高磷锰矿脱磷技术研究现状与展望
2019-02-18 15:19:33
锰及其化合物应用于国民经济的各个领域。钢铁工业用锰量占90%一95%,首要作为炼铁和炼钢进程中的脱氧剂和脱硫剂,以及用来制作合金。
跟着我国钢铁工业出产的开展和锰系产品出口的添加,锰矿石的消费量也逐步添加,进口矿石所占的比重越来越大,2002年进口锰矿石初次打破 200万t,占我国总锰矿石消费量的45.81%,如按锰金属量计算,因为进口矿石档次高于国产锰矿石,进口矿的锰金属已超越 了国内锰金属量耗费总量 的50%,国内矿石直销的缺口越来越大。因而,在充分运用国外资源的一起,加速国内锰矿资源的勘查力度、进步勘查深度、大力研讨锰矿加工及除杂(磷、硫)技能显得十分必要。
我国锰矿石中磷的含量较高,P/Mn平均在0.01左右,而冶金用锰矿石要求 P/Mn
我国高磷贫碳酸锰矿石首要散布在湘、黔、川3省接壤地带,包含湖南花垣锰矿、贵州松桃锰矿、四川秀山锰矿等,总储量约为 1亿 t,这类型锰矿含 P0.24% 左右 ,Mn 18%一19%,P/Mn为 0.01左右。
磷是钢铁冶炼进程中的首要有害元素之一。冶 金用锰矿石中含磷量过高会直接影响钢铁的品种与 质量。结合高磷锰矿石的归纳运用,研讨经济有用的脱磷技能是很重要的课题。
一、高磷锰矿石脱磷技能现状国内外针对不同的矿石性质,进行了较为深化的锰矿石脱磷工艺研讨。首要办法有:强磁选一反浮选、强磁选一焙烧、强磁选一黑锰矿、复原一浸、微生物脱磷。
(一)强磁选一反浮选反浮选仍然是 现在最首要的锰矿石脱磷办法。为了下降反浮选本钱或进一步下降含磷量,磁选一反浮选联合脱磷已显现出优势。锰矿反浮选脱磷中一般用氧化石腊皂为捕收 剂,以NaOH、Na2SiO3、Na2CO3为调整剂,淀粉为抑 制剂。一起,添加运用 GY—l药剂,GY—l是在 DC一854药剂基础上改制的一种高效、无毒、无腐蚀、运用方便的阴离子表面活性剂,在反浮选中不只具有杰出的选择性涣散作用,并且对改进产品质量具有显着成效。鄂西某地的高磷菱锰矿 P/Mn为0.046,经脱泥、强磁选、1次反浮粗选脱磷和 3次泡沫再选分级脱磷,可取得 P/Mn为 0.002,锰档次为78.87%的终究锰精矿目标。
(二)强磁选一焙烧湘潭锰矿属低铁高磷贫碳酸锰矿床,其含磷矿藏为胶磷矿,赋存于粘土类矿藏中。碳酸锰为弱磁性矿藏,粘土类矿藏为非磁性矿藏,运用其磁性差异选用强磁选选别,然后焙烧,可到达富锰降磷作用。湘潭锰矿进行了强磁选接连实验。原矿含 Mn21.95%,粒度 7~10 mm。经 1次粗选和1次精选,取得锰精矿 I含 Mn 27.70%,收回率为 38.5%;锰精矿 Ⅱ含 Mn 23.7%,收回率为 55.94%,总收回率可达 94.44%。磁选锰矿经焙烧后,精矿 I含 Mn42.6%,P/Mn为 0.003 9;精矿 Ⅱ含 Mn 35.03%,P/Mn为 0.0049。(三)强磁选一黑锰矿
湖南花垣锰矿是我国大型碳酸锰矿,其特色是低锰、高磷,矿藏嵌布粒度很细,是一种难选的锰矿石。该锰矿选用了强磁选一黑锰矿法来进行脱磷强磁选一黑锰矿脱磷工艺中,矿石破碎到必定粒度后经粗粒和细粒强磁选机分级选后,脱水进行欢腾焙烧,焙烧产品给入接连浸出机脱磷,终究固液别离得到终究精矿。
该工艺特色在于当选粒度粗、磁选抛尾作用好焙烧温度均匀、焙烧黑锰矿转化率高、酸浸逗留时间短、作业简略。研讨标明接连扩展实验到达了与小型实验相同的成果,归纳精矿产率40.85%,精矿锰档次为 40.15%,锰 收回率达 82.071%,磷锰 比为0.003 7。
(四)炉外脱磷炉外脱磷法系将含磷高的锰矿原矿或烧结矿在电炉内炼制成硅锰合金,将火热的合金放至炉外铁水包内,再向其参加脱磷剂,经振动反响而到达脱除合金中的磷。花垣锰矿曾进行过炉外脱磷实验,脱磷率到达76.84%。长沙冶金研讨院用含磷较高的烧结矿炼制成含 0.91%的硅锰合金。经脱磷处理后,合金含磷降至0.19%。该工艺运用了余热,产品本钱添加不多而取得优质的硅猛合金,值得推广应用。(五)复原焙烧一浸该法处理低档次锰矿石在国外已有几十年的前史,20世纪 50年代美国锰化学公司和比利时的Sedema公司建立了处理锰矿石的浸厂,将浸法提锰产品作为出产化学二氧化锰的质料,取得了较好的作用。我国自20世纪 80年代开端了浸法提锰的实验研讨,1983年,贵州遵义铁合金科研所提出了用复原焙烧一浸法处理贵州松桃高磷锰矿的计划。1984年,湖南省冶金材料研讨所也报道了用浸法 处理花垣高磷锰矿石的开始实验成果。贵州松桃高磷锰矿运用复原焙烧一浸法脱磷,其工艺进程包含矿石的碎磨,焙烧,浸出,固液别离,从浸出液中收回锰,以及溶剂的再生循环运用等工序。锰的浸出率为73.2%~89.6%,产品含锰70%~72%,产品含磷小于0.02% 。
(六)微生物脱磷生物技能是开展速度较快的新兴产业之一。生物技能以其低能耗、无污染等特色逐步显现其强壮的优势。在自然界,60多种元素的散布与微生物有关,微生物参加了 S、Fe、C、N、P、Cu、Si、Mn等多种元素的涣散一氧化一复原。微生物法处理废水 ,除掉其间的磷已获成功,这标明微生物有脱磷才能。近年来,运用微生物处理矿产资源的研讨十分活泼。现已发现很多种细菌、真菌、放线菌都具有脱磷作用。它们首要经过代谢产酸下降系统的 pH值,使磷矿藏溶解而进入液相。一起,代谢产酸还会与 Ca2+、Mg2+、Al3+等离子构成络合物,然后促进磷矿藏的溶解。研讨标明,有的细菌具有过量摄磷的特性,这也是微生物脱磷的机理之一。微生物脱磷的国内外研讨进展见表1。二、高磷锰矿石脱磷技能展望现代工业技能的开展,有必要遵从资源归纳运用程度高、环境污染程度低、契合建造节约型社会的科学开展观。对高磷锰矿石脱磷技能的研讨,应当在有用的脱磷技能上,特别注重进步锰的收回率,下降工艺进程中的能耗和用水量,下降各种化学试剂的耗费,尽或许完成工艺进程的无害化,不形成环境污染。已有的研讨中,反浮选耗水量大,磨矿进程耗费很多动力,一起要运用多种浮选药剂,强磁选一焙烧要求矿藏有较好的单体解离,对固熔体矿藏分选作用差。强磁选一黑锰矿法工艺流程长,操作冗杂。炉外脱磷工艺需在高温下进行脱磷,操作不方便。综观高磷锰矿石脱磷的研讨成果,与现代工艺要求比较切合的看来是复原焙烧一浸法与微生物脱磷技能。比较而言,微生物脱磷技能更具优势,值得深化研讨与注重。微生物脱磷技能的研讨应注重以下几个方面:
