75∶40∶5(体积比) 沉积率94%~95%,沉积物H2[ZrO(SO4)2]·3H2O煅烧 800~900℃ ZrO(OH)2·nH2O煅烧 800~900℃ ZrOCl2·8H2O煅烧 850~900℃ 2ZrO2·SO3·5H2O850~900℃ H2[ZrO(SO4)2]·3H2O煅烧
① ② 用硫酸浸出的成果。
八、碱分化锆英砂的相关物化数据
图2~图5给出了HCl、H2SO4系中锆、铪的相关数据。图2 ZrO2-HCl-H2O系中锆的溶解度
1-0℃;2-30℃;3-50℃;4-75℃;5~80℃;6~90℃图3 ZrOCl2·8H2O热分化产品中氯含量与温度的联系
(287℃时[Cl]=2%;305℃时[Cl]≈0)
1-晶体结构不变;2-晶体结构发作小改变;3-晶体结构简直不变;
4-非晶氧化锆;5-四方结构氧化锆图4 Zr(OH)2Cl2·7H2O溶解度与HCl浓度的联系(20℃)图5 ZrOCl2·8H2O脱水曲线
1-55℃;2-65℃
九、氧氯化锆的脱水机理
氧氯化锆ZrOCl2·8H2O脱水机理为:
十、碱式硫酸锆的分化机理
碱式硫酸锆(2ZrO2·SO3·5H2O)的热分化机理为:
<600℃脱水,产品呈无定形;≈600℃产品组成约为ZrO2·0.57 SO3;>600℃开端分化出SO3,呈现四方晶二氧化锆(T-ZrO2);1000~1050℃,SO3彻底分化,产品呈单斜晶系;1150℃,单斜二氧化锆(M-ZrO2)从头转变为四方二氧化锆(T-ZrO2);由1150℃冷却至室温,样品又转化为M-ZrO2。
氧化铝熟料窑余热作为煤粉制备热源的技术研究与应用
2019-01-16 11:51:35
熟料烧结过程中,窑头大量的废弃直接排入大气,既危害了环境空气质量又造成大量热量的浪费;煤粉制备过程是一个对安全要求很高的过程,多年来煤粉的烘干热风一直由燃烧炉供应,操作中一旦将火焰拉入煤粉磨中,将造成不可预仨的安全事故。针对以上现实情况,经过一系列的论证,我们认为:窑头废气温度足以保证煤粉制备所需温度,而且不带明火,更加有利于安全生产。
将熟料窑系统的余热通过热风管道引入煤粉磨的供风系统,设置风量、温度控制手段,停用燃烧炉供给高温气体,以窑头废气替代燃烧炉的热风,作为执 ,对入磨原煤进行烘干、提料,制取合格的煤粉。发挥煤粉磨较大产能。 窑头废弃温度≥450℃,足以保证煤粉制备所需温度≤350℃,而且不带明火,更加有利于安全生产。但由此引起的熟料烧结及煤粉制备系统负压的变化对生产操作和产品质量造成的影响以及一定量的窑灰随热风进入煤粉磨对煤粉灰分的影响等问题成为此次技术创新的难点。通过对实验期间煤粉灰分的化学分析,针对窑灰沉降室内的变化及窑灰进磨的实际情况进行了技术改造,保证了煤粉灰分≤15%。通过实验,我们获得了适合此流程的技术操作参数,既保证了煤粉的质量(水分≤2.0%、 90μm细度≤16%、灰分≤15%),又保证了熟料窑及煤粉制备系统的正常生产运转。 该项目利用氧化铝熟料窑余热作为煤粉制备热源成功的运用于烧结法氧化铝生产的大流程中,运行安全可靠,利于环境保护,创造了较好的经济和社会效益。
从锂云母制备铷和铯
2019-03-05 12:01:05
锂云母是提取和的首要矿藏,用硫酸分化锂云母精矿后,得到锂、和的旅酸盐。将这些硫酸盐分步结晶别离锂盐后,加人使、转化为氯化物,然后加人40%的三级化锑溶液,分出Cs3SbCl9沉积,和钾留在母液中。
