铝箔加热速度
2019-01-15 09:51:29
确定铝箔加热速度应考虑下列因素: (1)箔卷的宽度、直径越大,箔卷的热均匀性越差,若加热速度太快,容易造成铝箔卷表面与心部温度差别太大,由于热胀冷缩的原因,波卷表面和心部的体积变化会有较大差别,从而产生很大的热应力,而使波卷表面起鼓、起棱。对0.02mm以上的铝箔加热速度的影响不明显,而对0.02mm以下的薄箔加热速度应适当降低,低速加热还有利于防止铝箔的粘连。 (2)快速加热易于得到细小均匀的组织,改善其性能,如3A21合金铝箔,为防止退火过程中极易出现的局部晶粒粗大、晶粒不均匀现象,通常采用快速加热的方法。 (3)在实际生产中,在保证质量的前提下应尽量提高加热速度。 (4)有轴流式循环风机的退火炉,由于气流循环快、温度均匀,可适当提高加热速度。目前铝箔退火炉绝大多数是气流循环式电阻炉,装炉量10-30t,带有温度自动控制、超温报警等功能,炉气温度的均匀性在±5℃以下。
黄铜线挤压速度和金属的流出速度选择
2019-05-29 17:52:57
黄铜线揉捏速度和金属的流出速度挑选 一般将黄铜线揉捏轴的移动速度称为揉捏速度,每台揉捏机都有规划的揉捏速度规模。常用悯及铜合金揉捏机规划的揉捏速度范甩见表4-14所示。 揉捏时一般比较重视金属的流出速度.这是因为金属流出速度的规模取决于金属在揉捏温度下的塑性,以使揉捏制品不发生裂纹,金属流出模孔时的速度称为流出速度。黄铜线揉捏速度与金属流出速度的联系如下: 确认黄铜线揉捏速度时应考虑的准则: (1)金属塑性变形区沮度规模宽时.只需金属出口温度答应能够选用较高的揉捏金属流出速度。如:萦铜高沮塑性区宽一般在600-900℃均能够顺利进行揉捏,选用快速揉捏不会呈现质最问题。因而,纯金属的流出速度较其合金的流出速度要高。 金属塑性变形区温度规模窄或存在低熔点成分的合金,当实测的黄铜线出口温度高于规定值时.有必要操控揉捏金属的流出速度。如锡磷青铜. HSn70-1. HA177-2.X3-1等合金,高温塑性差.在揉捏进程中,假如速度操控不妥,将使变形热效应增大,金属变形区内发生过热或过烧现象,在金属流出模口时,因为表面拉副应力的效果而发生揉捏制品表面裂纹,揉捏时有必要下降金属的流出速度.保证揉捏制品的表面质段。 (2)揉捏速度或变形区内金属活动速度越快.金属活动不均匀性越严峻。因而.揉捏断面杂乱的制品比揉捏断面简略的制品金属流出速度要低,进免揉捏进程中金属充不满模孔和部分发生较大的附加应力,构成揉捏制品发生纵向上的曲折、扭拧和裂纹等质量缺点。 揉捏管材时的金属流出速度能够比揉捏捧材高些,但在揉捏大直径薄壁甘材时.应该选用较低的揉捏速度。 (3)高温时金属枯性高的应该合理操控揉捏金属的流出速度。在加工这类合金时,进步揉捏速度将会使出口沮度升高,引起金属与东西之间的枯结.导致揉捏制品表面质量恶化。如铝青铜一类的合金,高退时简单粘附揉捏东西.揉捏速度操控不妥,更进一步加重金属与东西之间的枯结,构成揉捏制品表面发生起刺、划伤等缺点。别的.揉捏枯性大的合金,金属流出速度快会使不均匀变形更进一步加重.构成较长的揉捏缩尾,一起也下降了制品的力学性能。 (4)黄铜线揉捏东西形状和沮度也会影响揉捏速度。在其他条件相同的情况下.运用锥形模的揉捏速度比平模高,加工中锥形模揉捏时金属变形平级,发生的变形热少,在揉捏高沮塑性差的合金运用锥形摸.有利于进步揉捏速度。揉捏东西的预热沮度操控也会形响揉捏速度,一般工其沮度高了会下降合金的揉捏速度。 (5)揉捏速度受揉捏机才能的限制。加工进程中揉捏速度的进步将使变形速度升高.金属的变形拢力增大,不答应揉捏力超越设备的才能。 确认揉捏时的实践金属流出速度,能够在揉捏温度已知的条件下.考虑被揉捏金属的特性、金属的变形抗力和塑性、揉捏比等技术参数和设备才能,来挑选合理的揉捏金属流出速度。一般揉捏温度离,金属的流出速度慢.揉捏沮度低,金周的流出速度可适当增大.制作率大揉捏金属的流出速度可增大。加工进程中,为保证加工功率,在保证揉捏制质量址的前提下,一般都尽2选用较大的揉捏速度。 表4-15为铜及铜合金揉捏速度的分类排列次序,表4-16为黄铜线铜及铜合金揉捏金属的流出速度。 黄铜线揉捏温度一速度规程 在揉捏进程中,按种类与合金操控好揉捏沮度和揉捏速度,是保证揉捏制质量最,顺利完成揉捏进程和进步加工功率的关健。一般在揉捏机才能答应的条件下,能够选用低温、高速的揉捏技术进行加工,而对变形抚力大,高温塑性差的合金有必要严格遵守温度一速度规程,保证产质量最。黄铜线及铜合金揉捏溢度一速度规程。
影响金溶解速度的因素
2019-02-19 11:01:57
一、和氧浓度对金溶解速度的影响
金、银溶解时,所需的和氧的浓度是成份额的。依照反响式(1),1mol(分子)氧需求4mol(分子)的CN-,两者涣散系数的均匀比值为1.5。已知为空气所饱满的化液中含〔O2〕=8.2mg∕L,或为0.27×10-3mol(分子)。则〔CN-〕=4×1.5×0.27×10-3=6×0.27×10-3mol(离子),或为0.01%。在实践出产中,一般运用含0.02%~0.06%NaCN的水溶液。
4Au+8NaCN+O2+2H2O 4NaAu(CN)2+4NaOH (1)
溶液中浓度的调整是经过操控投入量来完成的。而氧浓度则是凭借充气机械向溶液中充气到达的。在正常状况下,充气机械的充气能使氧在溶液中的溶解度到达7.5~8mg∕L,只要在淡薄的溶液中才干到达某一稳定值。大都工厂的实践证明:在常压充气条件下,金的最大溶解速度是在浓度为0.05%~0.1%的规模内;而单个情况下则在0.02%~0.03%的规模内。只要进行渗滤化作业,或许处理含有较多的耗费杂质的矿石,以及含有酸盐的脱金贫液回来循环运用时,才运用较高的浓度。
实验标明,在浓度低于0.05%时,由于氧在溶液中的溶解度较大,以及氧和在稀溶液中的涣散速度较快,金的溶解速度随浓度的增大而直线上升到最大值。今后,跟着浓度的增大而金的溶解速度上升缓慢。当浓度超越0.15%后,虽然再增大浓度,金的溶解速度不光不会增大,反而略有下降(图1)。这可能是由于氧和CN-的份额失调。以及溶液pH添加,使离子发作水解引起的:
CN-+H2O HCN+OH-图1 不同浓度对金、银溶解速度的影响
在低浓度的溶液中,溶解速度取决于的浓度;但当浓度增高时,溶解速度与浓度无关,而随氧的供入压力的上升而增大(图2)。为此,可以用渗氧溶液或高压充气来强化金溶解的进程。如在709.275kPa(7atm)充气的条件下化,不同特性矿石中金的溶解速度可进步10倍、20倍,乃至30倍,且金的收回率约可进步15%。图2 24℃时不同压力与不同NaCN浓度对银溶解速度的影响
二、杂质对溶解速度的影响
向化溶液中参加某些元素,能加快金的溶解。有些研讨者证明,在必定的条件下,参加少数铅、、和铋,能进步金的溶解率。至少,存在的少数铅可成为溶解金的增效剂(图3)。但铅的很多存在,特别是在pH高的情况下,会在金粒的表面生成Pb(CN)2薄膜而按捺金的溶解。图3 在0.1%NaCN溶液中铅离子浓度对金溶解速度的影响