(一)挑选脱磷微生物时,以其是否具有产酸代谢和积累磷的生化特征为标准打开。进行矿石脱磷时,促进这两个进程的进行是强化脱磷作用的要害;
(二)脱磷微生物的品种繁复,分化机制不尽相同且较杂乱,虽有一些研讨,但没有深化,脱磷机理需求进一步清晰;(三)脱磷微生物的遗传稳定性差,应着眼于寻觅稳定性好的微生物。关于一些具有优秀性状的脱磷微生物要不断进行挑选和复壮,以进步其脱磷才能;(四)要使脱磷微生物更好地习惯高磷贫碳酸锰矿石所供给的环境,如增强微生物抗氟离子和或许存在的重金属离子的才能,进步其数量和活性;(五)脱磷微生物大多属异养菌,寻觅廉价的有机碳源(如碳水化合物)能够进步该技能经济性。
高磷软锰矿脱磷菌的选育及脱磷试验研究
2019-02-18 15:19:33
我国锰矿中磷的含量遍及偏高,磷锰比[ω(P)/ω(Mn)]平均在0.1左右,而冶金用矿石要求ω(P)/ω(Mn)<0.003。在已勘探的矿床中,含磷偏高[ω(P)/ω(Mn)>0.005]的锰矿石占总储量的49.59%。锰矿石中的磷主要以磷灰石或胶磷矿方式存在。磷矿藏粒度微细,或与能矿藏严密共生,或呈类质同象方式存在,单体别离较高困难。
近年来,国内外对锰矿石脱在户外工艺都进行了较为深化的研讨。研讨办法主要有高梯度磁选法、浸法、炉外脱磷法、黑锰矿法等。高梯度磁选法存在动力耗费过高、设备磨损严峻、纤细颗粒主动聚会等问题,按浸法仍停留在小试阶段;炉外脱磷法本钱过高;黑锰矿法存在设备腐蚀严峻等问题,都未能从根本上处理富锰降磷问题,所以研讨者们提出了使用微生物脱磷新思路,并取得了较大发展。微生物技能的长处在于出资少、能耗小、本钱低并对环境友好。研讨标明,很多种细菌、真菌、放线菌都具有溶磷作用。不少研讨者在实验室对磷矿粉浸磷都取得了成功。
本实验所用菌株为湘潭锰矿矿区不同植物根系土壤样品中挑选出的脱磷作用较好的菌株,经过紫外诱变得到高产菌株,并以此进行软锰矿脱磷实验,得到了较好的作用。
一、实验材料与办法
(一)土壤收集与预处理
所用土样取自湖南湘潭锰矿矿区植物根系表面以15~20cm深处,置于事前已灭菌的锥形瓶中,24h内别离菌株。
(二)矿样
矿样取自湖南永州市某锰矿、破碎,研磨至粒度小于0.1mm。矿样中ω(P)/ω(Mn)=0.0109,属高磷锰矿。矿样多元素化学分析成果见表1。
表1 矿样多元素化学分析成果(三)培育基
培育基除查氏固体培育基、牛内膏蛋白胨培育基和PKO固体培育基外,还酸制了富磷培育基(蔗糖30g,2~3g,磷酸氢二钾1g,硫酸严铁0.01g,0.5g,硫酸锰0.5g,蒸馏水1000mL)和缺磷+Cas(PO4)2培育基(葡萄糖10g,氯化钙0.2g,硫酸镁0.5g,硫酸铵2.0g,0.2g,磷酸三钙0.9g,蒸馏水1000mL)。以上培育基均调整pH至7.0。
(四)实验办法
1、菌株别离
选用稀释平板别离法别离菌株,培育基为本氏培育基和年肉膏蛋白胨培育基。将所取土样制成10-3,10-4,10-5,10-6,10-7各种浓度的稀释液。将10-5~10-7稀释度的溶液接种到培育基上,放入恒温生化培育箱中于30℃下培育。
2、溶磷菌的挑选
挑选分为平板初筛和摇瓶筛2个过程。
初挑选用溶磷圈法。将别离取得的纯菌株接种于PKO固体培育基上,置于30℃培育箱中培7~15d,调查有无溶磷圈,并依据溶磷圈直径(D)与菌落直径(d)的比值开始断定脱磷才能。将有脱磷作用的别离物接种于斜面培育基上保存备用。
复筛时用无菌水将试管斜面上的孢子洗下,用血小球计数板计数,调整菌液浓度大约到108个/mL。移取1mL该菌悬液接种于PKO液体培育基中,放在转速为150r/min的摇床上,于28℃下培育5d。将所得菌液于9000r/min离心机中别离15min,汲取上清液,用钼锑抗分光光度法测定其有用磷含量。
3、模仿锰矿脱磷
将实验用菌种接种至查氏周体培育基中,再转接种至富磷培育基中,放入摇床内,在30℃、150r/min转速条件下活化2次,每次2d,备用。
取活化后的菌种1mL接种至装有100mL含0.090g磷酸钙及0.2612gMnO2(MnO2)的量依据ω(P)/ω(Mn)=0.0109核算所得)的缺磷培育基的三角烧瓶中,在30℃下,于150r/min转速摇床中好氧培育,调查pH和磷浓度的改变。
4、紫外诱变
以模仿锰矿脱磷实验中作用最好的P69号菌株为发菌株。
(1)菌悬液的制备。将P69菌株活化后用适量生理盐水洗下菌苔,倒入盛有玻璃珠的锥形瓶中,激烈振动将菌块打破后,离心(3000r/min)20min,弃去上层清液,将菌体用无菌生理盐水洗刷2次,最终制成菌悬液,用血球计数板在显微镜下直接计数,调整菌液浓度至108个/mL。
(2)紫外线处理。翻开15W紫外灯开关,预热20min。在无菌条件下,用移液管移取6ml上述菌悬液,放入9cm的无菌培育皿中,再放入一无菌磁力搅拌棒,然后置于紫外灯下30cm处,照耀时刻分别为2,4,6min。
在红灯下,将处理过的菌悬液稀释至10-5,10-6,10-7,涂布在PKO无机磷培育基上,每种浓度的菌液涂3个平板,同时取未经紫外线处理的稀释菌液涂于平板上作对照。用报纸包好,防止光照,置于恒温培育箱中于28℃下培育48h。
(3)挑选。诱变菌株的挑选(初筛和复筛)办法与1.4.2相同。
5、软锰矿脱磷
取诱变后的P-2-8菌液30mL接种至装有150mL软锰矿矿浆缺磷培育基的三角烧瓶中(矿将固体质量分数为20%),基他办法同3。
二、成果与评论
(一)平板初筛
在PKO固体培育基中于30℃培育箱中培育,得到具有显着溶磷圈的真菌菌株9株,其在7~15d内的D/d规模见表2,菌落特征见表3。
表2 9株脱磷菌在固体培育基上D/d规模表3 9株菌菌落特征(二)摇瓶复筛
接种1mL浓度为108个/mL的菌悬液于PKO液体培育基中,放在转速为150r/min的摇床上,于28℃下培育5d。成果见表4。
表4 液体培育成果初筛和复筛成果标明,P69的D/d值规模为1.12~2.30,在液体培育基中溶磷增加量为15.012mg/L,两个数值在9株溶磷菌中均为最大,因而P69具有最大脱磷才能。