江西宜春出产锂的工厂已有30年的前史,该厂用选铌钽矿后的锂云母提取锂盐,在出产氢氧化锂(或碳酸锂)后的废液中提和。碱金属碳酸盐的组成为70% K2CO3,23%Rb2CO3,2%Cs2CO3,l% Li2CO3,3% Na2CO3和1%其他盐,因为、、钾的离子半径极端近似,简单生成混晶或异质同晶的化合物,所以从中除钾,从中除都是十分困难。、的纯化别离大多选用复盐分步结晶和分级沉积法。碱金属生成复盐趋势的凹凸次序为:>>钾>钠>锂。
在氯化物溶液中,碱金属与镁的氯化物构成复盐,如光卤石。和与铁、锑、锡、铅、铂、铱、铋的卤素配阴离子(如Rb2PtCl6, 2CsCl·3SbCl3)以及硅钼酸、硅钨酸、亚硝基钴等生成盐。和阳离子与有机阴离子如、6-硝基二盐、四盐构成溶解度很小的化合物。
复盐沉积能够用于含量高的酸性溶液,而不能用于含量低的碱性溶液。上述这些办法,尽管能够完结首要的纯化进程,但进程杂乱、报价昂贵,对和的别离作用也不甚满足。
镁基复合材料的制备
2019-01-03 09:37:07
镁及镁合金虽具有密度低、比强度大、比刚度高和抗冲击性强等诸多优点。但是也有一些固有缺点,如硬度、刚度、耐磨性、燃点较低、不是一种良好的结构材料,使其应用受到相当大的制约。若向镁基体中添加陶瓷颗粒或碳纤维制成复合材料,则可以在很大程度上改善镁的力学性能,提高耐热和抗蠕变性能,降低热膨胀系数等。可作为复合材料增强相的颗粒有:氧化物、碳化物、氮化物、陶瓷、石墨和碳纤维等。制备镁基复合材料的工艺主要是:铸造法、粉末冶金法、喷射沉积法。
铸造法
铸造法是制备镁合金复合材料的基本工艺,可分为搅拌混合法、压力浸渗法、无压浸渗法和真空渗法等。
搅拌铸造法(Stiring Casting)
此法是利用高速旋转搅拌器浆叶搅动金属熔体,使其剧烈流动,形成以搅拌旋转轴为中心的漩涡,将增强颗粒加入漩涡中,依靠漩涡负压抽吸作用使颗粒进入熔体中,经过一段时间搅拌,颗粒便均匀分布于熔体内。此法简便,成本低,可以制备含有Sic、Al2O3、SiO2、云母或石墨等增强相的镁基复化材料。不过也有一些难以克服的缺点:在搅拌过程中会混入气体与夹杂物,增强相会偏析与固结,组织粗大,基体与增强相之间会发生有害的界面反应,增强相体积分数也受到一定限制,产品性能低,性价比无明显优势。用此法生产镁基复合材料时应采取严密的安全措施。
液态浸渗法(Liquid infiltration process)
用此法制备镁基复合材料时,须先将增强材料与黏接剂混合制成预制坯,用惰性气体或机械设备作用压力媒体将镁熔体压入预制件间隙中,凝固后即成为复合材料,按具体工艺不同又可分为压力浸渗法、无压、浸渗法和真空浸渗法。可用挤压、铸造机进行浸渗,也可以用专用浸渗装备。增强相与镁熔体之间的浸润性对浸渗过程有重要影响,是关键的工艺参数。当浸润角θ
粉末冶金法
该法是将预制的镁粉或镁合金粉与陶瓷粒子均匀地混合为一体,经真空除气、固结成形后再进行压力加工制成所需形状、尺寸和性能的复合材料半成品。粉末固结工艺有热压和冷热、温等静压。此法主要优点:基体合金组织微细,可随意调控增强相的分数,甚至可高达50%左右,陶瓷颗粒尺寸可小于5μm,但不足之处是金属粉末在制备和贮存过程中易表面氧化,对材料塑性及韧性不利;制备大尺寸锭坯及需要大型设备和模具,投资较大;所采用的温度低,不会发生有害界面反应,有利于材料塑性及韧性提高。
粉末锭坯经挤压、锻造大变形加工后,粉末颗粒会结合在一起,材料密度可接近理论值。
喷射沉积法
