您所在的位置: 上海有色 > 有色金属产品库 > 高磷锰矿

高磷锰矿

抱歉!您想要的信息未找到。

高磷锰矿价格

更多
抱歉!您想要的信息未找到。

高磷锰矿厂家

更多

大连瑞源动力有限公司

天津市佰瑞得商贸有限公司

益阳市久通冶炼有限公司

优锦化工(上海)有限公司

高磷锰矿专区

更多
抱歉!您想要的信息未找到。

高磷锰矿百科

更多

高磷锰矿脱磷技术研究现状与展望

2019-02-18 15:19:33

锰及其化合物应用于国民经济的各个领域。钢铁工业用锰量占90%一95%,首要作为炼铁和炼钢进程中的脱氧剂和脱硫剂,以及用来制作合金。 跟着我国钢铁工业出产的开展和锰系产品出口的添加,锰矿石的消费量也逐步添加,进口矿石所占的比重越来越大,2002年进口锰矿石初次打破 200万t,占我国总锰矿石消费量的45.81%,如按锰金属量计算,因为进口矿石档次高于国产锰矿石,进口矿的锰金属已超越 了国内锰金属量耗费总量 的50%,国内矿石直销的缺口越来越大。因而,在充分运用国外资源的一起,加速国内锰矿资源的勘查力度、进步勘查深度、大力研讨锰矿加工及除杂(磷、硫)技能显得十分必要。 我国锰矿石中磷的含量较高,P/Mn平均在0.01左右,而冶金用锰矿石要求 P/Mn 我国高磷贫碳酸锰矿石首要散布在湘、黔、川3省接壤地带,包含湖南花垣锰矿、贵州松桃锰矿、四川秀山锰矿等,总储量约为 1亿 t,这类型锰矿含 P0.24% 左右 ,Mn 18%一19%,P/Mn为 0.01左右。 磷是钢铁冶炼进程中的首要有害元素之一。冶 金用锰矿石中含磷量过高会直接影响钢铁的品种与 质量。结合高磷锰矿石的归纳运用,研讨经济有用的脱磷技能是很重要的课题。 一、高磷锰矿石脱磷技能现状国内外针对不同的矿石性质,进行了较为深化的锰矿石脱磷工艺研讨。首要办法有:强磁选一反浮选、强磁选一焙烧、强磁选一黑锰矿、复原一浸、微生物脱磷。 (一)强磁选一反浮选反浮选仍然是 现在最首要的锰矿石脱磷办法。为了下降反浮选本钱或进一步下降含磷量,磁选一反浮选联合脱磷已显现出优势。锰矿反浮选脱磷中一般用氧化石腊皂为捕收 剂,以NaOH、Na2SiO3、Na2CO3为调整剂,淀粉为抑 制剂。一起,添加运用 GY—l药剂,GY—l是在 DC一854药剂基础上改制的一种高效、无毒、无腐蚀、运用方便的阴离子表面活性剂,在反浮选中不只具有杰出的选择性涣散作用,并且对改进产品质量具有显着成效。鄂西某地的高磷菱锰矿 P/Mn为0.046,经脱泥、强磁选、1次反浮粗选脱磷和 3次泡沫再选分级脱磷,可取得 P/Mn为 0.002,锰档次为78.87%的终究锰精矿目标。 (二)强磁选一焙烧湘潭锰矿属低铁高磷贫碳酸锰矿床,其含磷矿藏为胶磷矿,赋存于粘土类矿藏中。碳酸锰为弱磁性矿藏,粘土类矿藏为非磁性矿藏,运用其磁性差异选用强磁选选别,然后焙烧,可到达富锰降磷作用。湘潭锰矿进行了强磁选接连实验。原矿含 Mn21.95%,粒度 7~10 mm。经 1次粗选和1次精选,取得锰精矿 I含 Mn 27.70%,收回率为 38.5%;锰精矿 Ⅱ含 Mn 23.7%,收回率为 55.94%,总收回率可达 94.44%。磁选锰矿经焙烧后,精矿 I含 Mn42.6%,P/Mn为 0.003 9;精矿 Ⅱ含 Mn 35.03%,P/Mn为 0.0049。(三)强磁选一黑锰矿 湖南花垣锰矿是我国大型碳酸锰矿,其特色是低锰、高磷,矿藏嵌布粒度很细,是一种难选的锰矿石。该锰矿选用了强磁选一黑锰矿法来进行脱磷强磁选一黑锰矿脱磷工艺中,矿石破碎到必定粒度后经粗粒和细粒强磁选机分级选后,脱水进行欢腾焙烧,焙烧产品给入接连浸出机脱磷,终究固液别离得到终究精矿。 该工艺特色在于当选粒度粗、磁选抛尾作用好焙烧温度均匀、焙烧黑锰矿转化率高、酸浸逗留时间短、作业简略。研讨标明接连扩展实验到达了与小型实验相同的成果,归纳精矿产率40.85%,精矿锰档次为 40.15%,锰 收回率达 82.071%,磷锰 比为0.003 7。 (四)炉外脱磷炉外脱磷法系将含磷高的锰矿原矿或烧结矿在电炉内炼制成硅锰合金,将火热的合金放至炉外铁水包内,再向其参加脱磷剂,经振动反响而到达脱除合金中的磷。花垣锰矿曾进行过炉外脱磷实验,脱磷率到达76.84%。长沙冶金研讨院用含磷较高的烧结矿炼制成含 0.91%的硅锰合金。经脱磷处理后,合金含磷降至0.19%。该工艺运用了余热,产品本钱添加不多而取得优质的硅猛合金,值得推广应用。(五)复原焙烧一浸该法处理低档次锰矿石在国外已有几十年的前史,20世纪 50年代美国锰化学公司和比利时的Sedema公司建立了处理锰矿石的浸厂,将浸法提锰产品作为出产化学二氧化锰的质料,取得了较好的作用。我国自20世纪 80年代开端了浸法提锰的实验研讨,1983年,贵州遵义铁合金科研所提出了用复原焙烧一浸法处理贵州松桃高磷锰矿的计划。1984年,湖南省冶金材料研讨所也报道了用浸法 处理花垣高磷锰矿石的开始实验成果。贵州松桃高磷锰矿运用复原焙烧一浸法脱磷,其工艺进程包含矿石的碎磨,焙烧,浸出,固液别离,从浸出液中收回锰,以及溶剂的再生循环运用等工序。锰的浸出率为73.2%~89.6%,产品含锰70%~72%,产品含磷小于0.02% 。 (六)微生物脱磷生物技能是开展速度较快的新兴产业之一。生物技能以其低能耗、无污染等特色逐步显现其强壮的优势。在自然界,60多种元素的散布与微生物有关,微生物参加了 S、Fe、C、N、P、Cu、Si、Mn等多种元素的涣散一氧化一复原。微生物法处理废水 ,除掉其间的磷已获成功,这标明微生物有脱磷才能。近年来,运用微生物处理矿产资源的研讨十分活泼。现已发现很多种细菌、真菌、放线菌都具有脱磷作用。它们首要经过代谢产酸下降系统的 pH值,使磷矿藏溶解而进入液相。一起,代谢产酸还会与 Ca2+、Mg2+、Al3+等离子构成络合物,然后促进磷矿藏的溶解。研讨标明,有的细菌具有过量摄磷的特性,这也是微生物脱磷的机理之一。微生物脱磷的国内外研讨进展见表1。二、高磷锰矿石脱磷技能展望现代工业技能的开展,有必要遵从资源归纳运用程度高、环境污染程度低、契合建造节约型社会的科学开展观。对高磷锰矿石脱磷技能的研讨,应当在有用的脱磷技能上,特别注重进步锰的收回率,下降工艺进程中的能耗和用水量,下降各种化学试剂的耗费,尽或许完成工艺进程的无害化,不形成环境污染。已有的研讨中,反浮选耗水量大,磨矿进程耗费很多动力,一起要运用多种浮选药剂,强磁选一焙烧要求矿藏有较好的单体解离,对固熔体矿藏分选作用差。强磁选一黑锰矿法工艺流程长,操作冗杂。炉外脱磷工艺需在高温下进行脱磷,操作不方便。综观高磷锰矿石脱磷的研讨成果,与现代工艺要求比较切合的看来是复原焙烧一浸法与微生物脱磷技能。比较而言,微生物脱磷技能更具优势,值得深化研讨与注重。微生物脱磷技能的研讨应注重以下几个方面: (一)挑选脱磷微生物时,以其是否具有产酸代谢和积累磷的生化特征为标准打开。进行矿石脱磷时,促进这两个进程的进行是强化脱磷作用的要害; (二)脱磷微生物的品种繁复,分化机制不尽相同且较杂乱,虽有一些研讨,但没有深化,脱磷机理需求进一步清晰;(三)脱磷微生物的遗传稳定性差,应着眼于寻觅稳定性好的微生物。关于一些具有优秀性状的脱磷微生物要不断进行挑选和复壮,以进步其脱磷才能;(四)要使脱磷微生物更好地习惯高磷贫碳酸锰矿石所供给的环境,如增强微生物抗氟离子和或许存在的重金属离子的才能,进步其数量和活性;(五)脱磷微生物大多属异养菌,寻觅廉价的有机碳源(如碳水化合物)能够进步该技能经济性。