(三)模仿锰矿脱磷
各菌株培育5d和10d后的pH值如图1所示,溶磷作用假如图2所示。图1 不同溶磷菌株对溶液pH值的影响
图2 不同菌株的溶磷作用
从图1,2可知,一切参试菌株培育5d后,培育pH均有所下降,至培育10d时,P71,P79,P98,P113,P115培育液的pH有必定上升,P69,P79,P95培育液Pha在本不变,P117的pH下降。培育5d时,菌株对P的脱降率到达50%左右,其间P69的脱磷率最高,为52.2%。
(四)此外诱变
1、初筛
对P69进行紫外线诱变,共长出菌株29株,其间以P-2-8(诱变2min组的8号菌)的溶磷作用最好。诱变15d后,它的D/d值从1.12~2.30增大到1.47~4.33,与原菌株的比照状况如图3所示。
图3 固体培育基上D/d改变比照
由图3可见,从第6d起,诱变后菌株的D/d值显着进步,P-2-8的D/d值最高,达4.33。
2、复筛
对诱变菌株磷含量进行测定,其诱变后的脱磷菌的液体培育成果见表5。
表5 诱变后的脱磷菌的液体培育成果比照由表5可见,诱变后,菌株的溶磷量为24.05mg/100mL,明显大于动身菌株P69的溶磷量(15.01mg/100mL)。诱变菌株溶磷量比动身菌株溶磷量进步约60.2%。
(五)软锰矿脱磷
图4为P-2-8和P69对软锰矿脱磷的实验成果。能够看出,P-2-8的脱磷率跟着时刻的延伸而不断进步,从第3d的12.3%增加到第15d的74.6%,是原菌株P69脱磷率33.2%的2.25倍。脱磷后锰矿中磷的质量分数由0.19%下降到0.048%,ω(P)/ω(Mn)由本来的0.0109降至0.0028,脱磷后的矿石到达冶金要求。
三、定论
(一)从湘潭锰矿矿区所取土样挑选得到有溶磷作用的菌株9株。以这9株菌进行模仿锰矿脱磷实验,其间P69的脱磷作用最佳,脱磷率为52.2%。
(二)以P69号菌株为动身菌株进行紫外诱变,得到脱磷作用显着进步的菌株P-2-8。用P-2-8进行软锰矿脱磷实验,脱磷率为74.6%,脱磷后锰矿中磷的质量分数为0.048%,ω(P)/ω(Mn)为0.0028,契合冶金要求。
高磷鲕状赤铁矿脱磷技术
2019-01-16 17:41:53
高磷鲕状赤铁矿脱磷技术:中国高磷铁矿的探明储量高达几百亿吨,其潜在的经济价值达10000亿美元。高磷铁矿具有以下特点:(1)品位高。一般在45%以上。(2)堪布粒度细,复杂难处理。镜下显微结构表面,赤铁矿堪布粒度在40微米以下占80%以上。(3)含磷较高。含磷在0.5以上。传统处理方法有物理选矿、化学选矿、冶炼脱磷、磁化焙烧和生物脱磷等,化学选矿、冶炼脱磷、磁化焙烧存在着生产成本高、污染环境等问题;生物脱磷尚处于实验室研究阶段;物理选矿,能耗小,成本低,但是铁精矿品位不高,有害杂质磷含量较高。本研究所对云南某处高磷铁矿,原矿含磷1.2%,含铁42.5%,含硅12.3%,进行了反浮选试验研究,取得了以下指标:铁精粉60%,含磷0.10%,回收率80%。
高磷赤铁矿脱磷技术简介
2019-01-16 17:41:53
根据矿石品位不同可分为富矿和贫矿,一般富矿指含铁量在60%以上,25%-60%之间的称为贫矿,我国铁矿石储量丰富但有近80%属于贫矿,开采难度大成本高。铁矿石是我国钢铁工业的主要原料,国内钢铁行业的快速发展带动了铁矿石的旺盛需求。近年来,我国钢铁工业快速发展,钢铁产量先后突破2亿、3亿、4亿吨,2007年达到4.89亿吨,到2008年中国成为世界上首个年粗钢产量超过5亿吨的国家,2009年我国钢铁行业粗钢产量达到5.678亿吨,同比增长13.5%,但是从我国已查明的铁矿资源自然丰度上看,品位低,平均品位31-32%,低于世界平均水平11个百分点,97%以上是难于直接利用的贫矿,开采难度较大。而我国铁矿石储量2002年为578.72亿吨,仅占世界总量的18.67%,我国钢铁产量已经占到世界总量的40%以上。由此可见,我国铁矿石资源在总量、质量上相对不足、无法独立支撑国内庞大钢铁工业的快速发展。钢铁工业的快速发展带动了铁矿石旺盛的需求,2009年我国进口铁矿石达到6.3亿吨,近期市场价格暴涨,目前已经上涨至135美元的协定价,现货价最高更是逼近200美元,虽然国内大量资本进入铁矿石开采业,我国的铁矿石供应量快速增加。但铁矿石属于不可再生的矿产资源,虽然新增产能在暴力的刺激下大量增加,但与此同时,许多矿井也在不断枯竭。高磷赤铁矿是我省乃至我国潜在的优势矿产,广泛分布在鄂西、湖南、重庆、云南等地。已探明储量100多亿吨,远景资源量200亿吨以上。我省已探明储量近22亿吨,广泛分布在宜昌西部和恩施州。由于矿石含磷量高,有用矿物粒度细,选矿脱磷难度大成本高,极大的限制了该类铁矿石的工业利用。高磷赤铁矿提铁脱磷技术长期以来一直是国际国内冶金选矿技术攻关难题。目前除少量零星高磷赤铁矿开发利用于水泥配料外,基本处于闲置状态。中南选矿专家专利技术-高磷鲕状赤铁矿脱磷技术:中国高磷铁矿的探明储量高达几百亿吨,其潜在的经济价值达10000亿美元。高磷铁矿具有以下特点:(1)品位高。一般在45%以上。(2)堪布粒度细,复杂难处理。镜下显微结构表面,赤铁矿堪布粒度在40微米以下占80%以上。(3)含磷较高。含磷在0.5以上。传统处理方法有物理选矿、化学选矿、冶炼脱磷、磁化焙烧和生物脱磷等,化学选矿、冶炼脱磷、磁化焙烧存在着生产成本高、污染环境等问题;生物脱磷尚处于实验室研究阶段;物理选矿,能耗小,成本低,但是铁精矿品位不高,有害杂质磷含量较高。本研究所对云南某处高磷铁矿,原矿含磷1.2%,含铁46.5%,含硅12.3%,进行了反浮选试验研究,取得了以下指标:铁精粉58%,含磷0.10%,回收率85%。
高磷鲕状赤铁矿还原焙烧同步脱磷工艺技术
2019-01-24 17:45:41
赤铁矿是自然界分布极广的铁矿物,是重要的炼铁原料,也可用作红色颜料。而赤铁矿石中的鲕状赤铁矿石嵌布粒度极细,且经常与菱铁矿、鲕绿泥石或含磷矿物共生或相互包裹,难以达到钢铁工业对铁矿石含磷的要求,因此鲕状赤铁矿石是目前国内外公认的最难选的铁矿石类型之一,该类资源基本没有得到有效利用。 但我国铁矿资源储量中约1/9为鲕状赤铁矿,有效利用鲕状赤铁矿石的研究在我国有重要意义。
