铍铜的拉伸试验
2019-01-25 10:19:08
铍铜机械性能的测定常常采用单轴的拉伸试验。该试验为元件设计提供数据。拉伸试验的资料同样可用以材料的验收和控制工艺操作。诸如:冲压、弯曲、轧制、机加工、拉拔和截条等。试验本身比较简单,但铍铜试验数据的介释和应用,需要对试验的程序和过程中合金的特性行为有充分的理解。 拉伸试验 依据试样的形状和设备情况,有系列的试验用的附件,夹具和应力、应变测量装置可以用金田公司对所有的供贷的铍铜的抗拉性能的测定和确认,都依据ASTM E-8(拉伸试验金属材料的标准测试方法)所叙述的试验程序,这一试验程序允许有宽的范围试验条件、设备和试样形状的选择。 铍铜在应变速率0.005~0.2时的试验速度,其性能对应变速率的敏感性是中等的。检验通常在恒定的速度或应变速率下进行。虽然试样在到达屈服应力后,可能分段式上升,但对高延伸率的合金尽量缩短测试时间。 对铍铜带材的检验,最常用的是中间截面收缩的试片(狗骨头形),直边形的试片同样也可用。测试试样的轴沿带材的纵向,即轧制方向。只要可制备出光滑的、边角没有应力的试样的任何一种方法均可以采用。试样的边缘可用金刚砂布轻轻抛一下,以撤除毛刺,这些毛刺会影响试样的提前破坏或不准确的测试结果。金田公司检验带材制品时的试样尺寸为宽度12.5m.m ,标距为50m.m 。 对于大尺寸的或大块的铍铜产品,其拉伸测试棒,机加工成直径9m.m,长35m.m或者直径12.7mm×长50.8mm的标准截面。作为带材试样,ASTM E-8要求,标距长度至少为标准直径的4倍,拉伸试棒表面精加工的速度最大为1.5μm.rm.s,吃刀深度最少为0.08mm,以尽可能减少棒材表面的应力。 从位伸试验得出的是工程应力一应弯曲线,图1所示,应力,位于纵轴,试验载荷除以试样的横截面积。应力的表示单位为磅/寸2(psl或1b/in2),千位的磅/时2(KSI)或者以米制表示为:牛顿/毫米2(N/mm2)或者兆巴(MPa),一个兆巴定为1N/mm2。不常用的米制应力以公斤/毫米2(kg/m.m2或者kg.f/m.m2)表示。[next]表1.列出应力单位的换算:psi×1000=ksiMpa×0.012=Kg/mm2ksi×6.895=N/m.m2Mpa×0.145=ksiksi×6.895=MpaN/mm2×0.145=ksiksi×0.703=kg/m.m2kg/m.m2×1.422=ksiMpa×1=N/m.m2kg/m.m2×9.807=Mpa
应变,位于应力一应弯曲线的横轴,是测试试样的伸长量除以标准截面的长度,由于应变的单位是英时/英时或者毫米/毫米,因此,应变的表示方法无尺寸量纲或者百分率,有时候,标距长度应变单位提供。如“11%在2英时内”分析应力奕变曲线,可以确定屈服强度、抗拉强度、弹性(扬氏)模数,均匀应变和总的应变,截面收率的测定,对圆形试样是有要求的,在试样完成检验之后进行。 应力一应变曲线 应力一应变曲线(图1)的初始部分是线性的,其斜率的数值(应力除以应变)是材料的弹性模数。弹性模数又称为扬氏模量。测量材料对小变形的抗力,也是材料成性的一种度量。弹性模数越大,在给定的应力条件下,其应变结果越小。金属弹性模数常规的度量单位为百万个psi(msi),千个ksi,米制单位为千兆巴(Gpa)。