高磷软锰矿脱磷菌的选育及脱磷试验研究

2019-02-18 15:19:33

我国锰矿中磷的含量遍及偏高,磷锰比[ω(P)/ω(Mn)]平均在0.1左右,而冶金用矿石要求ω(P)/ω(Mn)<0.003。在已勘探的矿床中,含磷偏高[ω(P)/ω(Mn)>0.005]的锰矿石占总储量的49.59%。锰矿石中的磷主要以磷灰石或胶磷矿方式存在。磷矿藏粒度微细,或与能矿藏严密共生,或呈类质同象方式存在,单体别离较高困难。 近年来,国内外对锰矿石脱在户外工艺都进行了较为深化的研讨。研讨办法主要有高梯度磁选法、浸法、炉外脱磷法、黑锰矿法等。高梯度磁选法存在动力耗费过高、设备磨损严峻、纤细颗粒主动聚会等问题,按浸法仍停留在小试阶段;炉外脱磷法本钱过高;黑锰矿法存在设备腐蚀严峻等问题,都未能从根本上处理富锰降磷问题,所以研讨者们提出了使用微生物脱磷新思路,并取得了较大发展。微生物技能的长处在于出资少、能耗小、本钱低并对环境友好。研讨标明,很多种细菌、真菌、放线菌都具有溶磷作用。不少研讨者在实验室对磷矿粉浸磷都取得了成功。 本实验所用菌株为湘潭锰矿矿区不同植物根系土壤样品中挑选出的脱磷作用较好的菌株,经过紫外诱变得到高产菌株,并以此进行软锰矿脱磷实验,得到了较好的作用。 一、实验材料与办法 (一)土壤收集与预处理 所用土样取自湖南湘潭锰矿矿区植物根系表面以15~20cm深处,置于事前已灭菌的锥形瓶中,24h内别离菌株。 (二)矿样 矿样取自湖南永州市某锰矿、破碎,研磨至粒度小于0.1mm。矿样中ω(P)/ω(Mn)=0.0109,属高磷锰矿。矿样多元素化学分析成果见表1。 表1  矿样多元素化学分析成果(三)培育基 培育基除查氏固体培育基、牛内膏蛋白胨培育基和PKO固体培育基外,还酸制了富磷培育基(蔗糖30g,2~3g,磷酸氢二钾1g,硫酸严铁0.01g,0.5g,硫酸锰0.5g,蒸馏水1000mL)和缺磷+Cas(PO4)2培育基(葡萄糖10g,氯化钙0.2g,硫酸镁0.5g,硫酸铵2.0g,0.2g,磷酸三钙0.9g,蒸馏水1000mL)。以上培育基均调整pH至7.0。 (四)实验办法 1、菌株别离 选用稀释平板别离法别离菌株,培育基为本氏培育基和年肉膏蛋白胨培育基。将所取土样制成10-3,10-4,10-5,10-6,10-7各种浓度的稀释液。将10-5~10-7稀释度的溶液接种到培育基上,放入恒温生化培育箱中于30℃下培育。 2、溶磷菌的挑选 挑选分为平板初筛和摇瓶筛2个过程。 初挑选用溶磷圈法。将别离取得的纯菌株接种于PKO固体培育基上,置于30℃培育箱中培7~15d,调查有无溶磷圈,并依据溶磷圈直径(D)与菌落直径(d)的比值开始断定脱磷才能。将有脱磷作用的别离物接种于斜面培育基上保存备用。 复筛时用无菌水将试管斜面上的孢子洗下,用血小球计数板计数,调整菌液浓度大约到108个/mL。移取1mL该菌悬液接种于PKO液体培育基中,放在转速为150r/min的摇床上,于28℃下培育5d。将所得菌液于9000r/min离心机中别离15min,汲取上清液,用钼锑抗分光光度法测定其有用磷含量。 3、模仿锰矿脱磷 将实验用菌种接种至查氏周体培育基中,再转接种至富磷培育基中,放入摇床内,在30℃、150r/min转速条件下活化2次,每次2d,备用。 取活化后的菌种1mL接种至装有100mL含0.090g磷酸钙及0.2612gMnO2(MnO2)的量依据ω(P)/ω(Mn)=0.0109核算所得)的缺磷培育基的三角烧瓶中,在30℃下,于150r/min转速摇床中好氧培育,调查pH和磷浓度的改变。 4、紫外诱变 以模仿锰矿脱磷实验中作用最好的P69号菌株为发菌株。 (1)菌悬液的制备。将P69菌株活化后用适量生理盐水洗下菌苔,倒入盛有玻璃珠的锥形瓶中,激烈振动将菌块打破后,离心(3000r/min)20min,弃去上层清液,将菌体用无菌生理盐水洗刷2次,最终制成菌悬液,用血球计数板在显微镜下直接计数,调整菌液浓度至108个/mL。 (2)紫外线处理。翻开15W紫外灯开关,预热20min。在无菌条件下,用移液管移取6ml上述菌悬液,放入9cm的无菌培育皿中,再放入一无菌磁力搅拌棒,然后置于紫外灯下30cm处,照耀时刻分别为2,4,6min。 在红灯下,将处理过的菌悬液稀释至10-5,10-6,10-7,涂布在PKO无机磷培育基上,每种浓度的菌液涂3个平板,同时取未经紫外线处理的稀释菌液涂于平板上作对照。用报纸包好,防止光照,置于恒温培育箱中于28℃下培育48h。 (3)挑选。诱变菌株的挑选(初筛和复筛)办法与1.4.2相同。 5、软锰矿脱磷 取诱变后的P-2-8菌液30mL接种至装有150mL软锰矿矿浆缺磷培育基的三角烧瓶中(矿将固体质量分数为20%),基他办法同3。 二、成果与评论 (一)平板初筛 在PKO固体培育基中于30℃培育箱中培育,得到具有显着溶磷圈的真菌菌株9株,其在7~15d内的D/d规模见表2,菌落特征见表3。 表2  9株脱磷菌在固体培育基上D/d规模表3  9株菌菌落特征(二)摇瓶复筛 接种1mL浓度为108个/mL的菌悬液于PKO液体培育基中,放在转速为150r/min的摇床上,于28℃下培育5d。成果见表4。 表4  液体培育成果初筛和复筛成果标明,P69的D/d值规模为1.12~2.30,在液体培育基中溶磷增加量为15.012mg/L,两个数值在9株溶磷菌中均为最大,因而P69具有最大脱磷才能。 (三)模仿锰矿脱磷 各菌株培育5d和10d后的pH值如图1所示,溶磷作用假如图2所示。图1  不同溶磷菌株对溶液pH值的影响            图2  不同菌株的溶磷作用 从图1,2可知,一切参试菌株培育5d后,培育pH均有所下降,至培育10d时,P71,P79,P98,P113,P115培育液的pH有必定上升,P69,P79,P95培育液Pha在本不变,P117的pH下降。培育5d时,菌株对P的脱降率到达50%左右,其间P69的脱磷率最高,为52.2%。 (四)此外诱变  1、初筛 对P69进行紫外线诱变,共长出菌株29株,其间以P-2-8(诱变2min组的8号菌)的溶磷作用最好。诱变15d后,它的D/d值从1.12~2.30增大到1.47~4.33,与原菌株的比照状况如图3所示。                 图3  固体培育基上D/d改变比照 由图3可见,从第6d起,诱变后菌株的D/d值显着进步,P-2-8的D/d值最高,达4.33。 2、复筛 对诱变菌株磷含量进行测定,其诱变后的脱磷菌的液体培育成果见表5。 表5  诱变后的脱磷菌的液体培育成果比照由表5可见,诱变后,菌株的溶磷量为24.05mg/100mL,明显大于动身菌株P69的溶磷量(15.01mg/100mL)。诱变菌株溶磷量比动身菌株溶磷量进步约60.2%。 (五)软锰矿脱磷 图4为P-2-8和P69对软锰矿脱磷的实验成果。能够看出,P-2-8的脱磷率跟着时刻的延伸而不断进步,从第3d的12.3%增加到第15d的74.6%,是原菌株P69脱磷率33.2%的2.25倍。脱磷后锰矿中磷的质量分数由0.19%下降到0.048%,ω(P)/ω(Mn)由本来的0.0109降至0.0028,脱磷后的矿石到达冶金要求。   三、定论 (一)从湘潭锰矿矿区所取土样挑选得到有溶磷作用的菌株9株。以这9株菌进行模仿锰矿脱磷实验,其间P69的脱磷作用最佳,脱磷率为52.2%。 (二)以P69号菌株为动身菌株进行紫外诱变,得到脱磷作用显着进步的菌株P-2-8。用P-2-8进行软锰矿脱磷实验,脱磷率为74.6%,脱磷后锰矿中磷的质量分数为0.048%,ω(P)/ω(Mn)为0.0028,契合冶金要求。

高磷鲕状赤铁矿脱磷技术

2019-01-16 17:41:53

高磷鲕状赤铁矿脱磷技术:中国高磷铁矿的探明储量高达几百亿吨,其潜在的经济价值达10000亿美元。高磷铁矿具有以下特点:(1)品位高。一般在45%以上。(2)堪布粒度细,复杂难处理。镜下显微结构表面,赤铁矿堪布粒度在40微米以下占80%以上。(3)含磷较高。含磷在0.5以上。传统处理方法有物理选矿、化学选矿、冶炼脱磷、磁化焙烧和生物脱磷等,化学选矿、冶炼脱磷、磁化焙烧存在着生产成本高、污染环境等问题;生物脱磷尚处于实验室研究阶段;物理选矿,能耗小,成本低,但是铁精矿品位不高,有害杂质磷含量较高。本研究所对云南某处高磷铁矿,原矿含磷1.2%,含铁42.5%,含硅12.3%,进行了反浮选试验研究,取得了以下指标:铁精粉60%,含磷0.10%,回收率80%。