国内外对该种矿石已经进行了很多研究工作。昆明理工大学进行了重选方面的实验,但对铁的富集和磷的去除效果都不明显;武汉理工大学采用直接还原的方法来处理该类型矿石,能获得较高的铁品位和回收率,但脱磷的效果不是很理想,最终产品中磷品位在0.5%左右;纪军等人进行了分散-选择性聚团脱泥-反浮选脱磷工艺的试验研究,通过适当调整药剂制度和流程结构,可以使铁精矿中磷含量降到0.25%以下,铁回收率达到90.57%,但铁精矿品位只有50%左右;国内有单位对该种矿石进行了浮选及磁选试验,但铁精矿中铁品位偏低磷品位偏高。
综上所述,对于宁乡式高磷鲕状赤铁矿,用常用的选矿方法很难得到令人满意的结果。研究表明,采用添加脱磷剂进行直接还原焙烧-磁选方法可以得到较好的指标,但未进行详细的工艺条件研究。本文进一步研究了添加脱磷剂直接还原焙烧-磁选工艺参数的影响,确定该类矿石直接还原焙烧-磁选的最佳条件,为该类矿石的有效利用提供新的途径。
一、试样性质及试验方法
鄂西高磷鲕状赤铁矿石铁和磷的品位分别为43.65%和0.83%,其中主要有用矿物为赤铁矿和少量褐铁矿,赤褐铁矿之铁占97.82%。
还原焙烧以煤为还原剂,同时加入脱磷剂NCP,达到还原焙烧同步脱磷的目的。试验矿样与煤均破碎至-2mm。试验流程如图1所示。主要考察的条件因素包括煤用量、脱磷剂用量、还原焙烧温度和还原焙烧时间等。图1 直接还原焙烧-磁选试验流程
因直接还原焙烧-磁选所得最终产品中铁的品位大于90%,为避免同常规的铁精矿相混淆,将该产品命名为还原铁产品。试验中焙烧后产品的总质量同焙烧前相比有较大变化,故用还原铁产品中铁的绝对金属量同焙烧试验中加入的原矿的绝对金属量的比值来计算回收率。煤与NCP的用量指煤或NCP与矿石质量的比值,均用质量百分数表示。
二、试验结果及讨论
(一)二段磨矿时间试验
首先考察了焙烧过程中磨矿粒度对试验结果的影响。在前一阶段的试验中发现铁品位的提高和磷品位的降低都要通过细磨来实现,因此确定实验流程为两段磨矿磁选。对精矿再磨的时间进行了详细的考察。固定条件为:煤用量40%,NCP用量20%,焙烧温度1000℃,焙烧时间60min,磨矿浓度70%,第一段磨矿粒度为-0.074mm粒级占55%,磁选场强87.6kA/m,精矿再磨。结果见图2。图2 二段磨矿时间试验结果
从图2中可以看出,二段磨矿时间增加时,铁的品位和回收率都呈上升趋势,但磷品位在磨矿时间为20min时有较大的降低,应是嵌布粒度较细的脉石矿物在此时可以充分与铁矿物解离,并且不会发生团聚。故确定第二段磨矿时间为20 min,粒度为-16μm粒级占100%,-8.93μm粒级占90%。
(二)煤用量试验
固定其他条件不变,考察了焙烧过程中煤用量的影响,结果见图3。图3 煤用量试验结果
从图3可以看出,随着煤用量的增加,铁的品位和回收率均增加,磷的品位降低,此过程中煤可以同原矿充分反应,将原矿中的Fe2O3还原,但当煤用量超过40%时,煤在反应中过量,虽然对铁的回收率仍有一定的提高,但会影响到脱磷剂脱磷的效果,同时铁的品位略有降低。因此确定煤最佳用量为40%。
(三)脱磷剂用量试验
其他条件不变,改变NCP用量进行试验,结果见图4。图4 NCP用量试验结果
从图4可以看出,在NCP用量在15%之前,铁品位和回收率都有明显提高,磷品位有明显下降,当NCP用量超过20%之后,对结果的影响变小,因此确定NCP的最佳用量为20%。NCP的主要作用是在焙烧过程中与原矿发生反应,从而在磁选过程中将磷去除,同时还可以降低焙烧过程中还原生成铁的温度,对还原有一定的促进作用。
(四)焙烧温度试验
其他条件不变,改变焙烧温度进行试验,结果见图5。图5 焙烧温度试验结果
从图5看出,当焙烧温度低于1000℃时,随着温度的升高,铁的回收率升高,而磷的品位降低,说明在此温度条件下,升高温度有利于铁的还原以及磷的去除;当温度超过1000℃继续升高时,磷的品位明显升高,而铁的回收率随之下降,由此可知在该范围内,温度对脱磷剂的效果产生了不利的影响。试验中发现温度高于1000℃时,焙烧后的产品结块严重,有大的铁颗粒生成,最终还原铁产品中磷的品位升高。推断在焙烧过程中有部分铁熔融后同磷结合,使脱磷更难实现。因此确定最佳温度为1000℃。
(五)焙烧时间试验
其他条件不变,改变焙烧时间进行试验,结果见图6。图6 焙烧时间试验结果
从图6看出,随着焙烧时间的延长,铁的品位、回收率随之增加,磷的品位随之降低,但当焙烧时间超过60min后影响变小,可以确定当时间为60min时,还原反应基本进行完毕,因此确定焙烧时间为60min。
经过实验确定鄂西高磷鲕状赤铁矿焙烧还原磁选的最佳条件为:还原剂煤用量40%,NCP用量20%,焙烧温度1000℃,焙烧时间60min,一段磨矿粒度为-0.074 mm粒级占55%,二段磨矿粒度为-16μm粒级占100%,-8.93μm粒级占90%,磁选场强87.6kA/m。经重复试验,得到还原铁产品平均铁品位90.09%,铁回收率88.91%,磷品位0.06%。
三、结语
(一)在鲕状高磷赤铁矿石还原焙烧过程中添加脱磷剂,可在得到高品位还原铁产品的同时,使其中磷含量降低到0.06%。为合理利用难选高磷赤铁矿提供了一种新的途径。
(二)在还原焙烧的过程中,脱磷剂NCP起到脱磷的作用,同时可以降低焙烧温度。
(三)还原焙烧温度应控制在1000℃,过高的温度将会使铁矿物与磷重新结合,而温度过低则达不到还原的效果。
(四)由于鲕状赤铁矿本身的嵌布粒度极细,所以经过还原焙烧的产品需要充分细磨才能有效分选。
鲕状高磷赤铁矿选矿脱磷试验研究
2019-01-21 18:04:49
随着我国国民经济的迅速发展,钢铁需求量日益增大。我国目前铁矿石自给率为50%~60%,铁矿资源将呈严重不足态势,无法满足钢铁工业对原料的需求。而我国有储量几十亿t的高磷鲕状赤铁矿,由于含磷、铝和硅偏高,选矿难度大而无法利用,严重地阻碍了钢铁工业的发展,开发和利用高磷鲕状赤铁矿将显得尤其重要。为此对某鲕状高磷赤铁矿进行了脱磷试验研究。
一、矿石性质
对某鲕状高磷赤铁矿进行矿物工艺学研究,矿石多元素化学分析结果见表1。