硫离子的存在,会在金粒表面生成一层不溶的硫化亚金薄膜,而使金难于溶解。或许与生成对金不起溶解效果的硫代酸盐而耗费。即便溶液中的硫化物含量很低(5×10-4%)也会显着下降金的溶解速度(图4)。图4 在0.25% KCN溶液中Na2S浓度对金、银溶解速度的影响
化处理浮选精矿时,由精矿带入化液中的黄药和黑药同样会下降金的溶解速度。我国某选金厂化液中的黄药浓度由33mg∕L添加至110mg/L时,金的化浸出率由74.2%下降至55.6%。这首要是由于金粒表面为黄原酸金薄膜掩盖之故。为进步金的收回率,浮选精矿或尾矿在化前有必要进行脱药。
精矿的脱药,一般是在浮选后对精矿进行洗刷和浓缩,以到达脱药意图。某矿磨矿粒度65%~0.074mm(200目),浮选后为更好的脱除黄药和2#油,将浮选精矿经旋流器脱药后,再磨矿至溢流细度98%~100% 0.074mm(-200日)后浓缩,可将浮选药剂脱掉96%。终究精矿送化提金,金的年均匀浸出率达90.57%。
矿石中存在的碳以及硅、铝、铁等生成的氢氧化物均具有吸附效果,对化作业晦气。
三、pH值对金溶解速度的影响
化作业时一般参加若干数量的碱以避免的水解丢失。但碱量过多而形成pH值过高时,金的溶解速度会显着下降。这是由于在高的pH情况下,氧的反响动力学对金的溶解很晦气。别的,在钙离子存鄙人,pH值增高时,会因金属表面生成薄膜而使金的溶解速度显着下降(图5)。图5 钙离子对金溶解速度的阻滞效应
很多研讨标明,金化浸出的最佳pH值为9.4。实践出产作业的最佳pH值规模可选在9.4~10之间。如条件答应,化浸出作业取下限值,锌置换作业则取上限值,后者pH值增大,可减小锌与水的反响优势,下降锌的耗费。
不同浓度的相应pH值列于下表。在不同pH值(即不同KOH浓度)下金、银的溶解速度如图6。从图中看出,KOH浓度达0.1mol∕L以上溶解速度呈直线下降。表 各种浓度KCN溶液的相应pH值KCN∕%pH0.0110.160.0210.310.0510.400.1010.510.1510.660.2010.81图6 溶液的pH值对金、银溶解速度的影响
四、温度对金溶解速度的影响
假如温度处在不影响金溶解作业的答应改变规模内,反响物浓度将随温度和涣散率的添加而添加,温度每添加10℃,反响物浓度约增大20%。也就是说,进步温度可加快化学反响速度。即温度每升高10℃,分化速度添加近两倍。但费事的是,添加温度会影响氧的溶解度。当矿浆温度挨近100℃时,氧的溶解度已降到近于零。总的来说,金的最高溶解速度在温度约85℃(图7)时到达极限,如温度再增高,就会因氧的溶解度削减而下降金的溶解速度。且为了进步矿浆温度需耗费很多燃料,而会添加化作业的本钱。特别是跟着矿浆温度的升高,会增大溶解贱金属的速率,加快碱金属和碱上金属的水解,形成耗费量的添加。这些不良影响,是添加矿浆温度以进步金的溶解速度和缩短化时刻所赔偿不了的。因而,除冰冷区域在冬天为了不使矿浆冻住而采纳保温办法的加温外,一般均在不低于15~20℃的常温条件下进行化。图7 温度对金在0.25%KCN溶液中溶解速度的影响
典型的涣散操控进程中,金、银的分化活化能规模在8.37~20.93kJ(2~5千卡)/mol(分子)之间。
五、金粒度对金溶解速度的影响
金粒的巨细是决议金溶解速度一个很首要的要素。假定金的溶解速度为3mg∕(cm2·h),寻么,直径44μm(325目)的球状金粒的彻底溶解需求14h;直径149μm(100目)的球状金粒则需48h。为此,在化前有必要首要除掉粗粒金,以进步金的收回率和尽可能缩短化作业时刻。
化工艺进程中,一般根据化作业的特色以筛目将金粒分为三种粒度:大于74μm(200目)为粗粒金,37~74μm(200~400目)为细粒金,小于37μm(400目)为微粒金。为便于作业,有时将大于495μm(32日)的金粒称为特粗粒金。
粗粒和特粗粒金,在化作业中溶解很慢,需求很长时刻才干彻底溶解。关于这类金粒,选用延伸化时刻往往是不合算的,由于绝大大都金矿石中的金首要呈细粒和微粒存在。国内外许多化法矿山所选用的收回矿石中粗粒和特粗粒金的办法,常常是在化前先进行混或许重选捕收,避免未溶完的粗粒金丢失于尾矿中。
细粒金在一般的化作业进程中都能很好地溶解。这是由于在相应的磨矿粒度下,大部分被解离呈单体金。
微细金粒在磨矿作业中被解离呈单体的常不多,其间的大大都仍处在其他矿藏或脉石的包裹中。处于硫化矿藏中的微粒金,化前常常需先进行氧化焙烧。石英脉石包裹的微粒金在化进程中是难于浸出的。用化法收回这类微粒金,一般需求将矿石磨得更细,以添加金粒的解离程度。这就会增大磨矿本钱,且给化矿浆的固液别离带来困难,增大和已溶金的丢失。关于某些微粒金矿石,常常由于矿石磨矿粒度不可能再细,而不可能选用化法处理。
故可以为,矿石中金粒巨细常常是决议能否选用化法的重要要素之一。
六、矿泥含量和矿浆浓度对金溶解速度的影响
矿泥含量和矿浆浓度会直接影响金的溶解速度。矿浆中矿泥和矿砂的浓度大,会影响金粒与溶液的触摸和溶液中有用组分的涣散速度,而使金的溶解速度下降。在一般情况下,化矿浆中粒状矿砂的浓度应不大于30%~33%。当矿浆中含有较多的矿泥时,化矿浆中的固体物料浓度应小于22%~25%。
矿泥的损害首要在于增大矿浆的粘度。不论是矿石带入的原生矿泥,仍是因磨矿而生成的次生矿泥,它们均以高度涣散的微细粒度进入矿浆中,生成极难沉积的胶状物长时刻呈悬浮状况,而下降金的溶解速度,且形成矿浆的洗刷过滤困难,使已溶解的金丢失于尾矿浆中。
硫脲溶解金的速度
2019-02-21 10:13:28
在浸金的溶液中,浓度取决于氧化剂的浓度,它和化法相同,当浓度超越氧化剂浓度之比太多时,则过多部分因短少氧化剂的参与不能发作反响,而等于是糟蹋。
如上所述,选用Fe3+和O2的混合氧化剂是最廉价的,它实质上(处理精矿或矿石时)不需向浸液中加Fe3+,而只需鼓入空气,且鼓入的空气又是矿浆的拌和动力。在Fe3+和O2混合氧化剂中,O2虽也能直接氧化金、银,但溶液中Fe3+浓度常只能坚持与溶解O2的浓度比,作为辅佐氧化剂的O2常缺乏以使悉数Fe2+氧化为Fe3+,更不可能有多大余量。故O2实质上是使金、银等氧化溶解的首要氧化剂。
鉴于Fe2+的化彻底依靠溶解于溶液中的O2,故氧化剂的浓度实质上就是溶解进入溶液中的O2浓度(这儿且不谈二硫甲脒的氧化作用),其浓度值与化法中所述的O2浓度共同。即在室温文常压下,浸液中溶解O2的最大浓度为8.2mg∕L,相当于0.27×10-3mol。
假定金在最大溶解速度时〔SCN2H4〕/〔O2〕之比为1∶2,则浸液中的平衡浓度为 2〔O2〕。那么
〔SCN2H4〕=2〔O2〕=2×8.2mg/L=16.4mg∕L
或 〔SCN2H4〕=2×0.27×10-3mol=0.54×10-3mol
实验证明,若单独用O2作氧化剂,浸液中的极限浓度值仅需0.02%,相当于 2.6×10-3mol。考虑到运用Fe2+和O2混合氧化剂和坚持浸液中有满足浓度的游离,以加速金的溶解,实践出产作业浸液中的浓度可选用0.1%(相当于1.3×10-2mol)。在此条件下,再增大浓度也不能进步金的溶解速度。