[next] 另外一种刚性的测量是剪切模量,设计上有时也用,作为观刚性的一种表征。此时,试验样品的应变超过弹性极限,如图2所示。 剪切模量的计算,要求有一条准确的应力-应变曲线和特定的应变数值。剪切模量并非是单纯的材料性能,其中的设定的因素(应变量)影响着剪切模量的数值。剪切模量始终低于弹性模量。[next] 应力-应变曲线的初始线性部分是弹性的。撤除载荷时,试样没有永久性位移。超过弹性区域的变形,进入塑性变形区域,始终是一些永久位移或者应变的结果。撤除载荷时,弹性变形恢复。 材料屈服极限的定义是:使试样产生给定的永久变形时所需要的应力。为了不模糊,屈服强度应当以其应变量或永久位移量,例如:0.01%、0.2%或0.5%来定义。0.2%的屈服强度(也称为0.2%位移屈服)是最经常测量的屈服强度,当应变量被删略掉时,即为0.2%。在拉伸检验设备计算机化以前,屈服强度是通过画图测定,在应力-应变曲线的原点的右边,位移一定的应变量,画出一条线平行于弹性变形线。画出的线与应力-应变曲线的交叉点即为屈服强度。屈服强度的测定即受这条画出线的准确性的影响,不论它是通过绘图或者计算机来完成弹性和塑性区域的转折点(0%屈服强度)称为弹性极限。 对于许多有色金属,弹性和塑性行为的转折非常缓和。其弹性极限或者任意一种小位移的屈服强度,没有高灵敏度的仪器,是非常难于精确测定的。采用最新的设备,由计算机控制的弹性模量与弹性极限的测定,其准确性严重受到弹性区斜率的不准确测量的影响。斜率的精确测定可能由于试验机的弯曲补偿或者试样的早期塑性变形的设定而失败。精确的弹性极限检验,即测量0.0001%位移的屈服强度。(一微的应变量或者每英时标距为1微英时的应变量)。 由于测量上的困难,铍铜的弹性极限和低位移的(低于0.2%)的屈服强度不作为例行的报导,由金田公司的顾客技术服务部可提供该资料。 当应力-应变曲线进一步移动进入塑性区,用以完成试样延伸的应力继续上升,直之达到最大值,该最大值称为抗拉强度或者破断拉伸强度。拉伸检验达到这一点时,拉伸试样沿着标距长度均匀地伸长(其横截面收缩)。达到最大强度或拉伸强度时,拉伸试片尺寸变得不稳定再变形就不均匀而且非常局部性-试片开始颈缩,最大应力和最大应变的点不互相重合。 从拉伸试验测得的应变或伸长率提供了合金的塑性或成型性的一种表征。总应变量是最常报导的数据,如图1所示,它是直到试样破断以后,试验完结时所记录的应变。总的应变包括弹性应变、均匀应变、材料过到破断拉伸应力之后,试样发生颈缩期间的不均匀应变。在元件设计工作中均匀应变的数值比总应变数值要重要得多,因为它测定的仅仅是“可用的”变形量,到过破断拉伸应力点时,允许的最大的设计应力。[next] 另一方面,对于加工金属用的材料特性,诸如:机加工、冲压或者栽条等导致金属破断的成型工艺,总变形量比均匀变形量更有意义。 试验数据的介释 金田公司对其发贷的每批铍铜产品将确认以下标准的拉伸性能;破断抗拉强度,0.2%位移的屈服强度,及伸长率。这些测定值,对多数的使用场合,表示了合金的特征性能。某些应用场合的元件品质,可能受近似弹性性能的影响(低位移屈服强度),对此,标准的拉伸试验是不移灵敏的,当合金试样给出了(出示了)合格的拉伸试验证书,使用时性能却有差异,可能需要灵敏的拉伸试验或另外的材料特性来鉴别该问题。 