表1 赤铁矿多元素化学分析结果 %从表1可见,虽然矿石中铁品位较高,为42.59%,但有害元素磷的含量也较高,达0.87%。
矿石中铁、磷等元素主要以独立矿物存在,其中铁矿物组成较为复杂,主要为赤铁矿,其次为褐铁矿,其它还有少量菱铁矿、磁铁矿等;磷的独立矿物主要为胶磷矿;脉石矿物主要为石英、鲕绿泥石和高岭石,其它脉石矿物还有微量的无定形碳、方解石、锆石等。
(一)赤铁矿。它与鲕绿泥石、磷灰石、石英、褐铁矿的嵌布关系都较密切,赤铁矿多与鲕绿泥石互层形成同心环带结构。鲕核则主要为石英,其次为赤铁矿、褐铁矿、鲕绿泥石、胶磷矿,有时也有上述两种矿物以集合体的形式构成鲕粒的核心,鲕绿泥石和胶磷矿经常以集合体的形式嵌布于赤铁矿和鲕绿泥石组成的同心环带鲕粒中。另外,还可见赤铁矿和石英的紧密连生体,也常嵌布于赤铁矿和鲕绿泥石组成的同心环带鲕粒中。
(二)胶磷矿。它是矿石中最重要的磷矿物。主要呈不规则状嵌布于其它脉石矿物间隙或鲕状赤铁矿颗粒间隙中。胶磷矿与赤铁矿的嵌布关系紧密,有时胶磷矿呈鲕状赤铁矿核心形式存在,偶尔胶磷矿呈鲕环的形式与赤铁矿互层呈同心环带结构组成鲕粒存在。另外,胶磷矿颗粒中有许多微细的赤铁矿包体,这部分赤铁矿也很难完全与胶磷矿单体解离。
二、选矿试验
该鲕状高磷赤铁矿中含磷矿物主要为胶磷矿,对该矿进行了反浮选脱磷-焙烧-磁选流程试验研究。
(一)反浮选粗选抑制剂用量试验
在磨矿细度-0.074mm占89%,BK-420捕收剂用量375g/t时,粗选BK-620抑制剂用量试验结果见图1。图1 粗选BK-620抑制剂用量试验结果
◆-铁品位;■-铁回收率;○-磷回收率;▲-磷品位
从图1可见,BK-620抑制剂用量由2000g/t增至4000g/t,精矿中磷含量由0.49%降至0.29%;继续增加抑制剂用量,由5000g/t增至6000g/t,铁精矿中的磷含量上升,精矿中磷含量由0.29%增加至0.39%。在抑制剂用量4000g/t时,精矿含磷量达到最低值,磷含量为0.29%。因此选择BK-620抑
制剂用量为4000g/t。
(二)反浮选粗选捕收剂用量试验
在磨矿细度-0.074mm占89%,BK-620抑制剂反浮选粗选用量4000g/t时,粗选BK-420捕收剂用量试验结果见图2。图2 粗选BK-420捕收剂用量试验结果
◆-铁品位;■-铁回收率;○-磷回收率;▲-磷品位
从图2可见,BK-420捕收剂用量由375g/t增至625g/t,铁精矿中磷含量由0.33%降至0.23%,但铁精矿的回收率也有很大的降低,由73.59%降至61.82%,综合考虑铁精矿的回收率和磷含量,确定选用BK-420捕收剂用量为375g/t。
(三)反浮选精选捕收剂用量试验
在确定粗选药剂制度后,进行了精选BK-420捕收剂用量试验,结果见图3。图3 精选BK-420捕收剂用量试验结果
◆-铁品位;■-铁回收率;○-磷回收率;▲-磷品位
从图3可见,精选捕收剂用量为312g/t时,精矿含磷量已降至0.21%,但铁精矿铁回收率下降太多,综合考虑铁精矿回收率和铁精矿含磷量,精选BK-420捕收剂用量定在250g/t。
(四)磨矿细度试验
在确定粗选、精选药剂用量后,进行磨矿细度条件试验。结果见图4。图4 磨矿细度试验结果
◆-铁品位;■-铁回收率;○-磷回收率;▲-磷品位
从图4可见,当磨矿细度为85%-0.074mm时,精矿含磷量0.28%;磨矿细度为89%-0.074mm时,精矿含磷量0.23%;磨矿细度达-0.074mm占97%时,精矿含磷量0.22%,铁品位也变化不大。因此脱磷磨矿细度定为89%-0.074mm。
(五)反浮选全开路试验
在条件试验的基础上,按图5所示流程及条件进行了反浮选脱磷开路试验,试验结果见表2。图5 反浮选脱磷开路试验流程
表2 反浮选脱磷全开路试验结果%从表2可见,在1次粗选、1次精选、1次扫选条件下,可获得含磷0.24%、铁回收率61.18%的铁精矿。
(六)脱磷浮选闭路试验
在开路试验的基础上,按图6流程进行了闭路试验。试验结果见表3。图6 反浮选脱磷闭路试验流程
表3 反浮选脱磷闭路试验结果%从表3可见,反浮选脱磷闭路试验获得了铁品位45.22%,含磷量0.23%,铁回收率84.74%的铁精矿。
(七)磁化焙烧温度试验
对脱磷后的铁精矿进行了磁化焙烧温度试验,试验流程及试验条件见图7,试验结果见图8。图7 磁化焙烧试验流程图8 磁化焙烧温度试验结果
◆-铁品位;■-铁回收率;▲-铁产率
从图8可见,磁化焙烧-磁选能提高精矿品位,温度由850℃升至950℃,铁精矿品位由56.24%升至61.23%,但铁精矿回收率由87.99%降至68.40%。综合考虑,选用焙烧温度915℃条件下进行焙烧时间试验和煤粉用量试验。
(八)磁化焙烧时间试验
对脱磷后的铁精矿进行了磁化焙烧时间试验,试验结果见图9。图9 磁化焙烧时间试验结果
◆一铁品位;■-铁回收率;▲一铁产率
从图9可见,焙烧时间由20min延至60min,铁精矿品位由56.43%升至60.02%,铁精矿回收率由68.32%升至82.56%。综合考虑,选用焙烧时间60min。
(九)磁化焙烧煤粉用量试验
对脱磷后的铁精矿进行了磁化焙烧煤粉用量试验,试验结果见图10。图 10磁化焙烧煤粉用量试验结果
◆-铁品位;■-铁回收率;▲-铁产率
从图10可见,煤粉比例为100∶15时较合适,此时铁精矿品位达60.02%,铁精矿回收率82.96%。
(十)流程试验
对原矿进行反浮选脱磷,脱磷后的铁粗精矿选用焙烧温度915℃,焙烧时间为60min,焙烧矿∶煤比例为100∶15作为焙烧条件,焙烧产品磨至90%-0.038mm进行磁选。然后进行反浮选-焙烧-磁选流程试验,其结果见表4。
表4 原矿反浮选-焙烧-磁选试验结果 %从表4可见,最终铁精矿产率48.98%,铁精矿品位60.09%,铁回收率70.02%,含磷0.23%,Al2O36.24%,SiO25.81%。
三、结论
该鲕状高磷赤铁矿中含磷矿物主要是胶磷矿,采用反浮选脱磷-焙烧-磁选工艺,可获得铁品位60.09%,含磷量0.23%,铁回收率70.04%的铁精矿,可为我国开发某高磷赤铁矿提供技术依据。
高磷铁矿石浸出脱磷试验研究
2019-02-18 15:19:33