Fe3+作为溶解金的首要氧化剂,按其与O2浓度之比,在大多数情况下浸液中含铁离子0.5~2.0g∕L就满足。但在实践中,浸液中的铁浓度常高出许多倍。Fe3+浓度的恰当增大有利于进步浓度,在金等金属离子与处于非平街系统时,可加速金的溶解,金粒表面也不会呈现钝化。故在其他条件相一起,溶金速度比化法约高10倍。
溶金的动力学研讨证明,在有氧化剂存在条件下金溶解反响的电位差较大(0.38V)。故金溶于酸性液巾的速度首要由分散作用所操控。而影响分散作用的首要因素则是浓度差。
依据菲克规律,在阴极区,溶解氧向金粒表面的分散速度为:A1{〔O2〕-〔O2〕i} (1)
在阳极区,向金粒表面的分散速度为:{〔SCN2H4〕-〔SCN2H4〕i} (2)
式中 和 分别为O2和SCN2H4的分散速度,mol/s;和 -分别为O2和SCN2H4的分散系数,cm2∕s;
〔O2〕和〔SCN2H4〕-分别为全体溶液中O2和SCN2H4的浓度,mol/mL;
〔O2〕i和〔SCN2H4〕i-分别为界面处O2和SCN2H4的浓度,mol/mL;
A1和A2-分别为阴极和阳极发作反响的表面积,cm2;
δ-能斯特界面层厚度,cm。
假定金粒界面上O2和SCN2H4的化学反响速度很快,当它们刚一抵达金粒表面便立即被耗费掉。在此极限条件下,则
〔O2〕i=0;〔SCN2H4〕i=0。
此刻,式(1)和(2)可简化为:A1〔O2〕A2〔SCN2H4〕
由式(3)可知,金的溶解速度为耗费速度的二分之一,并为重生氧耗费速度的2倍(或为普通氧耗的4倍)。
Au+2SCN2H4+H++ O2 Au(SCN2H4)2+ H2O (3)
故
金的溶解速度= A1〔O2〕
或许
金的溶解速度= A2〔SCN2H4〕
当上列反响式到达平衡时,则A1〔O2〕= A2〔SCN2H4〕
因为和水相相触摸的金粒总表面积A=A1+A2,故
金的溶解速度= (4)
如式中所示,溶金过程中应坚持必定的矿浆浓度和拌和速度,以添加触摸面积和减小分散层厚度。上式中,当浓度高而溶解氧浓度低时,金的溶解首要取决于溶解氧的浓度,(4)式可改写为
金的溶解速度= (5)
即此刻金的溶解速度跟着溶液中氧浓度的增大而加速。同理,在浓度低而溶解氧浓度高时,金的溶解首要取决于浓度。即
金的溶解速度= (6)
即金的溶解速度将随硫脉浓度的添加而加速。当和溶解氧的浓度都适合时,金的极限溶解速度可由式(5)和(6)简化为〔SCN2H4〕=即=4 (7)
已知=2.76×10-5cm2∕s
则=1.10×10-5cm2∕s
故二者分散系数的均匀值= ≈2.5
将其代入(7)式,则金到达极限溶解速度时和溶解氧二者的摩尔均匀比值为:
4 =4即浸液中氧的溶解浓度与浓度的摩尔(分子)均匀比值约等于10时,金的溶解速度最高。
温度对金溶解速度的影响
2019-02-19 11:01:57
假如温度处在不影响金溶解作业的答应改变范围内,反应物浓度将随温度和分散率的添加而添加,温度每添加10℃,反应物浓度约增大20%。也就是说,进步温度可加快化学反应速度。即温度每升高10℃,分化速度添加近两倍。但费事的是,添加温度会影响氧的溶解度。当矿浆温度挨近100℃时,氧的溶解度已降到近于零。总的来说,金的最高溶解速度在温度约85℃(图1)时到达极限,如温度再增高,就会因氧的溶解度削减而下降金的溶解速度。且为了进步矿浆温度需耗费很多燃料,而会添加化作业的本钱。特别是跟着矿浆温度的升高,会增大溶解贱金属的速率,加快碱金属和碱上金属的水解,形成耗费量的添加。这些不良影响,是添加矿浆温度以进步金的溶解速度和缩短化时刻所赔偿不了的。因而,除冰冷区域在冬天为了不使矿浆冻住而采纳保温办法的加温外,一般均在不低于15~20℃的常温条件下进行化。图1 温度对金在0.25%KCN溶液中溶解速度的影响
典型的分散控制过程中,金、银的分化活化能范围在8.37~20.93kJ(2~5千卡)/mol(分子)之间。
新型铝合金能变废为宝?速度围观!
2018-12-27 15:30:42
美国能源部橡树岭国家实验室的研究人员与合作伙伴劳伦斯利弗莫尔国家实验室、威斯康星州的Eck工业公司合作开发了一种新型铝合金,比现有产品实用性好且更耐高温。更为重要的是,这种含有铈的铝合金有可能极大提高美国稀土的产量。 铈是一种稀土元素,可与铝形成金属间化合物,其熔点超过1000摄氏度。铝-铈系合金非常适合用于内燃机发动机,测试表明该系列合金可以在300摄氏度环境下稳定工作。 铝-铈合金的可铸性与铝-硅系合金相当,非常易于加工,金属间化合物的稳定性消除了许多热处理环节。研究人员还指出,由于铝合金的广泛应用,铝-铈合金的发现将启动并快速推进铈稀土元素产业的发展,据初步估算,即使按1%的添加量,每年对铈的市场需求亦可达到3000吨。 橡树岭国家实验室的科学家Zach Sims、Michael McGuire 和Orlando Rios与来自Eck工业公司、劳伦斯利弗莫尔国家实验室、爱荷华州的埃姆斯实验室的同事们在一篇文章中探讨了铝铈合金的技术和经济可行性,该论文发表在矿物、金属和材料协会的出版物JOM上。 稀土是一组对电子器件、可替代能源和其他现代技术非常重要的元素。例如,现代的风力发电和混合动力汽车对由稀土元素钕和镝制造的强大的永磁铁非常依赖。然而,在现在的北美并没有进行稀土的生产。其中一个问题是,包括美国的稀土矿在内,铈含量高达稀土含量一半以上,但是稀土生产商很难找到铈矿市场。事实上,在美国最常见的稀土矿,铈的含量是钕含量的3倍以上、镝含量的500倍以上。 铝铈合金有望通过增加需求来促进国内稀土矿开采,并最终提高铈的价值。Rios解释道,我们有足够的稀土来满足能源技术的需要,但当你提炼稀土时,得到的大部分元素是铈和镧,限制了稀土的大规模使用。例如,如果在内燃机上用到铝铈合金,这样可以迅速将铈从一个糟糕的副产品转换为一个有价值的产品。 Rios解释说:“铝产业是巨大的,汽车产业中使用了大量的铝,所以对于铝铈合金即使是一个非常小的突破,将导致市场使用大量的铈元素。事实上,市场上1%的铝合金中加入铈,市场将产生3000t的铈需求量。 Rios表示,与传统的铝合金相比,铝铈合金具有成本低,可铸造性高,热处理需求低和高温稳定性好。Eck工业公司工程研究和开发的副总裁David Weiss表示:”大多数具有卓越性能的合金很难浇铸,但铝铈合金具备优异的性能,且其铸造特性与铝硅合金相差无几。“ 合金的高温性能的关键是形成一种特殊的铝-铈化合物,即金属间化合物,当合金熔化和铸造的时候,该化合物才在合金内部形成。这种金属间化合物只有在华氏2000度以上才融化。Rios指出,铝铈合金的耐热性应用在内燃机上是非常有吸引力的。试验表明,新型合金在300摄氏度(572华氏度)时会保持稳定状态,而传统合金在这一温度开始崩解。 此外,金属间化合物的稳定性有时可以免除铝合金通常需要的热处理工序。铝铈合金通过提高运行温度来直接提高发动机燃油效率,也可以通过用轻型铝基组件或用铝合金来替代铸铁部件从而减轻发动机的重量来间接提高燃油效率,如气缸体、变速箱和气缸盖。 这个团队在传统的砂模中铸造了原型飞机的汽缸盖;也在3D打印的砂模中为一个化石燃料驱动的发电机铸造了全功能汽缸盖。橡树岭国家实验室美国交通运输研究中心这一史无前例的示范引导一个发动机试验获得了成功,即证明了这种发动机能进行温度超过600摄氏度的排气。 橡树岭国家实验室的物理学家Zachary Sims介绍说:“3D打印的模型通常很难被填充满,但有着卓越铸造特性的铝铈合金是个例外。”