喷射沉积工艺是制备高性能合金材料的有效方法之一,若在喷射沉积过程中将陶瓷颗粒导入雾化锥中,与雾化颗粒共沉积,可以制得陶瓷颗粒增强的复合材料。喷射共沉积法制备AZ91、QE22合金/Al2O3或SiC颗粒复合材料的弹性模量、耐磨性都大幅度提高,膨胀系数有较大下降。
由于喷射工艺流程短,材料制备比较简单、便利;增强颗粒在基体金属中分布均匀,界面反应很轻微,因而性能优异。QE22/SiCp复合材料锭坯孔隙体积分数高达20%,经挤压后,具有优异的强度和塑性,其伸长率达到12%,而传统铸造QE22合金的伸长率只不过2%。
纳米二氧化钛(钛白粉)粉体制备及应用
2019-02-15 14:21:24
1 前语 纳米材料是一种新式材料,一般是指粒径小于 100 nm 的超微颗粒。这种超微颗粒具有表面积大,表面活性高,杰出的催化特性,它既具有金属又具有非金属的特异功用。跟着现代科学技能的敏捷开展,纳米材料的使用也越来越广泛,对其要求也越来越高。就纳米二氧化钛而言,因为它具有极大的体积效应、表面效应、光学特性、色彩效应,故在光、电及催化等方面显示出其特殊性质,所以它作为一种新型材料,其使用范畴日益广泛。2 纳米 TiO2粉体的制备 因为纳米 TiO2具有许多优异功用,其用处恰当广泛,因而其制备遭到国内外的极大注重。现在制备纳米 TiO2粉体的办法首要有两大类:物理法和化学法。 2.1物理法 制备纳米 TiO2粉体的物理法首要有溅射,热蒸腾法及激光蒸腾法。物理法制备纳米粒子是最早的办法,它的长处是设备相对来说比较简略,易于操作和易于对粒子进行分析,能制备高纯粒子,还可制备薄膜和涂层。它的产值较大,但本钱较高。 2.2化学法 制备纳米 TiO2粉体的化学办法首要有液相法和气相法。液相法包含沉积法、溶胶——凝胶法和 W/O 微乳液法;气相法首要有 TiCl4气相氧化法。液相法反响周期长,三废量较大,虽然能首要得到非晶态粒子,高温下发作晶型改动,但煅烧进程极易导致粒子烧结或聚会;气相氧化法具有本钱低、质料来历广等特色,能快速构成锐钛型、金红石型或混合晶型 TiO2粒子,后处理简略,接连化程度高。但此法对技能和设备要求较高。 2.2.1均匀沉积法制备纳米TiO2 纳米颗粒从液相中分出并构成包含两个进程:一是核的构成进程,称为成核进程;另一是核的长大进程,称为成长进程。当成核速率小于成长速率时,有利于生成大而少的粗粒子;当成核速率大于成长速率时,有利于纳米颗粒的构成。因而,为了取得纳米粒子有必要确保成核速率大于成长速率,即确保反响在较高的过饱和度下进行。 均匀沉积法制备纳米TiO2是使用CO(NH2)2在溶液中缓慢地、均匀地释放出OH-。其基本原理首要包含下列反响: CO(NH2)2+3H2O=2NH3•H2O+CO2↑ NH3•H2O=NH4+ +OH-TiO2+ +2OH - =TiO(OH)2↓ TiO(OH)2=TiO2+H2O 在这种办法中,不是参加溶液的沉积剂直接与 TiOSO4发作反响,而是经过化学反响使沉积在整个溶液中缓慢地生成。向溶液中直接增加沉积剂,易构成沉积剂的部分浓度过高,使沉积中夹有杂质。而在均匀沉积法中,因为沉积剂是经过化学反响缓慢生成的,因而,只需操控好生成沉积剂的速度,就可防止浓度不均匀现象,使过饱和度操控在恰当范围内,然后操控粒子的成长速度,取得粒度均匀、细密、便于洗刷、纯度高的纳米粒子。该法出产本钱低,出产工艺简略,便于工业化出产。[next] 2.2.2溶胶——凝胶法 溶胶 —— 凝胶法是制备纳米粉体的一种重要办法。