高磷赤铁矿脱磷技术简介

2019-01-16 17:41:53

根据矿石品位不同可分为富矿和贫矿,一般富矿指含铁量在60%以上,25%-60%之间的称为贫矿,我国铁矿石储量丰富但有近80%属于贫矿,开采难度大成本高。铁矿石是我国钢铁工业的主要原料,国内钢铁行业的快速发展带动了铁矿石的旺盛需求。近年来,我国钢铁工业快速发展,钢铁产量先后突破2亿、3亿、4亿吨,2007年达到4.89亿吨,到2008年中国成为世界上首个年粗钢产量超过5亿吨的国家,2009年我国钢铁行业粗钢产量达到5.678亿吨,同比增长13.5%,但是从我国已查明的铁矿资源自然丰度上看,品位低,平均品位31-32%,低于世界平均水平11个百分点,97%以上是难于直接利用的贫矿,开采难度较大。而我国铁矿石储量2002年为578.72亿吨,仅占世界总量的18.67%,我国钢铁产量已经占到世界总量的40%以上。由此可见,我国铁矿石资源在总量、质量上相对不足、无法独立支撑国内庞大钢铁工业的快速发展。钢铁工业的快速发展带动了铁矿石旺盛的需求,2009年我国进口铁矿石达到6.3亿吨,近期市场价格暴涨,目前已经上涨至135美元的协定价,现货价最高更是逼近200美元,虽然国内大量资本进入铁矿石开采业,我国的铁矿石供应量快速增加。但铁矿石属于不可再生的矿产资源,虽然新增产能在暴力的刺激下大量增加,但与此同时,许多矿井也在不断枯竭。高磷赤铁矿是我省乃至我国潜在的优势矿产,广泛分布在鄂西、湖南、重庆、云南等地。已探明储量100多亿吨,远景资源量200亿吨以上。我省已探明储量近22亿吨,广泛分布在宜昌西部和恩施州。由于矿石含磷量高,有用矿物粒度细,选矿脱磷难度大成本高,极大的限制了该类铁矿石的工业利用。高磷赤铁矿提铁脱磷技术长期以来一直是国际国内冶金选矿技术攻关难题。目前除少量零星高磷赤铁矿开发利用于水泥配料外,基本处于闲置状态。中南选矿专家专利技术-高磷鲕状赤铁矿脱磷技术:中国高磷铁矿的探明储量高达几百亿吨,其潜在的经济价值达10000亿美元。高磷铁矿具有以下特点:(1)品位高。一般在45%以上。(2)堪布粒度细,复杂难处理。镜下显微结构表面,赤铁矿堪布粒度在40微米以下占80%以上。(3)含磷较高。含磷在0.5以上。传统处理方法有物理选矿、化学选矿、冶炼脱磷、磁化焙烧和生物脱磷等,化学选矿、冶炼脱磷、磁化焙烧存在着生产成本高、污染环境等问题;生物脱磷尚处于实验室研究阶段;物理选矿,能耗小,成本低,但是铁精矿品位不高,有害杂质磷含量较高。本研究所对云南某处高磷铁矿,原矿含磷1.2%,含铁46.5%,含硅12.3%,进行了反浮选试验研究,取得了以下指标:铁精粉58%,含磷0.10%,回收率85%。

高磷鲕状赤铁矿还原焙烧同步脱磷工艺技术

2019-01-24 17:45:41

赤铁矿是自然界分布极广的铁矿物,是重要的炼铁原料,也可用作红色颜料。而赤铁矿石中的鲕状赤铁矿石嵌布粒度极细,且经常与菱铁矿、鲕绿泥石或含磷矿物共生或相互包裹,难以达到钢铁工业对铁矿石含磷的要求,因此鲕状赤铁矿石是目前国内外公认的最难选的铁矿石类型之一,该类资源基本没有得到有效利用。    但我国铁矿资源储量中约1/9为鲕状赤铁矿,有效利用鲕状赤铁矿石的研究在我国有重要意义。     国内外对该种矿石已经进行了很多研究工作。昆明理工大学进行了重选方面的实验,但对铁的富集和磷的去除效果都不明显;武汉理工大学采用直接还原的方法来处理该类型矿石,能获得较高的铁品位和回收率,但脱磷的效果不是很理想,最终产品中磷品位在0.5%左右;纪军等人进行了分散-选择性聚团脱泥-反浮选脱磷工艺的试验研究,通过适当调整药剂制度和流程结构,可以使铁精矿中磷含量降到0.25%以下,铁回收率达到90.57%,但铁精矿品位只有50%左右;国内有单位对该种矿石进行了浮选及磁选试验,但铁精矿中铁品位偏低磷品位偏高。     综上所述,对于宁乡式高磷鲕状赤铁矿,用常用的选矿方法很难得到令人满意的结果。研究表明,采用添加脱磷剂进行直接还原焙烧-磁选方法可以得到较好的指标,但未进行详细的工艺条件研究。本文进一步研究了添加脱磷剂直接还原焙烧-磁选工艺参数的影响,确定该类矿石直接还原焙烧-磁选的最佳条件,为该类矿石的有效利用提供新的途径。     一、试样性质及试验方法     鄂西高磷鲕状赤铁矿石铁和磷的品位分别为43.65%和0.83%,其中主要有用矿物为赤铁矿和少量褐铁矿,赤褐铁矿之铁占97.82%。     还原焙烧以煤为还原剂,同时加入脱磷剂NCP,达到还原焙烧同步脱磷的目的。试验矿样与煤均破碎至-2mm。试验流程如图1所示。主要考察的条件因素包括煤用量、脱磷剂用量、还原焙烧温度和还原焙烧时间等。图1  直接还原焙烧-磁选试验流程     因直接还原焙烧-磁选所得最终产品中铁的品位大于90%,为避免同常规的铁精矿相混淆,将该产品命名为还原铁产品。试验中焙烧后产品的总质量同焙烧前相比有较大变化,故用还原铁产品中铁的绝对金属量同焙烧试验中加入的原矿的绝对金属量的比值来计算回收率。煤与NCP的用量指煤或NCP与矿石质量的比值,均用质量百分数表示。     二、试验结果及讨论     (一)二段磨矿时间试验     首先考察了焙烧过程中磨矿粒度对试验结果的影响。在前一阶段的试验中发现铁品位的提高和磷品位的降低都要通过细磨来实现,因此确定实验流程为两段磨矿磁选。对精矿再磨的时间进行了详细的考察。固定条件为:煤用量40%,NCP用量20%,焙烧温度1000℃,焙烧时间60min,磨矿浓度70%,第一段磨矿粒度为-0.074mm粒级占55%,磁选场强87.6kA/m,精矿再磨。结果见图2。图2  二段磨矿时间试验结果     从图2中可以看出,二段磨矿时间增加时,铁的品位和回收率都呈上升趋势,但磷品位在磨矿时间为20min时有较大的降低,应是嵌布粒度较细的脉石矿物在此时可以充分与铁矿物解离,并且不会发生团聚。故确定第二段磨矿时间为20 min,粒度为-16μm粒级占100%,-8.93μm粒级占90%。     (二)煤用量试验     固定其他条件不变,考察了焙烧过程中煤用量的影响,结果见图3。图3  煤用量试验结果     从图3可以看出,随着煤用量的增加,铁的品位和回收率均增加,磷的品位降低,此过程中煤可以同原矿充分反应,将原矿中的Fe2O3还原,但当煤用量超过40%时,煤在反应中过量,虽然对铁的回收率仍有一定的提高,但会影响到脱磷剂脱磷的效果,同时铁的品位略有降低。因此确定煤最佳用量为40%。     (三)脱磷剂用量试验     其他条件不变,改变NCP用量进行试验,结果见图4。图4  NCP用量试验结果     从图4可以看出,在NCP用量在15%之前,铁品位和回收率都有明显提高,磷品位有明显下降,当NCP用量超过20%之后,对结果的影响变小,因此确定NCP的最佳用量为20%。NCP的主要作用是在焙烧过程中与原矿发生反应,从而在磁选过程中将磷去除,同时还可以降低焙烧过程中还原生成铁的温度,对还原有一定的促进作用。     (四)焙烧温度试验     其他条件不变,改变焙烧温度进行试验,结果见图5。图5  焙烧温度试验结果     从图5看出,当焙烧温度低于1000℃时,随着温度的升高,铁的回收率升高,而磷的品位降低,说明在此温度条件下,升高温度有利于铁的还原以及磷的去除;当温度超过1000℃继续升高时,磷的品位明显升高,而铁的回收率随之下降,由此可知在该范围内,温度对脱磷剂的效果产生了不利的影响。试验中发现温度高于1000℃时,焙烧后的产品结块严重,有大的铁颗粒生成,最终还原铁产品中磷的品位升高。推断在焙烧过程中有部分铁熔融后同磷结合,使脱磷更难实现。因此确定最佳温度为1000℃。     (五)焙烧时间试验     其他条件不变,改变焙烧时间进行试验,结果见图6。图6  焙烧时间试验结果     从图6看出,随着焙烧时间的延长,铁的品位、回收率随之增加,磷的品位随之降低,但当焙烧时间超过60min后影响变小,可以确定当时间为60min时,还原反应基本进行完毕,因此确定焙烧时间为60min。     经过实验确定鄂西高磷鲕状赤铁矿焙烧还原磁选的最佳条件为:还原剂煤用量40%,NCP用量20%,焙烧温度1000℃,焙烧时间60min,一段磨矿粒度为-0.074 mm粒级占55%,二段磨矿粒度为-16μm粒级占100%,-8.93μm粒级占90%,磁选场强87.6kA/m。经重复试验,得到还原铁产品平均铁品位90.09%,铁回收率88.91%,磷品位0.06%。     三、结语    (一)在鲕状高磷赤铁矿石还原焙烧过程中添加脱磷剂,可在得到高品位还原铁产品的同时,使其中磷含量降低到0.06%。为合理利用难选高磷赤铁矿提供了一种新的途径。    (二)在还原焙烧的过程中,脱磷剂NCP起到脱磷的作用,同时可以降低焙烧温度。    (三)还原焙烧温度应控制在1000℃,过高的温度将会使铁矿物与磷重新结合,而温度过低则达不到还原的效果。    (四)由于鲕状赤铁矿本身的嵌布粒度极细,所以经过还原焙烧的产品需要充分细磨才能有效分选。