另外,当使用条件非常近似于真实的试验条件时,拉伸试验数据,会准确地反映材料的性能,这种情况非常少有,因为多数使用环境,其应力状态比单轴拉伸试验要复要得多。 当拉伸试验数据可能用于表达材料在压缩、弯曲或平面应变的性能时,则需要有更精确地表示出材料在非拉伸条件下的性能补充的资料。 硬度检验用以表示材料的强度,但它并没有测量合金的强度,它不能用于替代拉伸检验值,硬度检验测定比较小体积的金属,它可能受到不均匀显微组织的影响。而拉伸检验,由于试片尺寸规格,对组织变化的敏感性较小。 对于深加工或热加工的产品,其拉伸性能非各向同性。非轴向的拉伸性能与纵向性能的相互关系取决于材料的性能,模数、强度、伸长率、合金、显微组织以及变形的程度。对冷加工的带材,横向的弹性模量略微高于纵向的,而伸长率略低于纵向的。 对于铍铜所有状态的产品,其拉伸检验的性能范围,提供于金田公司出版的“铍铜指南”。 除非特别指定,拉伸性能通常室温下测定。接近室温时,-70到150℃,铍铜的拉伸性能对温度并不敏感。金田公司提供铍铜在高温和低温下的拉伸数据。
电工圆铝杆产品型号
2018-12-28 15:58:41
产品型号、状态和直经 Product model, Condition and Diameter 品种 Variety型号 Model状态 Condition直经.mm Diameter(mm)纯铝电工圆铝杆
Pure Aluminum Electrical Round Aluminum RodAO9.0-20.0A2,A4,A6,A8H112稀土铝电工圆铝杆RARE Earth Aluminum Electrical Round Aluminum RodRE-AORE-A2,RE-A4,RE-A8H112
铝合金型材拉伸注意事项
2019-01-11 09:43:16
(一)铝合金型材在取料和移动及拉伸过程中不得彼此碰擦,拉扯,堆叠,拥堵,缠绕在一起,应彼此间预留必定的间隔。对易曲折,出料长短的铝合金型材要及时处置,必要时作好彼此间的维护处置。
(二)铝合金型材拉伸必定要在铝合金型材冷却到50度以下(裸手能紧握)方可移到拉伸架上进行拉伸作业,温度过高即拉伸既会烫坏人体,烫坏毛条,更因为不能彻底消除铝合金型材内应力而在时效前后呈现曲折,扭拧,功能不良等废品。
(三)因毛条有阻热发出效果,装饰外表需求高的铝型材必定要多上下前后翻转,以利散热均匀,减少因散热不均结晶度不一然后发生的横向亮斑缺点,特别是大宽面,壁偏厚铝型材更要留意。
(四)留意宽厚比高的,悬壁长的,弧度大的,壁厚巨细悬殊的,形状奇怪等型材的小脚,薄齿,长腿,圆弧面,倾斜面,开口,视点等的受力状况,避免型材部分或点状尺度变形,扭拧,螺旋等缺点发生。
(五)拉伸量的操控在1%摆布,例如25M的铝合金型材拉伸量应在把该型材拉直后再拉伸25CM摆布,但绝不能超越2%。生产中应根据铝揉捏型材出料实际状况和各种具体需求(开口尺度,外表质量,外形尺度,内径尺度,壁厚巨细,延伸率等)加以调整,在彼此对立的技能需求中寻求能同时满意各种具体需求的拉伸量。拉伸量过高会发生头中尾尺度误差,外表水纹状麻花(鱼鳞)痕,延伸率低,硬度偏高发脆(塑性低)。过低的拉伸量会使型材抗压强度及硬度偏低,乃至时效(淬火)也无法提高硬度,型材易弧形曲折(俗称大刀弯)。