它具有其共同的长处,其反响中各组分的混合在分子间进行,因而产品的粒径小、均匀性高;反响进程易于操控,可得到一些用其他办法难以得到的产品,别的反响在低温下进行,防止了高温杂相的呈现,使产品的纯度高。但缺陷是因为溶胶 —— 凝胶法是选用金属醇盐作质料,其本钱较高,其该工艺流程较长,并且粉体的后处理进程中易产僵硬聚会。选用溶胶——凝胶法制备纳米 TiO2粉体,是使用钛醇盐为质料。原先经过水解和缩聚反响使其构成通明溶胶,然后参加适量的去离子水后改动成凝胶结构,将凝胶陈放一段时刻后放入烘箱中枯燥。待彻底变成干凝胶后再进行研磨、煅烧即可得到均匀的纳米 TiO2粉体。有关化学反响如下:在溶胶——凝胶法中,终究产品的结构在溶液中已开始构成,且后续工艺与溶胶的性质直接相关,因而溶胶的质量是非常重要的。醇盐的水解和缩聚反响是均相溶液改动为溶胶的根本原因,操控醇盐水解缩聚的条件是制备高质量溶胶的要害。因而溶剂的挑选是溶胶制备的条件。一起,溶液的 pH 值对胶体的构成和聚会状况有影响,加水量的多少会影响醇盐水解缩聚物的结构,陈化时刻的长短会改动晶粒的成长状况,煅烧温度的改变对粉体的相结构和晶粒巨细的影响。总归,在溶胶 —— 凝胶法制备 TiO2粉体的进程中,有许多要素影响粉体的构成和功用。因而应严格操控好工艺条件,以取得功用优秀的纳米 TiO2粉体。 2.2.3反胶团或W/O微乳液法 反胶团或 W/O 微乳液法是近十年开展起来的一种新办法。该法设备简略,操作简单,并可人为操控组成颗粒的巨细,在超细颗粒,尤其是纳米粒子的制备方面有共同长处。 反胶团是指表面活性剂溶解在有机溶剂中,当其浓度超越 CMC (临界胶束浓度)后,构成亲水极性头朝内,疏水链朝外的液体颗粒结构。反胶团内核可增溶水分子,构成水核,颗粒直径小于100时,称为反胶团,颗粒直径介于 100~2 000 nm时,称为 W/O 型微乳液。 反胶团或微乳液系统一般由表面活性剂,助表面活性剂,有机溶剂和 H2O 四部分组成。它是一个热力学安稳系统,其水核恰当于一个“微型反响器”,这个“微型反响器”具有很大的界面,在其间能够增溶各种不同的化合物,是非常好的化学反响介质。反胶团或微乳液的水核尺度是由增溶水的量决议的,随增水量的增加而增大。因而,在水核内进行化学反响制备超微颗粒时,因为反响物被约束在水核内,终究得到的颗粒粒径将受水核巨细的操控。 反胶团或微乳液法制备纳米 TiO2是使用 TBP(磷酸三丁酯)为萃取剂,火油作稀释剂,在室温下萃取金属钛离子,一起操控条件使其构成有机相的反胶团溶液,将该溶液在室温下以反萃,操控用量和浓度,将得到的沉积物洗刷枯燥焙烧,即取得纳米 TiO2粉体。 反胶团或微乳液法可使用胶团巨细来操控微粒尺度,在纳米粒子制备中具有潜在优势,但这种办法刚刚起步,有许多基础研讨要做,反胶团或微乳的品种、微观结构与颗粒制备的挑选性之间的规则需求探究,更多的用于超微颗粒组成的新反胶团或微乳液系统需求寻觅。 2.2.4 TiCl4气相氧化法 [next] 气相法制备纳米 TiO2比较典型的是 TiCl4气相氧化法。该法以氮气作 TiCl4的载气,以氧气作氧化剂,在高温管式气溶胶反响器中进行氧化反响,经气固别离,取得纳米 TiO2粉体。在此进程中,停留时刻和反响温度对 TiO2的粒径和晶型有影响。 其反响原理: 气相反响器中,反响物的耗费对粒子成核速率的影响比对成长速率的影响大,因为成核速率对系统中产品单体过饱和度愈加灵敏。跟着反响进行,过饱和度敏捷下降。