pH值对金溶解速度的影响
2019-02-19 11:01:57
化作业时一般参加若干数量的碱以避免的水解丢失。但碱量过多而形成pH值过高时,金的溶解速度会显着下降。这是因为在高的pH情况下,氧的反响动力学对金的溶解很晦气。别的,在钙离子存鄙人,pH值增高时,会因金属表面生成薄膜而使金的溶解速度显着下降(图1)。图1 钙离子对金溶解速度的阻滞效应
很多研讨标明,金化浸出的最佳pH值为9.4。实践出产作业的最佳pH值规模可选在9.4~10之间。如条件答应,化浸出作业取下限值,锌置换作业则取上限值,后者pH值增大,可减小锌与水的反响优势,下降锌的耗费。
不同浓度的相应pH值列于下表。在不同pH值(即不同KOH浓度)下金、银的溶解速度如图2。从图中看出,KOH浓度达0.1mol∕L以上溶解速度呈直线下降。
表 各种浓度KCN溶液的相应pH值KCN∕%pH0.0110.160.0210.310.0510.400.1010.510.1510.660.2010.81图2 溶液的pH值对金、银溶解速度的影响
铝材型号与成膜速度的关系
2019-01-14 13:50:22
不同型号铝材,经导电性化学转化处理之后,外表色泽的差异比因其他工艺配方不同所获的氧化膜差异更明显。铝质纯度高、成膜速度慢;铝质纯度低,则相反。因此氧化时需根据不同铝材来掌握不同。为做到这一点,不同型号的铝材制件还不允许绑扎在同一串中,以免因此而不能控制各自合适的氧化时间。 铝材成分的优劣可在碱蚀时区分出来,如碱蚀后制件表面有过多的灰黑色膜,或是红色膜,则必然是含硅或含铜较高的铝,对这种铝的化学转化成膜时间就该缩短,否则所获膜层也必然难以满足导电要求。
金粒度对金溶解速度的影响
2019-02-19 11:01:57
金粒的巨细是决议金溶解速度一个很首要的要素。假定金的溶解速度为3mg∕(cm2·h),寻么,直径44μm(325目)的球状金粒的彻底溶解需求14h;直径149μm(100目)的球状金粒则需48h。为此,在化前有必要首要除掉粗粒金,以进步金的收回率和尽可能缩短化作业时刻。
化工艺过程中,一般根据化作业的特色以筛目将金粒分为三种粒度:大于74μm(200目)为粗粒金,37~74μm(200~400目)为细粒金,小于37μm(400目)为微粒金。为便于作业,有时将大于495μm(32日)的金粒称为特粗粒金。
粗粒和特粗粒金,在化作业中溶解很慢,需求很长时刻才干彻底溶解。关于这类金粒,选用延伸化时刻往往是不合算的,由于绝大多数金矿石中的金首要呈细粒和微粒存在。国内外许多化法矿山所选用的收回矿石中粗粒和特粗粒金的办法,常常是在化前先进行混或许重选捕收,避免未溶完的粗粒金丢失于尾矿中。
细粒金在一般的化作业过程中都能很好地溶解。这是由于在相应的磨矿粒度下,大部分被解离呈单体金。
微细金粒在磨矿作业中被解离呈单体的常不多,其间的大多数仍处在其他矿藏或脉石的包裹中。处于硫化矿藏中的微粒金,化前常常需先进行氧化焙烧。石英脉石包裹的微粒金在化过程中是难于浸出的。用化法收回这类微粒金,一般需求将矿石磨得更细,以添加金粒的解离程度。这就会增大磨矿本钱,且给化矿浆的固液别离带来困难,增大和已溶金的丢失。关于某些微粒金矿石,常常由于矿石磨矿粒度不可能再细,而不可能选用化法处理。
故可以为,矿石中金粒巨细常常是决议能否选用化法的重要要素之一。
铝材型号不同造成膜速度不同
2018-12-20 17:55:39
铝型材成分的优劣可在碱蚀时区分出来,如碱蚀后制件表面有过多的灰黑色膜,或是红色膜,则必然是含硅或含铜较高的铝,对这种铝的化学转化成膜时间就该缩短,否则所获膜层也必然难以满足导电要求。 因此氧化时需根据不同铝型材来掌握不同。为做到这一点,铝型材不同型号的铝材制件还不允许绑扎在同一串中,以免因此而不能控制各自合适的氧化时间。 不同型号的铝型材经导电性化学转化处理之后,铝型材外表色泽的差异比因其他工艺配方不同所获的氧化膜差异更明显。铝质纯度高、成膜速度慢;铝质纯度低,则相反。
铝材型号不同致成膜速度不同
2018-12-27 09:30:10
知道铝型材的朋友们肯定都知道一种检验铝型材优劣的方法吧,那就是铝型材的膜了,但大家知道吗,其实不同质量的铝型材转化膜的时间也是有区别的哦!
铝型材成分的优劣可在碱蚀时区分出来,如碱蚀后制件表面有过多的灰黑色膜,或是红色膜,则必然是含硅或含铜较高的铝,对这种铝的化学转化成膜时间就该缩短,否则所获膜层也必然难以满足导电要求。
因此氧化时需根据不同铝型材来掌握不同。为做到这一点,不同型号的铝材制件还不允许绑扎在同一串中,以免因此而不能控制各自合适的氧化时间。
不同型号的铝型材经导电性化学转化处理之后,外表色泽的差异比因其他工艺配方不同所获的氧化膜差异更明显。铝质纯度高、成膜速度慢;铝质纯度低,则相反。删除
杂质对金溶解速度的影响
2019-02-19 11:01:57
向化溶液中参加某些元素,能加快金的溶解。有些研究者证明,在必定的条件下,参加少数铅、、和铋,能进步金的溶解率。至少,存在的少数铅可成为溶解金的增效剂(图1)。但铅的很多存在,特别是在pH高的情况下,会在金粒的表面生成Pb(CN)2薄膜而按捺金的溶解。图1 在0.1%NaCN溶液中铅离子浓度对金溶解速度的影响
硫离子的存在,会在金粒表面生成一层不溶的硫化亚金薄膜,而使金难于溶解。或许与生成对金不起溶解效果的硫代酸盐而耗费。即便溶液中的硫化物含量很低(5×10-4%)也会显着下降金的溶解速度(图2)。图2 在0.25% KCN溶液中Na2S浓度对金、银溶解速度的影响
化处理浮选精矿时,由精矿带入化液中的黄药和黑药同样会下降金的溶解速度。我国某选金厂化液中的黄药浓度由33mg∕L添加至110mg/L时,金的化浸出率由74.2%下降至55.6%。这主要是因为金粒表面为黄原酸金薄膜掩盖之故。为进步金的回收率,浮选精矿或尾矿在化前有必要进行脱药。
精矿的脱药,通常是在浮选后对精矿进行洗刷和浓缩,以到达脱药意图。某矿磨矿粒度65%~0.074mm(200目),浮选后为更好的脱除黄药和2#油,将浮选精矿经旋流器脱药后,再磨矿至溢流细度98%~100% 0.074mm(-200日)后浓缩,可将浮选药剂脱掉96%。终究精矿送化提金,金的年平均浸出率达90.57%。
矿石中存在的碳以及硅、铝、铁等生成的氢氧化物均具有吸附效果,对化作业晦气。
铝材型号与成膜速度有何关系?