(六)为操控拉伸变形量和非常好的操控整条型材的尺度变化,要选用适宜的专用夹垫和适宜的方式方法。特别是开口料,圆弧料,悬臂料,以及曲折形状的型材更要留意拉伸夹垫的合理有用运用。必要时拉伸型材中心要有人控持扶正或塞垫以确保头中尾各段之间的垃伸尺度契合铝合金型材需求。
电工圆铝杆(9.5mm)
2019-01-02 09:41:17
电工圆铝杆(9.5mm) lectric Al Rod(9.5mm) (价格为含税价) 由干净铝组成,不包含铁,绝缘部分和任何其他异物的非合金铝电线,纯度98%。
电工铝杆用高效排杂净化熔剂介绍
2019-01-08 13:40:18
电工铝杆用高效排杂净化熔剂介绍福州大学机械工程系傅高升博士等研制的DJ-1熔剂是电工铝圆杆的一种高效排杂净化熔剂,当配以熔体过滤时,净化效果会显著提高,除杂率及气孔降低率分别可达83.6%及91.2%,并能改善气、杂存在形态,从而能显著材料的力学性能特别是塑性。晶粒细化剂在以该熔剂处理后的熔体中形核效果大为提高,改善材料的力学性能与降低电阻率。
铝合金型材拉伸时须注意事项
2018-12-20 09:35:30
(一):铝合金型材在取料和移动及拉伸过程中不得相互碰擦,拉扯,重叠,拥挤,缠绕在一起,应相互间预留一定的间隔。对易弯曲,出料长短的铝合金型材要及时处理,必要时作好相互间的保护处理。 (二):铝合金型材拉伸一定要在铝合金型材冷却到50度以下(裸手能紧握)方可移到拉伸架上进行拉伸工作,温度过高即拉伸既会烫伤人体,烫坏毛条,更因为不能完全消除铝合金型材内应力而在时效前后出现弯曲,扭拧,性能不良等绝对废品。 (三):因毛条有阻热散发作用,装饰表面要求高的铝型材一定要多上下前后翻转,以利散热均匀,减少因散热不均结晶度不一从而产生的横向亮斑缺陷,特别是大宽面,壁偏厚铝型材更要注意。 (四):注意宽厚比高的,悬壁长的,弧度大的,壁厚大小悬殊的,形状怪异等型材的小脚,薄齿,长腿,圆弧面,倾斜面,开口,角度等的受力情况,防止型材局部或点状尺寸变形,扭拧,螺旋等缺陷发生。 (五):拉伸量的控制在1%左右,例如25M的铝合金型材拉伸量应在把该型材拉直后再拉伸25CM左右,但绝不能超过2%。生产中应根据铝挤压型材出料实际情况和各种具体要求(开口尺寸,表面质量,外形尺寸,内径尺寸,壁厚大小,延伸率等)加以调整,在相互矛盾的技术要求中寻求能同时满足各种具体要求的拉伸量。拉伸量过高会产生头中尾尺寸偏差,表面水纹状麻花(鱼鳞)痕,延伸率低,硬度偏高发脆(塑性低)。过低的拉伸量会使型材抗压强度及硬度偏低,甚至时效(淬火)也无法提升硬度,型材易弧形弯曲(俗称大刀弯)。 (六):为控制拉伸变形量和更好的控制整条型材的尺寸变化,要采用合适的专用夹垫和合适的方式方法。特别是开口料,圆弧料,悬臂料,以及弯曲形状的型材更要注意拉伸夹垫的合理有效使用。必要时拉伸型材中间要有人控持扶正或塞垫以确保头中尾各段之间的垃伸尺寸符合铝合金型材要求。
部分板材拉伸机的主要技术参数
2019-01-15 09:51:40
项目
不同拉伸机列主要技术参数2.5MN
4MN
10MN
60MN拉伸板材厚度/mm
0.3~4
0.5~7
4~12
5~150拉伸板材宽度/mm
500~1500
1000~2500
1200~2500
1000~2500拉伸板材长度/mm
2180~41800