跟着钢铁工业的开展,可利用的铁矿资源日益趋向贫、细、杂。我国高磷铁矿石储量占总储理的14.86%,达74.5亿元。现在,因含磷较高而无法得到充分利用。
鄂西高磷铁矿中,首要矿藏-赤铁矿的嵌布粒度一般极细,且常与其他矿藏共生、胶结或相互包裹,现在被国内外公认为最难选的铁矿石类型。因而,研讨铁矿石除磷技能具有非常重要的含义。
近年来,国内外针对不同的矿石性质,进行了较为深化的铁矿石除磷工艺研讨,而酸浸及微生物浸出办法,对该类铁矿石进行浸矿除磷实验研讨,被认为是卓有成效的办法。本实验选用酸浸及微生物浸出法对该类矿石进行处理,以期到达提铁除磷的作用。
经镜下判定、XRD和扫描电镜归纳研讨标明,矿石的组成矿藏品种较为简略,铁矿藏以赤铁矿为主,其次是褐铁矿,偶见磁铁矿;脉石矿藏以石英居多,次为鲕绿泥石、胶磷矿、白云石、方解石和高岭石。
一、实验材料与办法
(一)实验材料
草酸(C2H2O4)、柠檬酸(C6H8O7)、H2SO4、HN03、HC1均为分析纯,配制成0.1mol/L;
菌种。生物浸出实验中,菌株选用嗜酸氧化亚铁硫杆菌(At.f菌)和黑曲霉菌。其间,At.f菌采自广西某温泉流,经纯化判定得到,黑曲霉菌采自武汉某菜地土壤,经纯化判定得到。
培育基。At.f菌选用9K培育基:(NH4)2S04 3g,KCl0.1g,MgS04·7H2O 0.5g,K2HP04 0.5g,Ca(N03)2 0.Olg,蒸馏水700mL,pH=3.0,121℃灭菌20min,参加300mL预先配成14.78%的FeS04·7H20溶液并过滤除菌;黑曲霉选用无机磷培育基:葡萄糖lOg, (NH4)2S04 0.5g,NaCl 0.3g,KCl O.3g, MgS04·7H2O 0.3g, FeS04·7H20 0.03g, MnSO4·4H20 0.03g,其间3g Ca3 (P04)2改为K2HP04 lg,蒸馏水1L,天然pH,121℃灭菌20min。
(二)实验办法
酸浸酸浸实验选用250ml锥形瓶,别离盛装相应的酸溶液lOOml,参加原矿,在空气浴振动器中进行振动拌和,反响时间为40h。 生物浸出实验选用250ml锥形瓶,别离选用在摇床中培育7d的At.f菌过滤液和培育15d的黑曲霉菌过滤液lOOml(中速滤纸过滤),矿浆浓度均为2%。
在没有特别阐明的情况下,培育菌液时锥形瓶体积为250mL,培育基体积为lOOmL, At.f菌接种量为10%,真菌选用1ml黑曲霉菌孢子溶液,其浓度为l08 cpu/ml,在摇床中振动,其间At.f菌所用摇床转速140r/min,温度30℃,黑曲霉菌所用摇床转速180r/min,温度32℃。
二、成果与评论
(一) 酸浸除磷
酸品种对浸除磷作用的影响。别离选用0.1mol/L的草酸(C2H2O4)、柠檬酸(C6H8O7)、H2SO4、HNO3、HCL对该矿石进行浸矿除磷作用的实验研讨,矿浆的浓度为2%,其成果见图1。图1 5种酸对矿石的提铁降磷作用
从图1(a)中能够看出,柠檬酸(C6H8O7)除磷作用最差,仅为77.84%,其他4种酸的磷去除率均在80%以上,其间,草酸(C2H204)除磷作用最佳,为95.52%,其次为硫酸(93.91%),硝酸与作用挨近。
从图1(b)能够看出,除草酸浸矿后铁档次与原矿挨近(43.73%),其他4种酸作用后作档次均有进步。其间,在进步铁档次方面,硫酸作用最佳,处理后铁档次为49.08%,硝酸与作用挨近,但均高于柠檬酸。别的,针对铁损失率方面,除了草酸作用后,铁损失率为8.83%外,其他4种酸处理后,铁损失率都低于2%。无机酸作用好于有机酸,硫酸处理后铁回收率为99.57%。
由以上分析可知,单一无机酸提铁除磷归纳作用优于单一有机酸,其间硫酸作用最佳。
但天然界中许多真菌能一起发生多种有机酸,其间黑曲霉菌能一起发生很多的草酸、柠檬酸等。考虑到柠檬酸除磷作用差,但具有提铁作用,草酸除酸作用好,除磷作用欠安等归纳要素,将草酸与柠檬酸按不同份额混合进行浸矿除磷。
混合有机酸对浸矿除磷作用的影响。将不同份额的草酸与柠檬酸进行混合浸矿,其混合份额别离为100∶0、80∶20、60∶40、20∶80、0∶100,矿浆浓度为2%,其成果如图2所示。图2 混合草酸与柠檬酸对矿石的提铁降磷作用
(100∶0、80∶20、60∶40、40∶60、20∶80、0∶100)
从图2(a)中能够看出,跟着草酸与柠檬酸混合份额的下降,除磷率呈下降的趋势。在份额为100∶0~20∶80之间,除磷率均在92%以上;但当酸液中只要柠檬酸时,除磷率显着下降,只要75.29%。阐明酸液中有草酸存在的情况下,除磷作用比较显著。
由图2(10)中可看出,在混合份额100∶0~20∶80之间,铁档次相对原矿改变不大,均为44%左右;而当只要柠檬酸存在时,处理后铁档次为46.87%,提铁作用较好;而跟着草酸与柠檬酸份额的下降,铁的回收率呈逐步添加的趋势。
由以上分析,可进一步断定草酸除磷作用优于柠檬酸,但柠檬酸提铁作用优于草酸。而两种酸的混合物能到达较好的提铁除磷作用,这可为将来断定真菌产酸品种起到必定探究作用。
矿浆浓度对硫酸浸矿除磷作用的影响。在矿浆浓度为2%时,单一硫酸浸矿除磷作用最佳,浸矿后的浸出液PH值仍较低,故其酸性仍能处理部分铁矿石。调查矿浆浓度对硫酸浸矿除磷作用的影响,其成果如图3所示。图3 硫酸在不同矿浆浓度条件下对矿石的提铁降磷作用
从图3(a)中能够看出,跟着矿浆浓度的添加,除磷率逐步下降。当矿浆浓度为2%时,除磷率到达93.06%;当矿浆浓度到达5%时,处理后矿石中磷含量为0.18%;除磷率为78.82%;当矿浆浓度到达6%时,矿石中磷含量为0.25%,除磷率为70.59%。
从图3(a)中能够看出,在矿浆浓度低于6%时,铁回收率均大于97.89%,且相对改变不大。而铁档次方面,跟着矿浆浓度的添加,铁档次呈下降的趋势。当矿浆浓度为6%时,铁档次为46.54%。
由以上分析可知,当矿浆浓度≤5%时,除磷作用能到达工业要求。
(三)生物浸出除磷实验
选用At.f菌进行浸矿实验,将成长7d后的At.f菌用慢速滤纸过滤,用过滤后的菌液浸矿,矿浆浓度2%,At.f菌成长过程中PH值改变见图4。24d后浆矿浆过滤,烘干,其固体中磷含量为0.25%。