鲕状高磷赤铁矿选矿脱磷试验研究

2019-01-21 18:04:49

随着我国国民经济的迅速发展,钢铁需求量日益增大。我国目前铁矿石自给率为50%~60%,铁矿资源将呈严重不足态势,无法满足钢铁工业对原料的需求。而我国有储量几十亿t的高磷鲕状赤铁矿,由于含磷、铝和硅偏高,选矿难度大而无法利用,严重地阻碍了钢铁工业的发展,开发和利用高磷鲕状赤铁矿将显得尤其重要。为此对某鲕状高磷赤铁矿进行了脱磷试验研究。 一、矿石性质 对某鲕状高磷赤铁矿进行矿物工艺学研究,矿石多元素化学分析结果见表1。 表1  赤铁矿多元素化学分析结果    %从表1可见,虽然矿石中铁品位较高,为42.59%,但有害元素磷的含量也较高,达0.87%。 矿石中铁、磷等元素主要以独立矿物存在,其中铁矿物组成较为复杂,主要为赤铁矿,其次为褐铁矿,其它还有少量菱铁矿、磁铁矿等;磷的独立矿物主要为胶磷矿;脉石矿物主要为石英、鲕绿泥石和高岭石,其它脉石矿物还有微量的无定形碳、方解石、锆石等。 (一)赤铁矿。它与鲕绿泥石、磷灰石、石英、褐铁矿的嵌布关系都较密切,赤铁矿多与鲕绿泥石互层形成同心环带结构。鲕核则主要为石英,其次为赤铁矿、褐铁矿、鲕绿泥石、胶磷矿,有时也有上述两种矿物以集合体的形式构成鲕粒的核心,鲕绿泥石和胶磷矿经常以集合体的形式嵌布于赤铁矿和鲕绿泥石组成的同心环带鲕粒中。另外,还可见赤铁矿和石英的紧密连生体,也常嵌布于赤铁矿和鲕绿泥石组成的同心环带鲕粒中。 (二)胶磷矿。它是矿石中最重要的磷矿物。主要呈不规则状嵌布于其它脉石矿物间隙或鲕状赤铁矿颗粒间隙中。胶磷矿与赤铁矿的嵌布关系紧密,有时胶磷矿呈鲕状赤铁矿核心形式存在,偶尔胶磷矿呈鲕环的形式与赤铁矿互层呈同心环带结构组成鲕粒存在。另外,胶磷矿颗粒中有许多微细的赤铁矿包体,这部分赤铁矿也很难完全与胶磷矿单体解离。 二、选矿试验 该鲕状高磷赤铁矿中含磷矿物主要为胶磷矿,对该矿进行了反浮选脱磷-焙烧-磁选流程试验研究。 (一)反浮选粗选抑制剂用量试验 在磨矿细度-0.074mm占89%,BK-420捕收剂用量375g/t时,粗选BK-620抑制剂用量试验结果见图1。图1  粗选BK-620抑制剂用量试验结果 ◆-铁品位;■-铁回收率;○-磷回收率;▲-磷品位 从图1可见,BK-620抑制剂用量由2000g/t增至4000g/t,精矿中磷含量由0.49%降至0.29%;继续增加抑制剂用量,由5000g/t增至6000g/t,铁精矿中的磷含量上升,精矿中磷含量由0.29%增加至0.39%。在抑制剂用量4000g/t时,精矿含磷量达到最低值,磷含量为0.29%。因此选择BK-620抑 制剂用量为4000g/t。 (二)反浮选粗选捕收剂用量试验 在磨矿细度-0.074mm占89%,BK-620抑制剂反浮选粗选用量4000g/t时,粗选BK-420捕收剂用量试验结果见图2。图2  粗选BK-420捕收剂用量试验结果 ◆-铁品位;■-铁回收率;○-磷回收率;▲-磷品位 从图2可见,BK-420捕收剂用量由375g/t增至625g/t,铁精矿中磷含量由0.33%降至0.23%,但铁精矿的回收率也有很大的降低,由73.59%降至61.82%,综合考虑铁精矿的回收率和磷含量,确定选用BK-420捕收剂用量为375g/t。 (三)反浮选精选捕收剂用量试验 在确定粗选药剂制度后,进行了精选BK-420捕收剂用量试验,结果见图3。图3  精选BK-420捕收剂用量试验结果 ◆-铁品位;■-铁回收率;○-磷回收率;▲-磷品位 从图3可见,精选捕收剂用量为312g/t时,精矿含磷量已降至0.21%,但铁精矿铁回收率下降太多,综合考虑铁精矿回收率和铁精矿含磷量,精选BK-420捕收剂用量定在250g/t。 (四)磨矿细度试验 在确定粗选、精选药剂用量后,进行磨矿细度条件试验。结果见图4。图4  磨矿细度试验结果 ◆-铁品位;■-铁回收率;○-磷回收率;▲-磷品位 从图4可见,当磨矿细度为85%-0.074mm时,精矿含磷量0.28%;磨矿细度为89%-0.074mm时,精矿含磷量0.23%;磨矿细度达-0.074mm占97%时,精矿含磷量0.22%,铁品位也变化不大。因此脱磷磨矿细度定为89%-0.074mm。 (五)反浮选全开路试验 在条件试验的基础上,按图5所示流程及条件进行了反浮选脱磷开路试验,试验结果见表2。图5  反浮选脱磷开路试验流程 表2  反浮选脱磷全开路试验结果%从表2可见,在1次粗选、1次精选、1次扫选条件下,可获得含磷0.24%、铁回收率61.18%的铁精矿。 (六)脱磷浮选闭路试验 在开路试验的基础上,按图6流程进行了闭路试验。试验结果见表3。图6  反浮选脱磷闭路试验流程 表3  反浮选脱磷闭路试验结果%从表3可见,反浮选脱磷闭路试验获得了铁品位45.22%,含磷量0.23%,铁回收率84.74%的铁精矿。 (七)磁化焙烧温度试验 对脱磷后的铁精矿进行了磁化焙烧温度试验,试验流程及试验条件见图7,试验结果见图8。图7  磁化焙烧试验流程图8  磁化焙烧温度试验结果 ◆-铁品位;■-铁回收率;▲-铁产率 从图8可见,磁化焙烧-磁选能提高精矿品位,温度由850℃升至950℃,铁精矿品位由56.24%升至61.23%,但铁精矿回收率由87.99%降至68.40%。综合考虑,选用焙烧温度915℃条件下进行焙烧时间试验和煤粉用量试验。 (八)磁化焙烧时间试验 对脱磷后的铁精矿进行了磁化焙烧时间试验,试验结果见图9。图9  磁化焙烧时间试验结果 ◆一铁品位;■-铁回收率;▲一铁产率 从图9可见,焙烧时间由20min延至60min,铁精矿品位由56.43%升至60.02%,铁精矿回收率由68.32%升至82.56%。综合考虑,选用焙烧时间60min。 (九)磁化焙烧煤粉用量试验 对脱磷后的铁精矿进行了磁化焙烧煤粉用量试验,试验结果见图10。图  10磁化焙烧煤粉用量试验结果 ◆-铁品位;■-铁回收率;▲-铁产率 从图10可见,煤粉比例为100∶15时较合适,此时铁精矿品位达60.02%,铁精矿回收率82.96%。 (十)流程试验 对原矿进行反浮选脱磷,脱磷后的铁粗精矿选用焙烧温度915℃,焙烧时间为60min,焙烧矿∶煤比例为100∶15作为焙烧条件,焙烧产品磨至90%-0.038mm进行磁选。然后进行反浮选-焙烧-磁选流程试验,其结果见表4。 表4  原矿反浮选-焙烧-磁选试验结果    %从表4可见,最终铁精矿产率48.98%,铁精矿品位60.09%,铁回收率70.02%,含磷0.23%,Al2O36.24%,SiO25.81%。 三、结论 该鲕状高磷赤铁矿中含磷矿物主要是胶磷矿,采用反浮选脱磷-焙烧-磁选工艺,可获得铁品位60.09%,含磷量0.23%,铁回收率70.04%的铁精矿,可为我国开发某高磷赤铁矿提供技术依据。