反响初期以成核为主,而在反响后期成核停止,以表面成长为主。通常在高温下反响速率极快,延伸停留时刻,仅仅延伸了粒子成长时刻,因而产品粒径增大,比表面积减小。一起,停留时刻延伸,锐钛分子簇有满足时刻改动成金红石分子簇,使金红石含量增大。别的,气相反响器中,超微粒子构成进程包含气相化学反响、表面反响、均相成核、非均相成核、凝并和集合或烧结等进程。在高温下气相反响速率非常快,致使温度改变对成核速率的影响已不明显,而温度升高,粒子表面单分子外延和表面反响速率加速;一起气体分子均匀自由度增大,粒子之间磕碰加重,颗粒凝并速率增大,粒子间易发作凝并长大。别的因为反响器中初生粒子恰当细微,颗粒鸿沟表面能很大,小粒子极易逐步分散,交融构成大粒子,然后下降表面能,反响温度越高,晶界分散速率越快,烧结驱动力越大,然后导致粒子比表面积减小、粒径增大。3 纳米 TiO2的使用 因为纳米超微粒子具有特殊功用,这就决议了它在各个范畴中具有宽广的使用远景。 3.1在化学工业中的使用 催化是纳米超微粒子使用的重要范畴之一。使用纳米超微粒子的高比表面积与高活功用够明显地进步催化功率,国际上已作为第四代催化剂进行研讨和开发。纳米 TiO2具有很高的化学活性,杰出的耐热性和耐化学腐蚀性,可用作功用优秀的催化剂、催化剂载体和吸收剂。如纳米 TiO2在催化 H2S 除掉 S 时,显示出恰当高的催化活性。此外,纳米 SiO2和 TiO2的无机或有机复合材料具有特殊功用,这些纳米材料正在开发中。 3.2在电子工业产品中的使用 纳米 TiO2是许多电子材料的重要组成部分,可用于制造纳米灵敏材料及纳米陶瓷功用材料。因为纳米粒子尺度小,比表面积大,表面活性高,所以适协作气敏材料,如有纳米 TiO2可制成灵敏度很高的气敏元件。一起,因为纳米相陶瓷一次成型塑性形变是能够完成的,人们使用纳米 TiO2一次成型形变制成了纳米 TiO2陶瓷,这种陶瓷具有超细晶粒尺度并坚持它们的特性。 3.3在环保方面的使用 纳米 TiO2粒子的光催化作用在环保方面有宽广的用处。国内外有许多文献报导了这方面的开展。英国伦敦和安大略核子技能环境公司,开发了一种新颖的常温光催化技能,选用人工光和纳米二氧化钛催化剂,可将工业废液和污染地下水中的类化合物分化。当污染水经过二氧化钛涂层网络时,只需遭到低计量紫外光的照耀,便会发作反响,生成活性极强的氢氧自由基,敏捷将有机毒物分化为二氧化碳和水。此外,使用纳米 TiO2材料作为光催化剂还可催化降解纺织印染业和照相业排出的染料污染物。 跟着社会经济的开展,人们越来越注重日子质量和健康水平的进步。抗菌、防腐、除味、净化空气、优化环境将成为人们的寻求。当时全球面临着严峻的环境污染,纳米 TiO2作为而久的光催化剂已被使用在除了水和空气净化之外的各种环境方面的问题。有关资料标明,纳米 TiO2关于损坏微观的细菌和气味是有用的。别的还能够使癌细胞失活,对臭味进行操控,关于氮的固化和关于铲除油的污染都是非常有用的。 [next]3.4在化妆品工业中的使用 纳米 TiO2具有优异的紫外线屏蔽性,再加上它的通明性(不会在皮肤上残留白色,能厚涂改)和无毒(不会影响皮肤引起发炎)等特色,至今已成为防晒化妆品的抱负质料。据职业报导,在日本每年已有必定量的纳米 TiO2作为防晒剂、化妆品底和口红等产品的增加质料。3.5在医药卫生和食物加工范畴的使用 纳米结构不只巩固,并且具有本身对立外界不纯物质的才能,不易与外界不纯物质结合。