黑曲霉菌浸矿除磷。取2环黑曲老菌孢子接种于100ml无机磷培育基中,黑曲霉菌成长过程中PH值改变见图5。图4 At.f菌浸矿过程中pH的改变图5 黑曲霉菌成长过程中pH值改变
因为一步浸矿过程中,黑曲霉菌丝会将矿藏包裹,导致浸矿后菌矿难以别离,故选用两步浸矿法进行浸矿。将过滤液(不含菌丝和孢子)直接浸矿,矿浆浓度为2%,反响40h后,过滤、烘干矿石,化验成果为:剩下磷含量为0.2 2%,到达了较好的除磷作用。
三、结 论
(一)浸除磷实验中选用lOOml 0.1mol/L的草酸(C2H2O4)、柠檬酸(C6H8O7)、H2SO4、HNO3、HCL,矿浆浓度为2%,单一的无机酸提铁降磷作用优于有机酸。其间,硫酸作用最佳;柠檬酸除磷作用最差,但对进步铁档次有必定作用;草酸除磷作用最好,但铁损失率最大。
(二)有机混合酸浸矿方面,跟着草酸与柠檬酸混合份额的下降,除磷率逐步下降,回收率逐步进步,处理后铁档次相对安稳。在混合份额介于100∶O~20∶80之间时,除磷作用较抱负。
(三)跟着矿浆浓度的添加,单一硫酸浸矿除磷率逐步下降,处理后矿石铁档次也逐步下降铁回收率改变不大。当矿浆浓度为5%时,除磷率能到达78.82%;高于6%时,除磷作用达不到相关要求。
(四)选用At.f菌和黑曲霉菌进行浸矿除磷浸出后固体中磷含量别离为0.25%、0.22%,到达了较好的除磷作用。
宜昌某高磷赤铁矿反浮选提铁降磷试验研究
2019-01-24 09:37:09
鄂西地区存在着大量的赤铁矿资源,累计探明的储量18.95亿吨,远景资源量可达30亿~40亿吨。矿石的有害组分磷含量为0.3 %~1.8 %,SiO2含量也较高,在10%~15%左右,硫含量为0.01 %~0.4 %,矿石具有鲕状结构,属于“宁乡式” 鲕状赤铁矿,由于其难选难冶的特点而一直未得到开发利用。受宜昌市某单位委托,对宜昌某高磷赤铁矿进行了可选性试验研究,在给矿铁品位50.09%,含磷量0.53%的条件下,通过选择性絮凝脱泥-反浮选可获得精矿铁品位57.43%, 回收率71.80%,含磷量0.18%的良好指标。且探讨了组合捕收剂对此矿的分选效果,结果表明组合捕收剂用量为300g/t时可获得与单一捕收剂用量800g/t时相似的浮选指标,降低了捕收剂的用量,解决了此矿提铁降磷的难题,并为同类矿石的开发利用提供了一定的依据。
一、矿石性质
从宜昌某矿山四个不同地点按比列取样配矿,矿石为粒度范围较大的块矿,采用采用颚式破碎机和对辊式破碎筛分机将矿石破碎至-2mm,混匀后缩分至每袋1kg,并取样供化学多元素分析,物相分析。原矿化学多元素分析结果与铁物相分析结果分别见表1、2。
表1 原矿化学多元素分析结果元素TFeFeOSiO2PCaOMgOAl2O3含量(%)50.098.3017.280.533.391.366.75
表2 铁矿物物相分析结果铁物相磁性铁碳酸铁硫化铁硅酸铁赤褐铁含量(%)/1.680.0415.3343.04占有率(%)/3.360.0810.6485.92
从表1中可以看出矿石中有回收价值的元素只有铁,铁品位为50.09%,主要杂质SiO2品位为17.28%,含磷量为0.53%;另外(CaO+ MgO)/(SiO2+ Al2O3)<0.5,为酸性不自熔矿石。物相分析结果表明:铁矿物主要为赤褐铁,占85.92%,少量的硅酸铁、碳酸铁及硫化铁,不含磁性铁。
工艺矿物学研究表明矿石中铁矿物主要为赤褐铁矿,共占80%以上,主要脉石矿物为石英,粘土矿物以及胶磷矿。矿石为具有同心圆的鲕状结构,鲕粒粒径大小一般为100-120µm,最大的200µm,最小60µm,鲕粒内粘土矿物和赤铁矿交互生长在一起,二者无法单体解离。石英呈不规则的粒状,粒径一般为60-80µm,最大的为95µm,最小为10µm,表面光滑,含量为15%-20%;粘土矿物和赤铁矿交织在一起,粒径小于2µm,含量在15%左右;磷矿物为胶磷矿和磷灰石分布在一起,与鲕粒一起致密共生。
二、试验研究
(一)磨矿试验
磨矿采用XMQ—67型Ф240×90mm球磨机,每次磨矿250g,磨矿浓度为50%。磨矿之前加入NaOH和Na2SiO3为分散剂,脱泥前加入对铁矿物有选择性絮凝作用的玉米淀粉100g/t。浮选采用XDF单槽式浮选机,浮选浓度约为30%,NaOH为矿浆pH调整剂,HZ为铁矿物的抑制剂,CaO为石英活化剂,MG为捕收剂,反浮选试验流程见图1,磨矿时间对浮选指标的影响见图2。图1 反浮选试验流程 图2 磨矿时间对浮选指标的影响
随着磨矿细度的增加,精矿铁品位不断上升,铁回收率不断下降,当磨矿时间从1min增加到6min时,精矿铁品位由51.74%上升到54.06%,磨矿时间继续增加到9min时,铁品位没有明显升高。所以选择磨矿时间为6min,此条件下的磨矿细度为-74um占94.17%。
(二)矿浆温度试验
阴离子反浮选常用的是脂肪酸类捕收剂,此类药剂在碱性介质中,常温下大多呈胶束形,很少呈浮游活性形,长期以来,阴离子反浮选通常需将矿浆加温,以使捕收剂保持高度的分散性,获得较理想的分选指标。但矿浆加温费用太高,目前的研究主要是集中在常温(25℃左右)浮选上。矿浆温度试验条件为:NaOH用量1500g/t,HZ用量1000g/t,CaO500g/t,MG400g/t,变换矿浆温度,矿浆温度对浮选指标的影响见图3。
矿浆温度为10和15℃时,浮选指标不理想,精矿铁品位仅为52-53%,磷品位均为0.53%,可知阴离子捕收剂MG并不能实现低温浮选;随着矿浆温度从20℃上升到40℃,精矿铁品位由54.99%上升到56.42%、铁回收率从73.52%下降到63.56%、含磷量由0.37%下降到0.29%。从节约能源的角度考虑,选择合适的矿浆温度为25℃,在MG用量为400g/t的条件下,可以获得精矿品位为55.06%,回收率76.50%,磷品位0.36%的浮选指标。(a) (b)
图3 矿浆温度对浮选指标的影响
(a) 矿浆温度对精矿铁品位与回收率的影响;(b)矿浆温度对精矿磷品位的影响
(三) pH调整剂用量试验
NaOH用量试验条件为:HZ用量1000g/t,CaO500g/t,MG400g/t,变换NaOH用量,NaOH用量对浮选指标的影响见图4。(a) NaOH用量对精矿铁品位与回收率的影响;(b)NaOH用量对精矿磷品位的影响