高磷铁矿石浸出脱磷试验研究

2019-02-18 15:19:33

跟着钢铁工业的开展,可利用的铁矿资源日益趋向贫、细、杂。我国高磷铁矿石储量占总储理的14.86%,达74.5亿元。现在,因含磷较高而无法得到充分利用。 鄂西高磷铁矿中,首要矿藏-赤铁矿的嵌布粒度一般极细,且常与其他矿藏共生、胶结或相互包裹,现在被国内外公认为最难选的铁矿石类型。因而,研讨铁矿石除磷技能具有非常重要的含义。 近年来,国内外针对不同的矿石性质,进行了较为深化的铁矿石除磷工艺研讨,而酸浸及微生物浸出办法,对该类铁矿石进行浸矿除磷实验研讨,被认为是卓有成效的办法。本实验选用酸浸及微生物浸出法对该类矿石进行处理,以期到达提铁除磷的作用。 经镜下判定、XRD和扫描电镜归纳研讨标明,矿石的组成矿藏品种较为简略,铁矿藏以赤铁矿为主,其次是褐铁矿,偶见磁铁矿;脉石矿藏以石英居多,次为鲕绿泥石、胶磷矿、白云石、方解石和高岭石。 一、实验材料与办法 (一)实验材料 草酸(C2H2O4)、柠檬酸(C6H8O7)、H2SO4、HN03、HC1均为分析纯,配制成0.1mol/L; 菌种。生物浸出实验中,菌株选用嗜酸氧化亚铁硫杆菌(At.f菌)和黑曲霉菌。其间,At.f菌采自广西某温泉流,经纯化判定得到,黑曲霉菌采自武汉某菜地土壤,经纯化判定得到。 培育基。At.f菌选用9K培育基:(NH4)2S04 3g,KCl0.1g,MgS04·7H2O 0.5g,K2HP04 0.5g,Ca(N03)2 0.Olg,蒸馏水700mL,pH=3.0,121℃灭菌20min,参加300mL预先配成14.78%的FeS04·7H20溶液并过滤除菌;黑曲霉选用无机磷培育基:葡萄糖lOg, (NH4)2S04 0.5g,NaCl 0.3g,KCl O.3g, MgS04·7H2O 0.3g,  FeS04·7H20 0.03g, MnSO4·4H20 0.03g,其间3g Ca3 (P04)2改为K2HP04 lg,蒸馏水1L,天然pH,121℃灭菌20min。 (二)实验办法 酸浸酸浸实验选用250ml锥形瓶,别离盛装相应的酸溶液lOOml,参加原矿,在空气浴振动器中进行振动拌和,反响时间为40h。   生物浸出实验选用250ml锥形瓶,别离选用在摇床中培育7d的At.f菌过滤液和培育15d的黑曲霉菌过滤液lOOml(中速滤纸过滤),矿浆浓度均为2%。 在没有特别阐明的情况下,培育菌液时锥形瓶体积为250mL,培育基体积为lOOmL, At.f菌接种量为10%,真菌选用1ml黑曲霉菌孢子溶液,其浓度为l08 cpu/ml,在摇床中振动,其间At.f菌所用摇床转速140r/min,温度30℃,黑曲霉菌所用摇床转速180r/min,温度32℃。 二、成果与评论 (一) 酸浸除磷 酸品种对浸除磷作用的影响。别离选用0.1mol/L的草酸(C2H2O4)、柠檬酸(C6H8O7)、H2SO4、HNO3、HCL对该矿石进行浸矿除磷作用的实验研讨,矿浆的浓度为2%,其成果见图1。图1  5种酸对矿石的提铁降磷作用 从图1(a)中能够看出,柠檬酸(C6H8O7)除磷作用最差,仅为77.84%,其他4种酸的磷去除率均在80%以上,其间,草酸(C2H204)除磷作用最佳,为95.52%,其次为硫酸(93.91%),硝酸与作用挨近。 从图1(b)能够看出,除草酸浸矿后铁档次与原矿挨近(43.73%),其他4种酸作用后作档次均有进步。其间,在进步铁档次方面,硫酸作用最佳,处理后铁档次为49.08%,硝酸与作用挨近,但均高于柠檬酸。别的,针对铁损失率方面,除了草酸作用后,铁损失率为8.83%外,其他4种酸处理后,铁损失率都低于2%。无机酸作用好于有机酸,硫酸处理后铁回收率为99.57%。 由以上分析可知,单一无机酸提铁除磷归纳作用优于单一有机酸,其间硫酸作用最佳。 但天然界中许多真菌能一起发生多种有机酸,其间黑曲霉菌能一起发生很多的草酸、柠檬酸等。考虑到柠檬酸除磷作用差,但具有提铁作用,草酸除酸作用好,除磷作用欠安等归纳要素,将草酸与柠檬酸按不同份额混合进行浸矿除磷。 混合有机酸对浸矿除磷作用的影响。将不同份额的草酸与柠檬酸进行混合浸矿,其混合份额别离为100∶0、80∶20、60∶40、20∶80、0∶100,矿浆浓度为2%,其成果如图2所示。图2  混合草酸与柠檬酸对矿石的提铁降磷作用 (100∶0、80∶20、60∶40、40∶60、20∶80、0∶100) 从图2(a)中能够看出,跟着草酸与柠檬酸混合份额的下降,除磷率呈下降的趋势。在份额为100∶0~20∶80之间,除磷率均在92%以上;但当酸液中只要柠檬酸时,除磷率显着下降,只要75.29%。阐明酸液中有草酸存在的情况下,除磷作用比较显著。 由图2(10)中可看出,在混合份额100∶0~20∶80之间,铁档次相对原矿改变不大,均为44%左右;而当只要柠檬酸存在时,处理后铁档次为46.87%,提铁作用较好;而跟着草酸与柠檬酸份额的下降,铁的回收率呈逐步添加的趋势。 由以上分析,可进一步断定草酸除磷作用优于柠檬酸,但柠檬酸提铁作用优于草酸。而两种酸的混合物能到达较好的提铁除磷作用,这可为将来断定真菌产酸品种起到必定探究作用。 矿浆浓度对硫酸浸矿除磷作用的影响。在矿浆浓度为2%时,单一硫酸浸矿除磷作用最佳,浸矿后的浸出液PH值仍较低,故其酸性仍能处理部分铁矿石。调查矿浆浓度对硫酸浸矿除磷作用的影响,其成果如图3所示。图3  硫酸在不同矿浆浓度条件下对矿石的提铁降磷作用 从图3(a)中能够看出,跟着矿浆浓度的添加,除磷率逐步下降。当矿浆浓度为2%时,除磷率到达93.06%;当矿浆浓度到达5%时,处理后矿石中磷含量为0.18%;除磷率为78.82%;当矿浆浓度到达6%时,矿石中磷含量为0.25%,除磷率为70.59%。 从图3(a)中能够看出,在矿浆浓度低于6%时,铁回收率均大于97.89%,且相对改变不大。而铁档次方面,跟着矿浆浓度的添加,铁档次呈下降的趋势。当矿浆浓度为6%时,铁档次为46.54%。 由以上分析可知,当矿浆浓度≤5%时,除磷作用能到达工业要求。 (三)生物浸出除磷实验 选用At.f菌进行浸矿实验,将成长7d后的At.f菌用慢速滤纸过滤,用过滤后的菌液浸矿,矿浆浓度2%,At.f菌成长过程中PH值改变见图4。24d后浆矿浆过滤,烘干,其固体中磷含量为0.25%。 黑曲霉菌浸矿除磷。取2环黑曲老菌孢子接种于100ml无机磷培育基中,黑曲霉菌成长过程中PH值改变见图5。图4  At.f菌浸矿过程中pH的改变图5  黑曲霉菌成长过程中pH值改变 因为一步浸矿过程中,黑曲霉菌丝会将矿藏包裹,导致浸矿后菌矿难以别离,故选用两步浸矿法进行浸矿。将过滤液(不含菌丝和孢子)直接浸矿,矿浆浓度为2%,反响40h后,过滤、烘干矿石,化验成果为:剩下磷含量为0.2 2%,到达了较好的除磷作用。 三、结  论 (一)浸除磷实验中选用lOOml 0.1mol/L的草酸(C2H2O4)、柠檬酸(C6H8O7)、H2SO4、HNO3、HCL,矿浆浓度为2%,单一的无机酸提铁降磷作用优于有机酸。其间,硫酸作用最佳;柠檬酸除磷作用最差,但对进步铁档次有必定作用;草酸除磷作用最好,但铁损失率最大。 (二)有机混合酸浸矿方面,跟着草酸与柠檬酸混合份额的下降,除磷率逐步下降,回收率逐步进步,处理后铁档次相对安稳。在混合份额介于100∶O~20∶80之间时,除磷作用较抱负。 (三)跟着矿浆浓度的添加,单一硫酸浸矿除磷率逐步下降,处理后矿石铁档次也逐步下降铁回收率改变不大。当矿浆浓度为5%时,除磷率能到达78.82%;高于6%时,除磷作用达不到相关要求。 (四)选用At.f菌和黑曲霉菌进行浸矿除磷浸出后固体中磷含量别离为0.25%、0.22%,到达了较好的除磷作用。