2018-12-11 14:35:52
不同型号铝材,经导电性化学转化处理之后,外表色泽的差异比因其他工艺配方不同所获的氧化膜差异更明显。铝质纯度高、成膜速度慢;铝质纯度低,则相反。因此氧化时需根据不同铝材来掌握不同。为做到这一点,不同型号的铝材制件还不允许绑扎在同一串中,以免因此而不能控制各自合适的氧化时间。 铝材成分的优劣可在碱蚀时区分出来,如碱蚀后制件表面有过多的灰黑色膜,或是红色膜,则必然是含硅或含铜较高的铝,对这种铝的化学转化成膜时间就该缩短,否则所获膜层也必然难以满足导电要求。
铝材型号与成膜速度有何关系
2018-12-11 14:32:11
不同型号铝材,经导电性化学转化处理之后,外表色泽的差异比因其他工艺配方不同所获的氧化膜差异更明显。铝质纯度高、成膜速度慢;铝质纯度低,则相反。因此氧化时需根据不同铝材来掌握不同。为做到这一点,不同型号的铝材制件还不允许绑扎在同一串中,以免因此而不能控制各自合适的氧化时间。 铝材成分的优劣可在碱蚀时区分出来,如碱蚀后制件表面有过多的灰黑色膜,或是红色膜,则必然是含硅或含铜较高的铝,对这种铝的化学转化成膜时间就该缩短,否则所获膜层也必然难以满足导电要求。
确定铝箔加热速度应考虑的因素
2019-01-15 09:51:27
确定铝箔加热速度应考虑下列因素: (1)箔卷的宽度、直径越大,箔卷的热均匀性越差,若加热速度太快,容易造成铝箔卷表面与心部温度差别太大,由于热胀冷缩的原因,波卷表面和心部的体积变化会有较大差别,从而产生很大的热应力,而使波卷表面起鼓、起棱。对0.02mm以上的铝箔加热速度的影响不明显,而对0.02mm以下的薄箔加热速度应适当降低,低速加热还有利于防止铝箔的粘连。 (2)快速加热易于得到细小均匀的组织,改善其性能,如3A21合金铝箔,为防止退火过程中极易出现的局部晶粒粗大、晶粒不均匀现象,通常采用快速加热的方法。 (3)在实际生产中,在保证质量的前提下应尽量提高加热速度。 (4)有轴流式循环风机的退火炉,由于气流循环快、温度均匀,可适当提高加热速度。目前铝箔退火炉绝大多数是气流循环式电阻炉,装炉量10-30t,带有温度自动控制、超温报警等功能,炉气温度的均匀性在±5℃以下。
氰化物溶解金的反应和速度
2019-02-21 08:58:48
之所以能挑选性地溶解金、银和它们的某些复合物,是由于往碱金属(或碱土金属)化液充气。实践中,一般运用(或)的充气溶液,一起参加若干碱(一般用石灰)。碱的参加是为了按捺的水解作用,避免生成氢酸蒸发丢失。
假如把溶解反响看作是电化学腐蚀进程,那么,也能够把金的溶解看作是阳极表面的金溶解进入溶液的进程(图1)。当阴极表面的氧得到电子时,阳极和阴极区间的反响为:
阳极区 Au+2CN- Au(CN)2-+e
阴极区 O2+2H2O+2e- H2O2+2OH-
进一步反响时 H2O2+2e 2OH-
在电化学腐蚀体系中,影响阴、阳极极化的最重要因素是浓差极化,它由菲克规律断定:A1〔(O2)-(O2)i〕 (1)A2〔(CN-)-(CN-)i〕 (2)
式中 和 -分别为CN-和O2的分散速度,mol(分子)/s;
DCN和 -分别为和溶解的氧的分散系数,cm2/s;
(CN-)和(O2)-分别为全体溶液中CN-和O2的浓度,mol(分子)∕mL;
(CN-)i和(O2)i-分别为界面处CN-和O2的浓度,mol(分子)∕mL;
A1和A2-分别为阴极和阳极发作反响的表面面积,cm2;
δ-能斯特界面层厚度,cm。图1 金在溶液中溶解的图解
以金属界面处CN-和O2穿过阻滞层的速度比较较,假定该界面上的化学反响速度很快的话,那么,当它们刚一抵达金属表面便立即被耗费掉,也就是说:
(CN-)i=0 (O2)i=0
因而可把式(1)、(2)简化为:A1〔O2〕A2〔CN-〕
由于金属溶解速度是氧耗费速度的两倍,是耗费速度的二分之一,故:
金的溶解速度=2 A1〔O2〕
或 金的溶解速度= A2〔CN-〕
当上列反响式到达平衡时,
2 A1〔O2〕= A2〔CN-〕
但由于和水相相触摸的金属总表面面积A=A1+A2,因而:
金的溶解速度= (3)
从此式可见,当浓度低时,和分母的第二项比较,其第一项能够疏忽不计,因而,等式(3)可简化为:
金的溶解速度= (CN-)=k1(CN-)
用这式核算的值与图2的试验成果相符,即浓度低时,溶解速度仅取决于浓度。图2 24℃时不同压力与不同NaCN浓度对银溶解速度的影响
同理,当浓度高时,和分母的第一项比较,其第二项能够疏忽不计,则等式(3)可简化为:
金的溶解速度=2 〔O2〕=k2〔O2〕
用这式核算的值也与图2的试验成果相符,即浓度高时,溶解速度仅取决于氧浓度。
当 〔CN-〕=4 〔O2〕
即 此刻,溶解速度到达极限值。从表1查得分散系数的均匀值为:=2.76×10-5cm2∕s=1.83×10-5cm2∕s
二者分散系数的均匀比值:≈1.5
即二者极限溶解速度的摩尔均匀比值为:
4 =4 ≈6
表1 分散系数及均匀值温度∕℃KCN∕%DCN∕cm2·s-1DO2∕cm2·s-118-1.72×10-52.54×10-51.48250.032.01×10-53.54×10-51.76270.01751.75×10-52.20×10-51.26均匀值-1.83×10-52.76×10-51.50
此刻,金的溶解速度到达极限溶解速度。它与表2所示的试验值4.6~6.8是很符合的。
表2 和氧浓度与极限溶解速度的比值金属温度∕℃PO2∕Pa(O2)∕mol·L-1(CN-)∕mol·L-1金251013251.28×10-36.0×10-34.6925212780.27×10-31.3×10-34.85251013251.28×10-38.8×10-36.88银247579119.55×10-356.0×10-35.85243445054.35×10-325.0×10-35.75 从工艺观念来看,重要的既不单是溶解氧的浓度(即溶液的充气程度),也不单是游离的浓度,而是两者浓度之比。因而,假如只致力于取得抱负的充气,而疏忽溶液中足够的游离,就不会得到好的化作用,且也不能到达最大的化溶解速度。反之,假如参加过量的而溶液中的含氧量低于理论值,则该过量的显然是一种糟蹋。为了到达最大的溶解速度,有必要一起分析和操控溶液中的游离和氧含量,使两者的摩尔分子比约等于6。
铝材型号与成膜速度之间的关系
2019-01-11 10:51:58
铝型材成分的优劣可在碱蚀时区分出来,如果碱蚀后制件表面有过多的灰黑色膜,或是红色膜,那么此款必然是含硅或含铜较高的铝,对这种铝的化学转化成膜时间就该缩短,否则所获膜层也必然难以满足导电要求。