4160~10300
5000~20000较大拉伸速度/mm.s-1
5.6
5~25
12
5较大拉伸行程/mm
320
1200传动油泵压力/MPa
20
20
86
20传动油泵能力/L.Min-1
50
油泵电机功率/kw
20
16
油泵电机转速/r.Min-1
970
685
铜管拉伸设备发展的历史、现状与发展趋势
2019-03-06 11:05:28
在公元前20~30世纪,呈现了把金块锤锻后,经过小孔,用手艺拉伸成细金丝的办法。在我国,拉伸加工办法具有悠长的前史,2000多年前的青铜器时期,我国劳作人民就选用简略的东西手艺拉伸青铜线,用于簇长、贵族头盔的装修。13世纪中叶,德国首要制作了水力拉伸机,并在世界上逐步推行,直到17世纪才接近于现在的单卷筒拉伸机。表1管棒材拉伸设备分类按拉伸设备结构分类链条式拉伸机齿条式拉伸机履带式拉伸机两边链带拉伸机模子移动式拉伸机单式联合拉伸机二串联三串联多串联立式正立式倒立式卧式单链式拉伸机双链式拉伸机拉伸的管棒材根数分类单线拉伸机双线拉伸机三线拉伸机多线拉伸机圆盘式拉伸机20世纪20年代,反张力的拉拔技能及50年代强制光滑拉拔办法的呈现,推动了拉伸设备的开展。
在我国,20世纪80年代前,铜及铜合金管棒型材的出产技能及出产设备是比较落后的。80年代今后,我国许多铜材加工厂商选用了比较先进的技能,并引进了相应的出产#49#设备,建立了产量大、产品质量好的紫铜管出产线,以习惯国内外商场对液压、空调、电子、建筑与制冷铜管的需求。从此,铜管拉伸设备在我国有了杰出的开展空间。
近几十年来,跟着许多新的拉伸办法研讨并成功运用,一起,电子计算机的使用的遍及,给拉伸设备供给了杰出的开展渠道。各国打开了高速拉伸的研讨,成功的制作了多模高速联合拉伸机、多线链式拉伸机和圆盘拉伸机。多模高速联合拉伸机的拉伸速度到达150m/min圆盘拉伸机可出产540~;550mm以下的管材,最大圆盘直径3m,拉伸速度可到达1500m/min最大管长为6000m,以上;多线链式拉伸机一般可主动供料、主动穿模、主动套芯杆、主动夹料及抓钩、管材主动落料以及主动调整中心。链式拉伸机现在使用最广泛的是单链和双链式。链式拉伸机开展至今,因为结构简略、制作简单、本钱低价、保护便利等长处,仍在中、小厂商直拉设备中具有很强的生命力。一起在功用及运用上,有很大的改进,如主动化程度高、能一次性拉拔多根铜管等。联合拉伸机是1985年德国舒马格公司开发、规划的铜合金管的连拉体系。并于1986年初次与用户协作,将此技能用于实践出产。该设备最大的长处是:克服了盘拉设备盘拉时弯曲应力的影响,然后进步了加工量。与链条式拉伸机比较不受铜管、铜棒拉伸长度的约束(限制要素仅是管材内部光滑所能到达的作用),也克服了链条式拉伸机在松开夹头时发生的噪音及变形。联合拉伸机开展至今,最高速度由35m/min提升到180m/min一起最大拉伸力可达400kN。联,合拉伸机在运用时,用户可依据铜管加工工艺、车间布局等要素,组合成二串联联合拉伸机、三串联联合拉伸机及多串联联合拉伸机。跟着拉伸工艺的改进,近几十年来特别是游动芯头拉伸技能的开展,圆盘拉伸机能够用来拉伸中小型规格的衬管。跟着拉伸制#50#品的多样化,圆盘拉伸机的圆盘由本来05.米增加到3米以上,拉伸速度可到达1500m/min由此可见圆盘拉伸机具有高的。