宜昌某高磷赤铁矿反浮选提铁降磷试验研究

2019-01-24 09:37:09

鄂西地区存在着大量的赤铁矿资源,累计探明的储量18.95亿吨,远景资源量可达30亿~40亿吨。矿石的有害组分磷含量为0.3 %~1.8 %,SiO2含量也较高,在10%~15%左右,硫含量为0.01 %~0.4 %,矿石具有鲕状结构,属于“宁乡式” 鲕状赤铁矿,由于其难选难冶的特点而一直未得到开发利用。受宜昌市某单位委托,对宜昌某高磷赤铁矿进行了可选性试验研究,在给矿铁品位50.09%,含磷量0.53%的条件下,通过选择性絮凝脱泥-反浮选可获得精矿铁品位57.43%, 回收率71.80%,含磷量0.18%的良好指标。且探讨了组合捕收剂对此矿的分选效果,结果表明组合捕收剂用量为300g/t时可获得与单一捕收剂用量800g/t时相似的浮选指标,降低了捕收剂的用量,解决了此矿提铁降磷的难题,并为同类矿石的开发利用提供了一定的依据。     一、矿石性质    从宜昌某矿山四个不同地点按比列取样配矿,矿石为粒度范围较大的块矿,采用采用颚式破碎机和对辊式破碎筛分机将矿石破碎至-2mm,混匀后缩分至每袋1kg,并取样供化学多元素分析,物相分析。原矿化学多元素分析结果与铁物相分析结果分别见表1、2。 表1  原矿化学多元素分析结果元素TFeFeOSiO2PCaOMgOAl2O3含量(%)50.098.3017.280.533.391.366.75 表2  铁矿物物相分析结果铁物相磁性铁碳酸铁硫化铁硅酸铁赤褐铁含量(%)/1.680.0415.3343.04占有率(%)/3.360.0810.6485.92     从表1中可以看出矿石中有回收价值的元素只有铁,铁品位为50.09%,主要杂质SiO2品位为17.28%,含磷量为0.53%;另外(CaO+ MgO)/(SiO2+ Al2O3)<0.5,为酸性不自熔矿石。物相分析结果表明:铁矿物主要为赤褐铁,占85.92%,少量的硅酸铁、碳酸铁及硫化铁,不含磁性铁。     工艺矿物学研究表明矿石中铁矿物主要为赤褐铁矿,共占80%以上,主要脉石矿物为石英,粘土矿物以及胶磷矿。矿石为具有同心圆的鲕状结构,鲕粒粒径大小一般为100-120µm,最大的200µm,最小60µm,鲕粒内粘土矿物和赤铁矿交互生长在一起,二者无法单体解离。石英呈不规则的粒状,粒径一般为60-80µm,最大的为95µm,最小为10µm,表面光滑,含量为15%-20%;粘土矿物和赤铁矿交织在一起,粒径小于2µm,含量在15%左右;磷矿物为胶磷矿和磷灰石分布在一起,与鲕粒一起致密共生。     二、试验研究     (一)磨矿试验     磨矿采用XMQ—67型Ф240×90mm球磨机,每次磨矿250g,磨矿浓度为50%。磨矿之前加入NaOH和Na2SiO3为分散剂,脱泥前加入对铁矿物有选择性絮凝作用的玉米淀粉100g/t。浮选采用XDF单槽式浮选机,浮选浓度约为30%,NaOH为矿浆pH调整剂,HZ为铁矿物的抑制剂,CaO为石英活化剂,MG为捕收剂,反浮选试验流程见图1,磨矿时间对浮选指标的影响见图2。图1  反浮选试验流程               图2  磨矿时间对浮选指标的影响     随着磨矿细度的增加,精矿铁品位不断上升,铁回收率不断下降,当磨矿时间从1min增加到6min时,精矿铁品位由51.74%上升到54.06%,磨矿时间继续增加到9min时,铁品位没有明显升高。所以选择磨矿时间为6min,此条件下的磨矿细度为-74um占94.17%。     (二)矿浆温度试验     阴离子反浮选常用的是脂肪酸类捕收剂,此类药剂在碱性介质中,常温下大多呈胶束形,很少呈浮游活性形,长期以来,阴离子反浮选通常需将矿浆加温,以使捕收剂保持高度的分散性,获得较理想的分选指标。但矿浆加温费用太高,目前的研究主要是集中在常温(25℃左右)浮选上。矿浆温度试验条件为:NaOH用量1500g/t,HZ用量1000g/t,CaO500g/t,MG400g/t,变换矿浆温度,矿浆温度对浮选指标的影响见图3。     矿浆温度为10和15℃时,浮选指标不理想,精矿铁品位仅为52-53%,磷品位均为0.53%,可知阴离子捕收剂MG并不能实现低温浮选;随着矿浆温度从20℃上升到40℃,精矿铁品位由54.99%上升到56.42%、铁回收率从73.52%下降到63.56%、含磷量由0.37%下降到0.29%。从节约能源的角度考虑,选择合适的矿浆温度为25℃,在MG用量为400g/t的条件下,可以获得精矿品位为55.06%,回收率76.50%,磷品位0.36%的浮选指标。(a)                                                 (b) 图3  矿浆温度对浮选指标的影响 (a) 矿浆温度对精矿铁品位与回收率的影响;(b)矿浆温度对精矿磷品位的影响     (三) pH调整剂用量试验     NaOH用量试验条件为:HZ用量1000g/t,CaO500g/t,MG400g/t,变换NaOH用量,NaOH用量对浮选指标的影响见图4。(a)    NaOH用量对精矿铁品位与回收率的影响;(b)NaOH用量对精矿磷品位的影响 图4  NaOH用量对浮选指标的影响     由图4(a)可知,随着NaOH用量的增加,精矿铁品位不断上升,回收率不断下降,用量为2000g/t时精矿品位达到55.15%,回收率达到76.59%。NaOH用量达到2500g/t时,精矿品位反而下降。图4(b)可知,随着NaOH用量的增加,精矿磷品位变化不大,保持在0.35-0.4%之间,因此NaOH的最佳用量为2000g/t。     (四)捕收剂用量试验     MG用量试验条件为:NaOH用量2000g/t,HZ用量1000g/t,CaO500g/t,变换MG用量,NaOH用量对浮选指标的影响见图5。(a)(b) 图5   MG用量对浮选指标的影响 (a)MG用量对精矿铁品位与回收率的影响;(b)MG用量对精矿磷品位的影响     从图5 (a)中可看出,当捕收剂MG用量为400g/t时,精矿铁品位为55.15%,回收率为76.59%,磷品位为0.36%,当MG用量为800g/t时,精矿铁品位上升到56.74%,回收率为65.23%,含磷量下降到0.22%。随着MG用量增加,精矿铁品位上升,回收率下降,精矿铁品位在MG用量800g/t左右时达到最大值,之后随MG用量增加到1000g/t时精矿品位与回收率同时有所下降;从图5 (b)看出,精矿磷品位随着捕收剂MG用量增加而持续下降,综合考虑确定捕收剂MG用量为800g/t。     (五)抑制剂用量试验      从图6(a)可看出,HZ用量从1000g/t增加到1500g/t时,精矿铁品位变化不大,而回收率由65.23%上升73.63%,之后随着HZ用量继续增加,铁品位持续下降,铁回收率不断升高;从图6 (b)可看出,精矿磷品位在HZ用量1500g/t左右也降到最低,综合考虑确定抑制剂用量为1500g/t。在此条件下,精矿铁品位为56.66%,回收率为73.63%,磷品位为0.21%。      ( a)    (b) 图6  HZ用量对浮选指标的影响 (a)HZ用量对精矿铁品位与回收率的影响;(b)HZ用量对精矿磷品位的影响     (六)开路试验     确定了浮选药剂用量、矿浆浓度、温度对浮选指标的影响之后,为提高浮选药剂的选择性,采取分段加药的方式。通过大量的试验,确定了开路试验流程为一段粗选两段精选,浮选流程如图7所示。分散剂NaOH用量为1000g/t、Na2SiO3的用量为500g/t,粗选NaOH用量为 2000g/t,高分子抑制剂HZ用量为1500g/t, CaO用量为500g/t,捕收剂MG用量为300 g/t,精选ⅠMG用量为300g/t,精选ⅡMG用量为200g/t为最佳药剂制度。在给矿铁品位为50.09%、磷品位为0.53%的条件下,获得开路浮选试验指标为:精矿铁品位57.43%,铁回收率为71.80%,磷品位为0.18%。图7  开路试验流程     三、组合用药试验     浮选工艺中,通常对现有的捕收剂进行合理搭配、组合使用。组合用药大致可以获得以下的效果:1)改善浮选指标,组合药剂与单一药剂相比,可分别提高品位、回收率及浮选速度,也可同时改善几项指标。2) 扩大药剂的原料来源,药剂的组合使用,可减少主药的消耗量,缓解某些原料的紧缺问题。3)减少药剂用量,组合用药由于各药剂之间的协同效应,当配比适当时往往可以减少总药剂用量,从而达到降低选矿成本的作用。4)减少环境污染,通过组合用药可以用无毒无害或毒性较小的药剂部分或完全取代有毒有害药剂。     MY武汉理工大学自行研制的一种新型的多官能团阴离子捕收剂,合成工艺路线简单,原料来源广泛,起泡性能好。将MG与MY按2:1的比例组合使用,总用量为300g/t的条件下可获得精矿品位56.83%,回收率72.41%,磷品位0.18%的指标,此指标与单独用MG800g/t时近似。浮选试验流程见图8,试验指标对比见表3。图8  组合用药试验流程 表3  组合用药与单独用药试验指标对比       药剂用量/g/t精矿品位 /%铁回收率 /%磷品位/%MGMY组合捕收剂20010056.8372.410.18单一捕收剂800/57.4371.800.18单一捕收剂/60056.4033.530.25     四、结论     a  原矿含铁品位50.09%,磷含量0.53%,SiO2品位17.28%,为酸性不自溶矿石。铁矿物主要为赤褐铁矿,矿石为鲕状构造,为典型的难选矿石。     b  反浮选开路流程为一段粗选两段精选,粗选NaOH用量为 2000g/t, HZ用量为1500g/t,CaO用量为500g/t,MG用量为300 g/t,精选ⅠMG用量为300g/t,精选ⅡMG用量为200g/t为最佳药剂制度。在给矿铁品位为50.09%、磷品位为0.53%的条件下可获得精矿铁品位57.43%,铁回收率71.80%,磷含量0.18%的优良指标。     c MG与MY以 2∶1的比列组合使用在用量为300g/t的条件下即可获得单独用MG800g/t时相似的浮选指标,可以在很大程度上降低选矿成本。     协同效应的产生主要是由于组合药剂在矿物表面产生了共吸附,与单独使用时比较,其吸附量大、吸附层比较致密、吸附层与疏水层的形成较快、颗粒的絮凝作用较大、与气泡的粘附作用时间较短,从而改变了矿物表面的疏水性、矿粒与气泡粘着几率、粘着强度与接触时间,并在一定条件下达到优化。由于吸附密度的增大,矿物表面的疏水性增强,可浮性增大,所以可以降低捕收剂的用量。