因此氧化时需根据不同铝型材来掌握不同。为做到这一点,铝型材不同型号的铝材制件还不允许绑扎在同一串中,以免因此而不能控制各自合适的氧化时间。
不同型号的铝型材经导电性化学转化处理之后,铝型材外表色泽的差异比因其他工艺配方不同所获的氧化膜差异更明显。一般来说,铝质纯度越高,成膜速度就越慢;相反的,如果铝质纯度越低,那么它的成膜速度也就同等地越快。
铜合金变形程度与挤压速度的影响
2019-05-29 19:34:01
铜合金变形程度与揉捏速度的影响 (1)变形程度(揉捏比)添加时,锭坯中心层与表层金属的活动速度差添加,金属活动的均匀性下降。对揉捏制品断面取样进行力学功能测定.得到图2-11揉捏制品力学功能与变形程度间的由图2-11可知,变形程度在60%左右时.揉捏刹品内外层力学功能不同较大,可是当揉捏变形程度大到必定程度(卯%)时,剪切变形才或许深人到制品中心部.使揉捏制品搜断面上的力学功能趋于均匀。从图中能够看出.为了取得揉捏制品较好的功能均匀性,实践加工中,要求揉捏变形程度到达85%-90%以上,揉捏变形程度的巨细对制品表面质盆也有必定形响。 (2)揉捏时,速度与变形程度有着亲近的联系.其联系式如下:式中——金属流出速度,m/s;——揉捏轴运动速度,m/s;——延伸系数。 在其他条件相一起,金属流出速度与延伸系数成正比例添加.一般是揉捏速度大,金属不均匀活动加重,因为揉捏速度大来不及软化.然后加快了制作硬化.使金月塑性下降。此外,揉捏速度的进步,添加了变形热效应.使锭坯沮度升高,有或许进人离沮脆性区.下降了金属制作塑性。实践加工中,一般把速度和沮度一致来考虑,一般揉捏温度高.揉捏速度快,金属不均匀活动越大。拓宽阅览:h65黄铜板特色及其应用范围【组图】铜及铜合金的标准-板材标准铜及其分类标准铜及铜合金的标准-管材标准铜合金静液揉捏制作的技能特色
铝合金铸造温度、铸造速度、冷却强度与铸锭质量的关系
2019-01-02 14:54:44
铸造工艺参数主要有铸造温度、铸造速度、冷却强度,其次是液位高度、铸造开始与结束条件等。
1 铸造温度
铸造沏度通常是指液体金属从保温炉通过转注工具注入结晶器过程中具确良好流动性所需要的温度。但是,目前铝合金熔铸大部分已应用了在线除气与过滤装置,铸造温度仍然按上述的概念是不够 全面与正确的。实践证明,在线除气装置中液体温度不同具除气效果也不同。因此,要考虑在线除气装置除气效果对液体温度的要求。另外,还应考虑液体在结晶器内的气体析出情况,因铸造温度低,液体在结晶器内的气体来不及上浮逸出液面,造成气孔、疏松,还可能产生灾渣及冷隔等铸锭质量缺陷、铸造温度最高不宜超过熔炼温度。铸造温度过高会导致铸造开始时漏铝。底部裂纹与拉裂,还可能产生羽毛品组织缺陷,又因为转注工具长度不同而液体温降不同,在线装首有加热点,液体在转注过程中温度变化起伏大,所以科学规范铸造温度应指注入结晶器内的液体温度一般情况下铸造温度比合金的实际结晶温度高50℃~70℃,1 x x x、3x x x系铝合金在铸造过机中过渡带较窄,铸造温度宜偏高;而2x x x、7x x x系合金的过渡带较宽.铸造温度宜偏低。
2 铸造速度
连续铸造时,单位时间铸锭成形的长度称为铸造速度。老式铸造通常是一个铸次为—个固定铸造速度;而现代铸造是曲线铸造速度,即铸造开始与铸造过程不是同一个铸造速度:铸造速度的快与慢对铸锭裂纹、铸锭表面质量、铸锭组织和性能有很大影响,在保证铸锭质量的前提下,应采用最高的铸造速度。老式铸造法为解决某些合金及规格铸锭的裂纹问题,铸造时采用铺底或回火的工艺方法;而现代铸造法则采用曲线铸锭速度,取代了老式铸造的铺底或回火工艺,它既减少了一些辅助设施,又节省了人力与减轻劳动强度,还可以避免——些铸锭表面质量缺陷铸造速度的选择是依据所生产合金的特性与铸锭截面尺寸而定。一般规律足冷裂纹倾向性较大的合金及铸锭规格,应提高铸造速度;而热裂纹倾向较大的合金及铸锭规格,则应降低铸造速度
3 冷却强度
冷却强度也称为冷却速度。冷却强度不但对铸锭的裂纹有影响,而且对铸锭的组织影响更大、随着冷却强度的增大,铸锭结晶速度提高,晶内结构更加细化;随着冷却强度增人,铸锭液穴变浅。过渡带尺寸缩小.使金属补缩条件得到改善,减少或消除了铸锭中的疏松、气孔等缺陷.铸锭致密度提高:另外还可以细化一次品化合物的尺寸,减小区域偏析的程度。
老式铸造法多采用分体结晶器,尤其是铸造扁铸锭时.水套与结晶器是分开的。随着铸造工艺技术的发展,现代铸造法的结晶器是一体的。用老式结晶器铸造时冷却水消耗量大,因为老式结晶器供 水不是封闭的,一部分冷却水敞火而起不到冷却作用,而且一次冷却与二次冷却的冷却强度差别人,不可避免的产生一些铸锭质量缺陷;而用现代结晶器铸造时.冷却水消耗量小.实践证明它仅是老式结晶 器用水量的70%左右。目前国外多采用低液位结晶器铸造,其目的就是提高冷却强度,减少或消除一次冷却后气隙区的加热现象,因此几乎不存在二次冷却的淬火情况、扁铸锭普通铸造已经将结晶器高度 降至100人,当然这需要操作者有很高的操作水平或增设液位白动控制系统。
冷冲却强度对冷却水温度的要求是不可忽视的,通常情况下,冷却水温设定在20度,但是由于地区气候条件。供水设施条件及厂房温度等不同导致变化较大,因而出现地区性或季节性铸锭质量缺陷。现代结晶器供水系统带有脉冲或交叉变相功能,均由工艺编程决定,因此冷却强度可依据铸造工艺需要设定为曲线,特别是针对某些低温塑性不好的硬合金,铸造时冷裂纹和热裂纹几乎同时存在,附加挡水板系统,使铸锭表面温度升高到拉伸变形塑性温度,消除铸锭冷裂纹,工艺上再采取防止热裂纹措施,即可以获得优质铸锭。
矿泥含量和矿浆浓度对金溶解速度的影响
2019-02-19 11:01:57
矿泥含量和矿浆浓度会直接影响金的溶解速度。矿浆中矿泥和矿砂的浓度大,会影响金粒与溶液的触摸和溶液中有用组分的涣散速度,而使金的溶解速度下降。在一般情况下,化矿浆中粒状矿砂的浓度应不大于30%~33%。当矿浆中含有较多的矿泥时,化矿浆中的固体物料浓度应小于22%~25%。
矿泥的损害首要在于增大矿浆的粘度。不论是矿石带入的原生矿泥,仍是因磨矿而生成的次生矿泥,它们均以高度涣散的微细粒度进入矿浆中,生成极难沉积的胶状物长期呈悬浮状况,而下降金的溶解速度,且形成矿浆的洗刷过滤困难,使已溶解的金损失于尾矿浆中。
氰化物和氧浓度对金溶解速度的影响
2019-02-19 11:01:57
金、银溶解时,所需的和氧的浓度是成份额的。依照反应式(1),1mol(分子)氧需求4mol(分子)的CN-,两者分散系数的均匀比值为1.5。已知为空气所饱满的化液中含〔O2〕=8.2mg∕L,或为0.27×10-3mol(分子)。则〔CN-〕=4×1.5×0.27×10-3=6×0.27×10-3mol(离子),或为0.01%。在实践生产中,一般运用含0.02%~0.06%NaCN的水溶液。