出产率,而且最能发挥游动芯头拉伸技能的优越性。当然,圆盘拉伸机受其结构限制,也存在不可避免的缺点:产品椭圆度大,一起当管子绕到圆盘上时,在已有的拉伸力上又叠加了一个弯曲应力,因此在加工量较大时很简单发生断管现象。因为散布于管壁上的应力不均,对改进偏疼度会发生消极影响。管径越大,消极影响越严峻。这也是圆盘拉伸机进一步开展所面对的课题。现在,各制作供应商在各种拉伸机上安装了许多辅佐设备,完成了拉伸、预弯、矫直、清洗、抛光、堵截、退火以及探伤等多种功用。
铜管拉伸设备开展趋势.跟着商场对铜管质量要求的不断进步,依据拉伸技能的开展与现状,现在拉伸设备须环绕下列问题打开研讨:
1)拉伸设备主动化、接连化与高速化。2)拉伸设备习惯产品品种、格多元规化,进步产品拉伸精度及削减拉伸缺点。3)拉伸设备有必要以习惯高附加值产品及进步产品质量和出产率为意图。4)进步拉伸光滑配备技能,习惯拉伸技能的开展。如采纳怎样的内光滑方法,使铜管的拉伸长度可不受约束。5)拉伸设备有必要到达节能、节材功用。6)拉伸设备有必要契合环保、全、安卫生要求等。7)拉伸设备与其他设备的联动结合,然后节省劳作辅佐时刻。
铝型材在拉伸过程中有哪些注意事项?
2019-01-08 09:58:37
1、拉伸必定要在铝合金型材冷却到50度以下方可移到拉伸架上进行拉伸作业,温度过高即拉伸既会烫坏人体,烫坏毛条,更因为不能彻底消除铝合金型材内应力而在时效前后呈现曲折,扭拧,功能不良等jue对废品。
2、拉伸量的操控在1%摆布,而且要注意拉伸量过高会发生头中尾尺度误差,外表水纹状麻花(鱼鳞)痕,延伸率低,硬度偏高发脆(塑性低)。过低的拉伸量会使型材抗压强度及硬度偏低,乃至时效(淬火)也无法提高硬度,型材易弧形曲折(俗称大刀弯)。
3、为操控拉伸变形量和非常好的操控整条型材的尺度变化,要选用适宜的专用夹垫和适宜的方式方法。特别是开口料,圆弧料,悬臂料,以及曲折形状的型材更要留意拉伸夹垫的合理有用运用。
4、留意宽厚比高的、悬壁长的、弧度大的、壁厚巨细悬殊的、形状奇怪等型材的小脚、薄齿、长腿、圆弧面、倾斜面、开口、视点等的受力状况,避免型材部分或点状尺度变形、扭拧、螺旋等缺点发生。
5、因毛条有阻热发出效果,装饰外表需求高的铝型材必定要多上下前后翻转,以利散热均匀,减少因散热不均结晶度不一然后发生的横向亮斑缺点,特别是大宽面,壁偏厚铝型材更要留意。
6、在取料和移动及拉伸过程中不得彼此碰擦、拉扯、堆叠、拥堵、缠绕在一起,应彼此间预留必定的间隔。对易曲折、出料长短的铝合金型材要及时处置,必要时作好彼此间的维护处置。
拉伸性能指标(屈服、抗拉、延伸、n值、r值、弯曲)
2018-12-27 14:45:24
性能检测是钢铁标准化中的一个重要组成部分,鉴于这一块汇总的信息比较少,恒丰铆钉小编将多介绍一些检测项目的定义、检测方法、检测标准等信息。 这一期期我们先介绍下质保书上常见的性能指标:屈服、抗拉、延伸、n值、r值、弯曲。 屈服强度 当金属材料呈现屈服现象时,在试验期间达到塑性变形发生而力不增加的应力点。需区分上屈服强度和下屈服强度。其标志材料由弹性变形进入塑性变形。对于具有连续屈服特征的材料,通常用Rp0.2表示屈服强度。 恒丰铆钉产品包括包括开口型抽芯铆钉,封闭型抽芯铆钉,单鼓型抽芯铆钉,多鼓型抽芯铆钉,内锁拉丝铆钉,外锁拉丝铆钉,海马钉,灯笼铆钉等。 