高磷低锰难选矿石除磷提锰工艺技术

2019-01-21 18:04:43

我国是一个锰矿资源比较丰富的国家,早在1960年已探明锰矿储量仅次于前苏联和印度,而居世界前列。随着工业迅速发展,锰的金属需要量增加,富锰矿日益减少,冶金用锰精矿的各种品极,除了对矿石中锰的含量有要求外,对锰铁比、磷锰比、二氧化硅的含量都有具体的严格要求,而军工、化学、电池用锰,则需要杂质含量更低的优质锰精矿。然而由于低锰矿石结构复杂,嵌布粒度微细,且含有害杂质(磷、硫、铁、硅等)高的特点,给锰矿的选别和利用带来困难。特别是杂质磷,以熔溶胶结状态的非晶质胶磷矿形式存在于含锰矿石中,目前国内外单用机械选矿方法来除磷,提高锰矿品位,均不能达到满意的效果。        为了充分利用矿产资源,提高该锰矿床的工业利用价值,采取机械选矿与化学选矿相结合的工艺流程除去杂质,提高锰矿品位,早就引起国内外选矿工作者的重视。        本文就陕西某地高磷低锰矿石选锰除磷工艺特点进行论述。       一、原矿性质       该矿属于沉积型含锰碳酸盐矿石。原矿含锰低(11%),杂质磷高(1.10%),锰矿物以碳酸锰为主,锰的氧化物极少。碳酸锰矿物有锰白云石、菱锰矿、锰方解石,其含量占67.20%。其中锰白云石为主,菱锰矿约占8%,锰方解石极少。锰白云石主要呈粒状和脉状集合体,脉状粒径0.085~0.1455㎜,粒状多在0.0291~0.0485㎜,菱锰矿呈球状或环带状,包有石英细粒或碳质、泥质,粒径多在0.0485~0.194㎜。脉石矿物为石英、白云石、方解石等。有害杂质为胶磷矿,具有软体动物的生物构造,如苔藓虫、价形虫,并与石英及锰白云石呈脉状集合体连生,似蛋白石,有裂纹解理,并沿裂纹解理被方解石所替代,粒径多在0.1455~0.0813㎜,还有少量细晶磷灰石。       原矿多元素及物相分析       原矿多元素分析结果见表1,锰的物相分析结果见表2。   表1  原矿多元素分析结果%成  分 含  量Mn 10.88P 1.09TFe 0.80SiO2 17.20Al2O3 1.73CaO 19.21成  分 含  量MgO 9.74S 0.543Cu 0.003Pb 0.01Zn 0.01CO 0.002   表2  原矿锰的物相分析结果/%锰物相碳酸盐中锰二氧化锰与铁结合锰全锰含  量10.820.420.0211.26占有率96.063.730.18100.0        由于锰矿物和脉石矿物均为碳酸盐类,它们物化性质相近,阳离子半径近似,则彼此可无际代换,从而形成一系列类质同相矿物,使锰白云石中含锰的范围变化比较大,造成碳酸锰矿物多样性、复杂性、直接影响机械选矿指标。       二、机械选矿方法和工艺流程的研究       目前在世界范围内,对难选贫碳酸锰矿石的机械选矿方法及工艺,多趋向几种选矿方法组成的联合流程。如前苏联的波科罗夫斯克碳酸锰矿选矿厂,采用洗矿—磁选—浮选联合流程,使锰的品位由16.55%提高到28.60%,回收率为86.95%。前苏联的恰图拉选矿厂,采用洗矿—重选—磁选—浮选流程,使锰矿品位由7.85%提高到29.30%,回收率为85%左右。当碳酸盐中主要矿物为菱锰矿时,采用单一浮选方法进行分选。因菱锰矿是含锰矿物中可浮性较好的,用脂肪酸类阴离子捕收剂选别是比较成功的。如日本的大江菱锰矿,用浮选工艺处理含锰13.20%的矿石,以油酸为捕收剂(578g/t)可获得含锰32.30%、回收率为82.90%的锰精矿,该矿石中96%锰为菱锰矿和锰白云石,可采用浮选选别。       (一)浮选除磷提高锰矿品位       鉴于该矿石中含锰矿物和脉石矿物大多为碳酸盐类,其物理、化学性质差别不大,特别值得注意的是,胶磷矿与碳酸盐矿物除在密度、导电性、可浮性相近和互相紧密共生外,还因胶磷矿中部分PO43-被碳酸盐中的CO32-取代,F-被OH-取代,导致晶体常数、表面电性更接近于碳酸盐类矿物,因此使胶磷矿和含锰矿物可浮性相近,用脂肪酸类捕收剂直接浮锰,或反浮选除磷,均难达到富集锰、除磷的目的。如试验采用油酸为锰矿物的捕收剂,硅酸钠为抑制剂,在原矿细度为95%-74µm,矿浆pH8~9的条件下,浮选泡沫产品含锰12.19%、含磷1.2%,锰和磷均未富集。       试验研究了阳离子捕收剂进行反浮选除磷的可能性。选用十八碳胺500g/t,苛性淀粉800 g/t,碳酸钠1000 g/t,磨矿细度74µm占90%,矿将温度25℃左右,pH8~9的条件,经一次粗选,可除去原矿中33%以上的磷。即泡沫产品锰的含量为5.5%,占有率为11.37%,磷的含量为1.8%,占有率为60.06%,槽内产品中,锰的含量为12.70%,占有率为88.63%,磷的含量为0.82%,占有率为39.40%。为了除去这部分磷,曾试验了几种流程及选用不同类型 的抑制剂,但均未得到含磷在0.2%以下的锰精矿。       (二)干式强磁选试验       从所周知,无论碳酸锰或是锰的氧化物,均属于弱磁性矿物。因该矿含锰矿物与脉石矿物以及含有害杂质矿物的比磁化系数有较大的差异,故强磁选是该矿的有效选别方法之一。常见的几种锰矿物和脉石矿物的比磁化系数见表3。   表3  常见几种锰矿物和脉石矿物比磁化系数矿  物粒 度/㎜比磁化系数/(cm3·g-1)菱锰矿 软锰矿 水锰矿 硬锰矿 含锰方解石 方解石 白云石 石  英 磷灰石-0.83 -0.83 -0.83 -0.83 -0.83 -0.13 -0.13 -0.13 -0.13(135~140)×10-6   27×10-6   (28×81)×10-6   (24~49)×10-6   (66~94)×10-6   0.3×10-6   2×10-6   (0.2~10)×10-6   (9.39~819)×10-6          根据该矿石的特性,试验比较了脱泥与不脱泥、分级与不分级的干式强磁选方案,确定了脱泥—分级—磁选流图(见图1),获得表4的选别指标。由于矿泥的占有率为22.59%,锰、磷的含量都接近原矿品位,因此对矿泥进行温式强磁选,使锰的回收率增加10%左右。分级干式强磁选可除掉原矿中约67%的磷,即磁选精矿中锰的含量可提高到18.41%,磷可降到0.31%,达到部颁五级锰精矿的品位要求。若要再提高锰的品位,使磷降至0.2%以下,仍是该方法难以解决的问题。   表4  脱泥—分级—磁选试验结果/%产品名称产  率品  位回收率MnPMnP精  矿 尾  矿 合  计44.01 55.99 100.018.41 5.76 11.330.31 1.55 1.0071.16 28.84 100.013.46 86.54 100.0        (三)温式强磙选试验       湿式强磁选机适宜处理细粒物料,也是选别含锰矿物的有效磁选设备。       试验采用环式磁选机,进行不分级磁选。磁性产品锰品位提高到22%。磷降低0.3%,而锰的回收率仅为23%,尾矿品位6%以上。采用夹板式强磁选机,对三种流程作了比较:(1)脱泥(-25µm)磁选;(2)分级磁选;(3)反浮选精矿磁选。       原矿磨至-75µm占65%,脱泥后粗砂和矿泥单独进行湿式强磁选,获得含锰17.14%、回收率为63.03%、含磷为0.41%的产品。其流程和选别指标见图2、表5。表5  湿式强磁选试验结果/%产品名称产  率品  位回收率MnPMnP精  矿 尾  矿 合  计40.60 59.40 100.017.14 7.36 11.330.41 1.47 1.0463.03 36.97 100.016.21 83.79 100.0       分级湿式强磁选得到含锰17.17%、含磷0.42%的锰精矿,与脱泥后单独磁选的品位相近,回收率为59.42%。 反浮选除磷后,槽内产品进行强磁选再处理,可获得含锰17.35%、含磷0.39%、回收率为57.2%的锰精矿。       经过几种试验方案比较,干、温式强磁选均是处理该矿石的有效方法,但要进一步降低锰精矿含磷量和提高锰品位,单一强磁选则是不容易解决的。       三、化学方法除磷,提高锰矿品位       机械选矿所获得的锰精矿,其含锰矿物的物化性质及矿物组成未发生变化,亦属于碳酸盐矿物。锰的含量为18%左右,磷以脱磷矿及少量极细的磷灰石存在,其含量为0.4%左右,约占原矿的1/3,采用单一机械选矿方法难以除掉这部分磷。国内外在处理这种类型矿石时,多采用化学方法,如火法选锰、焙烧—酸浸或水浸、亚流酸盐法、二氧化硫法、硫酸锰—电化法、连二硫酸盐法、硝酸法、离子交换法、细菌浸出法等。       参照国内外对含杂质高的碳酸锰矿石类型的化学处理方法,对该锰矿的磁选粗精矿进行中性焙烧—酸浸试验,进一步提高锰矿品位,降低磷的含量。       (一)中性焙烧试验       根据矿物的化学性质和酸浸除磷的作用,将碳酸锰进行中性焙烧,使碳酸锰转化为锰的氧化物,而不被稀酸所溶解。并且焙烧时碳酸锰矿物分解,排出CO2和其它挥发物,使锰的含量进一步提高,降低冶炼过程中燃料耗及缩短冶炼时间。      碳酸锰矿石焙烧原理:碳酸锰受热分解,放出二氧化碳、结晶水及挥发物,使碳酸锰变成氧化物而得到氧化亚锰,这一变化随着温度的升高,氧化则较多,使焙烧矿中含锰量也相对降低。焙烧氧化过程为:       焙烧试验采用箱式马弗炉,进行焙烧时间、温度的条件试验。当温度为800℃,时间为75min时,焙烧后的锰精矿品位提高到26%~28%,磷的含量也随之上升到0.43%~0.53%。       (二)稀硫酸的除磷试验       由于焙烧试验本身不是一个完整的工艺,为此进行了酸浸除磷试验。根据氧化亚锰不易与稀硫酸作用、而磷易被稀酸所溶解的化学性质,进行了稀硫酸浸出除磷试验。酸浸除磷原理:       磷酸钙(胶磷矿)在稀硫酸溶液中,生成磷酸二氢(可做化肥)存在于溶液中。其化学反应式为:   Ca3(PO4)2+2H2SO4+4H2O=Ca(H2PO4)2+2(CaSO4·2H2O)       焙烧后的锰精矿,含钙镁氧化物也部分溶解在酸溶液中。由于焙烧不完全所致,焙烧后的锰精矿仍残存有少量的碳酸锰,而碳酸锰中的锰易被稀硫酸所溶解变为硫酸锰,故在酸浸除磷过程中,损失了部分锰。酸浸提标见表6。酸浸面机械搅拌下进行,当硫酸浓度为6%,浸出时间为60~90min,固液比为1:7至1:15时,锰精矿品位提高到30%~33%,磷降到0.2%以下,最终达到除磷、提高锰精矿品位的目的。   表6  酸浸试验结果/%焙烧入料浸渣重量/g浸渣中锰浸渣中磷浸渣中锰 占有率干式磁选精矿 湿式磁选精矿46.0 48.032.94 30.180.193 0.19282.31 83.40       四、结语       (一)该矿石中锰品位,且含锰矿物为一系列组分不定的锰白云石及其它碳酸锰矿物,而有害杂质磷含量高,且以胶结状非晶质胶磷矿存在,构成矿石性质复杂、多样,造成机械选矿难以处理。       (二)原矿磨至-74µm占65%~85%时,脱除-25µm的矿泥,各粒极进行干式或湿式强磁选,矿泥进行湿式强磁选,能获得低品级的锰精矿。       (三)用焙烧—稀酸浸出的化学方法处理机械选别的锰精矿,是除磷的有效途径,使最终锰精矿品位提高到30%以上,磷的含量降到0.2%以下,锰的回收率为60%左右。       (四)化学处理难选贫锰矿石,对原矿没有严格的要求,各种类型的含锰矿石都可以使用,并能获得含杂质少的优质精矿产品,特别适用于化学、电池、军工和冶金用锰原料,还可以综合回收其伴生元素。      崔恩静  任金菊  马晶  李洁 (陕西有色金属控股集团有限公司,西安 710006)       参考文献       [1]西北有色地质研究院,陕西陕南地区高磷低锰难选矿石试验报告[R],2000,12。       [2]西北有色地质研究院,陕西石泉钒钛磁铁矿石选矿试验研究报告[R],2003,8。       [3]丁楷如,余逊贤,锰矿开发与加工技术[M],长沙:湖南科学技术出版社,1991,527。