4Au+8NaCN+O2+2H2O 4NaAu(CN)2+4NaOH (1)
溶液中浓度的调整是经过操控投入量来完成的。而氧浓度则是凭借充气机械向溶液中充气到达的。在正常状态下,充气机械的充气能使氧在溶液中的溶解度到达7.5~8mg∕L,只要在淡薄的溶液中才干到达某一稳定值。大都工厂的实践证明:在常压充气条件下,金的最大溶解速度是在浓度为0.05%~0.1%的范围内;而单个情况下则在0.02%~0.03%的范围内。只要进行渗滤化作业,或许处理含有较多的耗费杂质的矿石,以及含有酸盐的脱金贫液回来循环运用时,才运用较高的浓度。
实验标明,在浓度低于0.05%时,因为氧在溶液中的溶解度较大,以及氧和在稀溶液中的分散速度较快,金的溶解速度随浓度的增大而直线上升到最大值。今后,跟着浓度的增大而金的溶解速度上升缓慢。当浓度超越0.15%后,虽然再增大浓度,金的溶解速度不光不会增大,反而略有下降(图1)。这可能是因为氧和CN-的份额失调。以及溶液pH添加,使离子发作水解引起的:
CN-+H2O HCN+OH-图1 不同浓度对金、银溶解速度的影响
在低浓度的溶液中,溶解速度取决于的浓度;但当浓度增高时,溶解速度与浓度无关,而随氧的供入压力的上升而增大(图2)。为此,可以用渗氧溶液或高压充气来强化金溶解的进程。如在709.275kPa(7atm)充气的条件下化,不同特性矿石中金的溶解速度可进步10倍、20倍,乃至30倍,且金的回收率约可进步15%。图2 24℃时不同压力与不同NaCN浓度对银溶解速度的影响
T2紫铜板市场资源消化速度较慢
2019-03-01 14:09:46
因为节后供应商遍及存探涨思绪,加之期螺走高,市价顺势小幅拉涨,但商场交投空气并不活泼;华东地区因受飓风暴雨影响,前两日成交简直阻滞,现跟着气候的好转,成交也逐渐康复正常,但供应商心态仍较慎重,出货志愿遍及增强;华中武汉商场近期因部分节前未备货下流厂企呈现会集收购,且武钢资源到货,前期直销偏紧的规格得到弥补,成交稍有好转。全体来看,需求开释有限,T2紫铜板商场资源消化速度较慢,但考虑现鞍本等北方钢厂定量保价目的较为显着,且近期是钢厂报价方针出台期,估计冷轧报价弱稳张望。钢厂调价方面:节对冷轧主流产品出厂报价坚持不变,部分种类订购优惠起伏加大,特色“明稳暗降”,反映出在商场报价和钢厂报价继续倒挂的局势下,板材厂商合同安排压力有所加大。而武钢、鞍钢和首钢调价方针根本共同,但更靠近现货商场。当时大都钢厂本身厂内库存处于正常水平,全体库存压力不大,因而8月国内钢厂仍将保持正常出产节奏,短期检修力度不会加大,国内钢材产值并不会有所下降。市价上行动力缺乏,跟着铁矿石期货上市,商场炒作的可能性较大。T2紫铜板商场全体维稳,各地商场资源相对趋紧,商场挺价力度增强。从根本面来看,因为钢材产值高企,对铁矿石的需求较为旺盛,一起低位运转的港口库存也对铁矿石报价起到必定的支撑效果。但因为钢铁行业仍将处于盈亏平衡线上,铁矿石报价的上涨空间也较为有限。全体而言,后期铁矿石保持高位窄幅震动的可能性较大。
矿浆的温度对金的氧化浸出速度的影响
2019-02-18 15:19:33
金在氧化物溶液中的溶解速度是随温度的升高而增大的,在85℃左右时为最大。金的溶解速度与温度的联系见下图所示。但随着温度的升高,溶液中的含氧量下降,于100℃时为零。氧在这种情况下,已经不起在极化效果激烈的情况下所起的效果(与氢化合的效果)。 温度升高,还会发生不利于金化浸出的影响,如进步贱金属与的化学反应速度,添加碱金属、碱土金属的的水解效果,然后形成的消耗量的添加。 所以,在化法提金生产中,为了使金的浸出进程在较好的温度条件下进行,关于不同区域的化厂应区别对待,使浸出矿浆温度最好保持在10~20℃。
各种合金挤压制品的挤压温度-平均速度规范
2019-01-15 09:51:37
合金
制品
加热温度/℃
金属平均流出速度/m .min-1铸锭
挤压筒2A14
圆棒、方棒和六角棒
380~440
360~440
1~2.52A12
380~440
360~440
1~3.52A05
380~440
360~440
3~62A80、2A70、5A02
320~430
350~400
3~157A04
350~430
330~400
1~21A70~8A06
390~440
360~430
40~1503A21
390~440
360~430
25~1205A05、5A06
400~450
380~440
1~26A02、6061、6063
一般型材
480~520
450~500
8~515~1202A12、2A06
一般型材
380~460
360~440
1.2~2.5高强度和空心型材
430~460
400~440
0.8~2壁板和变断面型材
420~470
400~450
0.5~1.22A11
一般型材
330~460
360~440
1~37A04
固定断面和变断面型材壁板
370~450
360~430
0.8~2390~440
390~440
0.5~15A02、5A03、5A05、5A06、3A21
实心、空心和壁板型材
420~480
400~460
0.6~26061
装饰型材
320~500
300~450
12~606061、6A02、6063
空心建筑型材
480~530
480~500
8~6020~1206A02
重要型材
490~510
460~480
3~15
金的浸出率与浸出速度和浸出时间的关系
2019-02-18 15:19:33
在整个浸出过程中,跟着浸出时刻的添加,金的浸出率不断提高,可是浸出速度却在不断下降,而且浸出率逐步趋近于某一极限值。 跟着时刻的延伸,金的浸出速度逐步下降的原因如下: 1. 在浸出过程中,因为金不断溶解,金粒的体积和数目在不断削减。 2. 跟着金的浸出,使化药剂、溶解氧和金的归纳物的扩散距离越来越大。 3. 在金溶解的一起,矿浆中的杂质元素不断添加和堆集,有些杂质还会在金粒的表面成有害的薄膜。
金粒的大小和形状对金氰化浸出速度的影响
2019-02-18 15:19:33
在其他条件不变时,浸出金的数量与金粒表面触摸面积成正比。按金粒在化浸出中的行为,可分为:粗粒金(大于70微米),细粒金(70~1微米),微粒金(小于1微米)。悉数溶解粗粒金,需求很长时刻,此刻一般不必化法处理。细粒金在磨矿后,呈游离态和未被包裹的连生体状况存在,因为金的露出面积大,所以在化进程中会很好地被溶解。微粒金在磨矿进程中不能彻底解离,大都仍留在矿藏中未露出出来,难以直接被化溶解。 金粒的形状对金的溶解也有很大影响。呈薄片状的金的溶解与溶解时刻成直线联系。小球形状的金粒较大球形状的溶解快得多,球体状金粒的溶解起先快然后随球体直径减小而下降。具有内孔穴的金粒,因其溶解表面逐渐在扩展,故溶解速度逐渐加速。 金粒在磨矿时露出多,与触摸面积大,则金的浸出速度快。所以,国内的精矿化厂磨矿细度大多要求-325目占80~95%,而全泥化厂大都控制在-325目占60~80%。