检测方法概要 采用静态轴向拉伸试验方法在室温下,根据特征点对应的载荷除以试样的原始截面积计算检测。检测Rp0.2和Rt0.5还需用到测量试样伸长的引伸计。 检测标准:GB/T 228.1、ISO 6892-1、ASTM A 370、ASTM E8/E8M、JIS Z 2241等。 注: 1、上屈服ReH试样发生曲线而力首次下降前的最大应力; 2、下屈服ReL在屈服期间不计初始瞬时效应时的最小应力; 3、Rp0.2塑性延伸等于规定的引伸计标距百分率时对应的应力 4、Rt0.5总延伸等于规定的引伸计标距百分率时对应的应力。 抗拉强度 试样受拉断裂前所能承受的最大工程应力。用来表征材料对最大均匀塑性变形的抗力。 检测方法概要 采用静态轴向拉伸试验方法在室温下,拉伸试验过程中最大力除以试样的原始截面积计算获得。 检测标准:GB/T 228.1、ISO 6892-1、ASTM A 370、ASTM E8/E8M、JIS Z 2241等。 注:当上屈服强度高于抗拉强度时,抗拉强度通常指上屈服后的最大工程应力。 断后伸长率 断后延伸率是材料的一项塑性指标,是试样受拉至断裂发生塑性变形的能力。用断后标距的残余伸长与原始标距的百分比进行计算。 检测方法概要 采用静态轴向拉伸试验方法在室温下,将试样拉伸至断裂,试验人员通过测量试样原始标距和断后标距,通过计算后获得,也可借助引伸计测量并经计算获得。 检测标准:GB/T 228.1、ISO 6892-1、ASTM A 370、ASTM E8/E8M、JIS Z 2241等。 注:通常采用非比例试样。 屈服点延伸率 有不连续屈服的试样受拉至屈服阶段时,试样的伸长不伴有载荷的增加和下降,在应力-应变曲线上出现锯齿形的一段平台,屈服点延伸率用以评价该平台的长短。 检测方法概要 采用静态轴向拉伸试验方法在室温下,借助引伸计检测屈服开始至均匀加工硬化开始之间引伸计标距的延伸与引伸计原始标距之比的百分率。 检测标准:GB/T 228.1、ISO 6892-1、ASTM A 370、ASTM E8/E8M、JIS Z 2241等。 应变硬化指数(n值) n值为加工硬化指数或应变硬化指数,用以评价薄板冲压成形性能。 检测方法概要 采用静态轴向拉伸试验方法在室温下,试样在屈服后均匀塑性变形范围内的应力-应变数据,或均匀塑性变形范围内一段区间内的应力-应变数据,在双对数座标平面上求取关系曲线的斜率。 检测标准:GB/T 5028、JIS Z 2253、ASTM E646等。 塑性应变的比(r值) 单向拉伸时,薄板试样宽度方向实际应变与厚度方向实际应变之比。其大小反映薄板成形时厚向变形的难易程度。 检测方法概要 静态拉伸方法检测r值,通常是将试样在均匀应变范围内,拉伸至某个约定应变量,通过测量拉伸前后试样标距和宽度值,经计算获得。可采用人工或自动两种方法测量测量标距和宽度,自动方法需用到纵横两个方向的引伸计。 检测标准:GB/T 5027、ASTM E517、JIS Z 2254等。 弯曲 测定金属材料承受弯曲塑性变形能力的试验方法。 检测方法概要 弯曲试验以圆形、方形或多边形试样在弯曲试验机上经受弯曲塑性变形,直至达到规定的弯曲角度然后评定试样弯曲区域是否出现开裂。 检测标准:GB/T232、JIS Z 2248等。