一起,纳米级微粒或有机小分子将更有利于人体吸收,能进步药物的效能。因而纳米 TiO2在健康卫生及食物工业有宽广的使用远景。有资料报导,已开发出具有抗菌和净化功用的 TiO2薄膜陶瓷。别的,纳米 TiO2已使用在食物工业中,如作乐百氏奶的增加剂。 此外,纳米 TiO2在塑料、涂料等工业也有广泛使用,可用作塑料填料、高档油漆、涂料的质料。 4 定论 纳米材料是当今新材料研讨中最赋有生机的,对未来社会经济开展有着非常重要影响的研讨范畴。纳米 TiO 2作为其间重要的一员,近年来一直是国内外竞相研讨开发的抢手课题,其制法日趋完善,其使用范畴日益扩展,但在超微颗粒的制备进程中,粒子的聚会是需求处理的一大难题。现在,对用湿化学法制备氧化物超微粉体进程中聚会体构成的机理及其聚会状况的操控已有许多报导,这方面的研讨已取得必定开展。就纳米 TiO2 的制备而言,其沉积、枯燥、煅烧等进程都有或许发生聚会,因而,要完成对粉末聚会状况的操控,就有必要对粉末制备的全进程进行操控,然后取得分散性好、功用优秀的纳米 TiO2粉体。
7050铝合金阳极氧化膜的制备及其显微组织的研究
2019-01-11 10:51:50
Al及其合金表面与氧反应能生成一层氧化膜,这层钝化膜可以耐大气腐蚀,但是膜上的氧化铝为非晶态,且膜表面不均匀、不连续。自从铝阳极氧化工艺出现后,铝阳极氧化膜的制备工艺从电解液、外加电源的分类上有很多种,如硫酸法、草酸法、有机酸法和直流法。本文采用先电解抛光处理样品,然后采用两种不同混合酸作为电解液,对铝合金进行恒电压直流阳极氧化,研究了氧化时间对铝阳极氧化膜生长厚度的影响,并对氧化膜微观结构进行了表征,同时分析了一些现象产生的原因。 实验材料是块状铸态7050铝合金,其主要化学成分为(质量分数,%):0.12Si,0.15Fe,2.0~2.6Cu,0.1Mn,1.9~2.6Mg,0.04Cr,5.7~6.7Zn,0.06Ti,0.08~0.15Zr。在块状铝合金上切取10mm×30mm×10mm的金相样品,依次在不同型号的水磨砂纸上细磨,然后粗抛,用浓度大、粒度较粗的Al2O3粉与水混合的悬浮液做粗抛光剂,抛光机的转数为400~600r/min,较后做适当的精抛,直至肉眼看不到明显的划痕为止。用水冲洗,酒精脱水,吹干备用。在电解抛光前用Keller试剂(1.0%HF,1.5%HCl,2.5%HNO3和95%水的混合试剂)侵蚀,以显示变形层。 电解抛光液70%(体积分数)的高氯酸10mL与无水乙醇90mL的混合溶液。温度80~90℃;电压14~18V;电流密度0.1A/cm2;抛光时间20s。实验中以不锈钢板作阴极,将7050铝合金试样在HBF4水溶液中进行阳极覆膜,电解后试样用水冲洗,然后在1∶1(体积分数)硝酸溶液中清洗表面上的电解产物,较后超声波清洗,酒精擦干,以备覆膜之用。覆膜所用装置与电解抛光的相同,电压15~22V,电流密度0.1A/cm2,室温,时间5s。制膜液选取了两种,(1)由成分为HBF4水溶液[5.5gH3BO3加入15mL的(20%~30%)HF,使其充分溶解至清澈的溶液]再兑上500mL蒸馏水而成;(2)95%~98%(体积分数)的硫酸38mL,85%(体积分数)43mL磷酸,蒸馏水19mL。 根据Al及其合金的极化曲线来调节时间和电流密度,发现低电压、小的电流密度对电解抛光效果比较好。在一定时间范围内,阳极氧化膜厚度随时间的延长而增大。对膜表面进行了XRD成分分析,结果表明,在膜的表层含有非晶态和晶态的Al2O3。