氰化过程中金的表面生成的薄膜对金溶解速度影响
2019-02-18 10:47:01
在金的化过程中,杂质能在金粒表面生成各种薄膜而影响金的溶解速度。生成的薄膜及其对金的溶解速度的影响如下:
1.硫化的薄膜 在化溶液中,当硫离子浓度到达0.5ppm时,就要下降金的溶解速度。这是因为在金粒的表面上生成一层不溶的硫化亚金薄膜而阻止金的持续溶解。
2.过氧化氢薄膜 用氢氧化钙作维护碱时,将会在金的表面生成薄膜,阻止金与效果。这能够认为是石灰和堆集在溶液中的H2O2按下式反响生成的:
Ca(OH)2+H2O2→CaO2 +2H2O
3.氧化物薄膜 向溶液中参加臭氧时,会在金的表面上生成一层砖赤色的金的氧化物薄膜,下降金的溶解速度。
4.不溶的氧化物薄膜 适量的Pb2+对金的溶解有增速效应,过量时则引起阻滞效应。这是因为铅与金生成原电池,金在原电池中成为阳极,因而金转入溶液。过量的Pb2+则会在金的表面堆积成不溶的Pb(CN)2薄膜。
5.黄原酸金薄膜 浮选精矿化时,化溶液中乙基黄药浓度超越0.4ppm时,金的溶解速度就要下降。这是因为在金的表面生成黄原酸金薄膜所造成的。为了战胜这一晦气影响,在确保浮选回收率的情况下,尽可能下降浮选药剂的用量,并在浮选精矿化之前先脱药处理。
铝合金淬火炉淬火阶段冷却速度必须防止强化相析出
2019-01-14 11:15:13
铝合金淬火炉淬火阶段冷却速度必须防止强化相析出 铝合金淬火炉之淬火时的冷却速度必须确保过饱和固溶体被固定下来不分解。防止强化相析出,降低淬火时效后的力学性能。因此淬火时的冷却速度越快越好。但是冷却速度越大,淬火制品的残余应力和残余变形也越大,因此冷却速度要根据不同的合金和不同形状、尺寸的制品来确定。 一般合金的淬火对冷却速度敏感性强的,选择的冷却速度要大。如2A11,2A12合金淬火炉冷却速度应在50℃/s以上,而7A04合金对冷却速度非常敏感,其淬火冷却速度要求在170℃/s以上。 对于形状、尺寸大小不同的制品应采用不同的冷却速度,通常主要靠调整淬火介质的温度来实现。对于形状简单、中小型、棒材可用室温水淬火(水温一般l0~35℃),对于形复杂、壁厚差别较大的型材,可用40~50℃的水淬火。而对于特别易产生变形的制品,甚至可以将水温升至75~85℃进行淬火。试验证明随着水温升高使其淬火制品的力学性能和抗蚀性能有所降低。 铝合金淬火炉之铝合金较常用的淬火介质是水。因为水的粘度小、热容量大,蒸发热快,冷却能力强,而且使用非常方便、经济。但是它的缺点是在加热后冷却能力降低。淬火加热的制品在水中冷却可以分为三个阶段:靠前阶段为膜状沸腾阶段。当炽热制品与冷水刚接触时,在其表面立即形成一层不均匀的过热蒸汽薄膜,它很牢固,导热性不好,使制品的冷却速度降低。第二阶段为气泡沸腾阶段。当蒸汽薄膜破坏时,靠近金属表面的液体产生剧烈的沸腾,发生强烈的热交换。第三阶段为热量对流阶段,冷却水的循环,或制品左右摆动、或上下移动,增加制品表面与水产生对流的热交换,以提高冷却速度。 根据上面分析,为了很快突破靠前阶段,迸一步冷却,保证淬火炉淬火制品冷却均匀,需要在淬火水槽中装有压缩空气管,以便搅拌,同时制品入水槽后要作适当的摆动。另外为保证水温不会升高太多,淬火槽应有足够的容量(一般应为淬火制品总体积的20倍以上)。而且冷却水应有循环装置。 除了调节水温来控制铝合金淬火炉的淬火冷却速度外,还可以在冷却水中加入不同的溶剂来调节水的冷却能力。通常采用聚乙醇水溶液作为冷却介质,同时还可以调节聚乙醇水溶液浓度来控制制品淬火的冷却速度。一般易变形的制品,经常用这种聚乙醇水溶液来淬火。
树脂浆法提金工艺-树脂交换过程的机理和速度
2019-01-07 17:38:29
离子交换树脂中,结构最简单的是“海绵”型离子交换树脂。按照现代化学观点,离子的交换反应动力来自交换的离子在树脂相和溶液相中的化学位差。当“海绵”型树脂浸入溶液中时,由于“海绵”孔隙中游动的反离子A浓度高,而会竭力向浓度低的溶液中扩散,而使树脂的电中性遭到破坏。为了回复树脂的初始电中性状态,就要从溶液中吸附相应量的电荷符号相同而不同类的离子,达到各离子重新分布的动力学平衡。
每一种离子交换树脂的吸附等温饱和曲线是它在离子交换过程中所具有的最重要特性。这种曲线是在恒定温度和给定条件下离子交换达到平衡时(图1)测定的,它表示离子交换树脂吸附离子的容量与溶液中该离子平衡浓度的关系。该曲线是设计吸附过程所选择吸附工艺条件的一种依据。图1 AM(下)、AM-2B(上)树脂吸附金的等温线
离子的交换过程可设想有如下的几个步骤:(1)溶液中的离子向树脂颗粒表面扩散;(2)离子向树脂颗粒内部扩散;(3)进行离子交换反应;(4)被交换出的反离子从树脂颗粒内部向表面扩散;(5)反离子向溶液中扩散。在这5个步骤中,(1)和(5)、(2)和(4)是相同的,只是离子不同,移动的方向相反。由于离子交换过程是多步骤过程,因而它的总速度(过程交换速度)是由进行得最慢的那一步骤决定的。
大量研究证明,交换的化学反应步骤(3)一般是很快的,故它不决定离子交换过程的总速度,而在离子交换动力学中起决定作用的是扩散过程。研究数据表明,离子交换速度与树脂粒度有关。当减小粒度时,交换过程速度就会加快。可见,离子交换的速度是由树脂颗粒内的离子扩散或树脂颗粒周围液体不动层(液膜)中的离子扩散速度所决定。前者通称胶层扩散,后者通称膜层扩散。其中,胶层扩散多半比膜层扩散进行得慢些。故从矿浆中回收金的离子交换过程中,交换速度主要取决于离子的胶层扩散。但在载金树脂的金、银解吸过程中,离子交换速度大概受膜层扩散控制,因为此过程是在没有搅拌的树脂因定床层中进行的。此时,膜层厚度大,膜层内外界面溶液的浓度差和离子的扩散速度都小。尽管为加快膜层的扩散可以提高溶液的温度,但由于树脂的热稳定性差,故液温一般小宜超过50~60℃。超过此温度范围就会损坏树脂的活性基团而降低树脂的吸附容量。
全球铝需求每年料以6-7%的速度递增--Vedanta公司CEO
2018-12-14 11:31:01
据孟买9月9日消息,Vedanta资源公司执行长Kuldip Kaura周二表示,受中国和印度消费量增加带动,未来几年内全球每年铝需求可能以6-7%的速度增加,或者250-300万吨。 Kaura表示,“随着经济高速增长的中国和印度消费量增加,全球铝需求正在上升,到2020年可能翻番至8000万吨。” 他并指出,印度当前消费量为150万吨,预计每年需求将以12-14%的速度递增。.