某高磷钒矿浸出试验研究

2019-01-21 18:04:47

我国钒矿资源极为丰富,但大部分品位低,多数没有得到充分开发利用。钒主要以三价和五价形式存在于矿石中,其中三价钒几乎主要存在于含铁矿物或含铝矿物中,没有独立矿物;五价钒一般形成独立矿物-钒酸盐,常与铀和磷矿物共生。当矿石中的钒以三价状态赋存于硅酸盐类矿物中时,通常采用加添加剂在高温下焙烧来破坏钒矿物的结构,将三价钒氧化为五价钒后进行浸出。但高温焙烧污染大、能耗高、投资大。 西北地区某钒矿的V2O5平均品位0.75%,矿物组成复杂,磷含量较高,采用传统的焙烧工艺进行氧化焙烧,钒转化率较低,所以该资源始终未能得到很好的开发。试验研究了对原矿直接进行酸浸,确定了可行的工艺条件。 一、矿石类型及物质组成 (一)矿石类型 矿石组成十分复杂。钒吸附于泥质岩和胶状褐铁矿中,没有相应的独立矿物存在,钒的载体物质多以泥质内碎屑形式存在。脉石矿物主要有方解石、石英和泥质,围岩为碳酸盐岩。磷灰石多以胶磷矿内碎屑胶结物形式存在,为胶体脱水形成的微晶磷灰石。 (二)矿石物质组成 原矿的多元素化学分析结果见表1,原矿的X射线衍射分析结果见表2。 表1  原矿多元素化学分析结果    %表2  钒矿石X射线衍射分析结果    %二、试验原理 用氧化性酸破坏泥质岩和胶状褐铁矿的矿石结构,氢离子进入矿物晶格中置换相应金属离子,使矿物结构发生变化,将钒释放出来,并被氧化成四价钒。四价钒易溶于酸并生成钒氧基离子(VO)2+,反应式为:三、试验设备及方法 (一)试验设备 试验设备主要有HH-2型电热恒温水浴锅,JJ-1型精密增力电动搅拌器,2X2-2型旋片式真空泵等。 (二)试验方法 取一定浓度的硫酸溶液于四口瓶中,置于水浴锅中加热至一定温度;称取一定质量的原矿加入到放有酸液的四口瓶中,继续加热搅拌;反应一段时间后停止搅拌,过滤,洗涤。滤渣、滤液分别计量、分析。 四、试验结果及讨论 (一)原矿直接酸浸正交试验 原矿直接用硫酸浸出,钒浸出率主要受浸出剂浓度、浸出温度、液固体积质量比、浸出时间、矿石粒度的影响。选定此5因素,每因素3水平,安排L27(313)正交试验。因素及水平见表3,试验结果见表4和图1~4。 表3  试验因素及水平 表4  正交试验结果图1  H2SO4质量浓度对钒浸出率的影响图2  液固体积质量比对钒浸出率的影响图3  浸出时间对钒浸出率的影响图4  浸出温度对钒浸出率的影响图5  矿石粒度对钒浸出率的影响 可以看出,对原矿直接进行酸浸,各因素影响顺序为:浸出温度>液固体积质量比>硫酸质量浓度>浸出时间>原矿粒度;较优工艺参数为:浸出温度90℃,液固体积质量比3∶1,H2SO4质量浓度250 g/L,浸出时间6h,矿石粒度小于0.175mm。温度和液固体积质量比是影响钒浸出的主要因素:温度升高,有利于浸出反应的进行,但温度过高,对操作不利,以不高于90℃为宜;液固体积质量比较大时可获得较高的浸出率,但也会降低浸出液中钒的质量浓度,影响后续的净化富集,以2∶1较为适宜;H2SO4质量浓度增大,钒浸出率提高,但酸度过大会降低溶液pH值,影响后续工序,经济上也不合算,所以,H2SO4质量浓度确定为250g/L。 (二)验证试验 根据原矿直接酸浸正交试验结果,在最适宜条件下进行验证试验,结果钒浸出率达90.72%~92.56%,平均值为91.81%,有较好的结果。 五、结论 对高磷钒矿采用直接硫酸浸出法浸出钒是可行的。直接酸浸最佳工艺条件为:浸出温度90℃,液固体积质量比2∶1,H2SO4质量浓度250g/L,浸出时间6h,矿石粒度小于0.175mm,此条件下,钒浸出率达90.72%~92.56%。