图4 NaOH用量对浮选指标的影响
由图4(a)可知,随着NaOH用量的增加,精矿铁品位不断上升,回收率不断下降,用量为2000g/t时精矿品位达到55.15%,回收率达到76.59%。NaOH用量达到2500g/t时,精矿品位反而下降。图4(b)可知,随着NaOH用量的增加,精矿磷品位变化不大,保持在0.35-0.4%之间,因此NaOH的最佳用量为2000g/t。
(四)捕收剂用量试验
MG用量试验条件为:NaOH用量2000g/t,HZ用量1000g/t,CaO500g/t,变换MG用量,NaOH用量对浮选指标的影响见图5。(a)(b)
图5 MG用量对浮选指标的影响 (a)MG用量对精矿铁品位与回收率的影响;(b)MG用量对精矿磷品位的影响
从图5 (a)中可看出,当捕收剂MG用量为400g/t时,精矿铁品位为55.15%,回收率为76.59%,磷品位为0.36%,当MG用量为800g/t时,精矿铁品位上升到56.74%,回收率为65.23%,含磷量下降到0.22%。随着MG用量增加,精矿铁品位上升,回收率下降,精矿铁品位在MG用量800g/t左右时达到最大值,之后随MG用量增加到1000g/t时精矿品位与回收率同时有所下降;从图5 (b)看出,精矿磷品位随着捕收剂MG用量增加而持续下降,综合考虑确定捕收剂MG用量为800g/t。
(五)抑制剂用量试验
从图6(a)可看出,HZ用量从1000g/t增加到1500g/t时,精矿铁品位变化不大,而回收率由65.23%上升73.63%,之后随着HZ用量继续增加,铁品位持续下降,铁回收率不断升高;从图6 (b)可看出,精矿磷品位在HZ用量1500g/t左右也降到最低,综合考虑确定抑制剂用量为1500g/t。在此条件下,精矿铁品位为56.66%,回收率为73.63%,磷品位为0.21%。
( a)
(b)
图6 HZ用量对浮选指标的影响 (a)HZ用量对精矿铁品位与回收率的影响;(b)HZ用量对精矿磷品位的影响
(六)开路试验
确定了浮选药剂用量、矿浆浓度、温度对浮选指标的影响之后,为提高浮选药剂的选择性,采取分段加药的方式。通过大量的试验,确定了开路试验流程为一段粗选两段精选,浮选流程如图7所示。分散剂NaOH用量为1000g/t、Na2SiO3的用量为500g/t,粗选NaOH用量为 2000g/t,高分子抑制剂HZ用量为1500g/t, CaO用量为500g/t,捕收剂MG用量为300 g/t,精选ⅠMG用量为300g/t,精选ⅡMG用量为200g/t为最佳药剂制度。在给矿铁品位为50.09%、磷品位为0.53%的条件下,获得开路浮选试验指标为:精矿铁品位57.43%,铁回收率为71.80%,磷品位为0.18%。图7 开路试验流程
三、组合用药试验
浮选工艺中,通常对现有的捕收剂进行合理搭配、组合使用。组合用药大致可以获得以下的效果:1)改善浮选指标,组合药剂与单一药剂相比,可分别提高品位、回收率及浮选速度,也可同时改善几项指标。2) 扩大药剂的原料来源,药剂的组合使用,可减少主药的消耗量,缓解某些原料的紧缺问题。3)减少药剂用量,组合用药由于各药剂之间的协同效应,当配比适当时往往可以减少总药剂用量,从而达到降低选矿成本的作用。4)减少环境污染,通过组合用药可以用无毒无害或毒性较小的药剂部分或完全取代有毒有害药剂。
MY武汉理工大学自行研制的一种新型的多官能团阴离子捕收剂,合成工艺路线简单,原料来源广泛,起泡性能好。将MG与MY按2:1的比例组合使用,总用量为300g/t的条件下可获得精矿品位56.83%,回收率72.41%,磷品位0.18%的指标,此指标与单独用MG800g/t时近似。浮选试验流程见图8,试验指标对比见表3。图8 组合用药试验流程
表3 组合用药与单独用药试验指标对比 药剂用量/g/t精矿品位
/%铁回收率
/%磷品位/%MGMY组合捕收剂20010056.8372.410.18单一捕收剂800/57.4371.800.18单一捕收剂/60056.4033.530.25
四、结论
a 原矿含铁品位50.09%,磷含量0.53%,SiO2品位17.28%,为酸性不自溶矿石。铁矿物主要为赤褐铁矿,矿石为鲕状构造,为典型的难选矿石。
b 反浮选开路流程为一段粗选两段精选,粗选NaOH用量为 2000g/t, HZ用量为1500g/t,CaO用量为500g/t,MG用量为300 g/t,精选ⅠMG用量为300g/t,精选ⅡMG用量为200g/t为最佳药剂制度。在给矿铁品位为50.09%、磷品位为0.53%的条件下可获得精矿铁品位57.43%,铁回收率71.80%,磷含量0.18%的优良指标。
c MG与MY以 2∶1的比列组合使用在用量为300g/t的条件下即可获得单独用MG800g/t时相似的浮选指标,可以在很大程度上降低选矿成本。
协同效应的产生主要是由于组合药剂在矿物表面产生了共吸附,与单独使用时比较,其吸附量大、吸附层比较致密、吸附层与疏水层的形成较快、颗粒的絮凝作用较大、与气泡的粘附作用时间较短,从而改变了矿物表面的疏水性、矿粒与气泡粘着几率、粘着强度与接触时间,并在一定条件下达到优化。由于吸附密度的增大,矿物表面的疏水性增强,可浮性增大,所以可以降低捕收剂的用量。
高磷低锰难选矿石除磷提锰工艺技术
2019-01-21 18:04:43
我国是一个锰矿资源比较丰富的国家,早在1960年已探明锰矿储量仅次于前苏联和印度,而居世界前列。随着工业迅速发展,锰的金属需要量增加,富锰矿日益减少,冶金用锰精矿的各种品极,除了对矿石中锰的含量有要求外,对锰铁比、磷锰比、二氧化硅的含量都有具体的严格要求,而军工、化学、电池用锰,则需要杂质含量更低的优质锰精矿。然而由于低锰矿石结构复杂,嵌布粒度微细,且含有害杂质(磷、硫、铁、硅等)高的特点,给锰矿的选别和利用带来困难。特别是杂质磷,以熔溶胶结状态的非晶质胶磷矿形式存在于含锰矿石中,目前国内外单用机械选矿方法来除磷,提高锰矿品位,均不能达到满意的效果。
为了充分利用矿产资源,提高该锰矿床的工业利用价值,采取机械选矿与化学选矿相结合的工艺流程除去杂质,提高锰矿品位,早就引起国内外选矿工作者的重视。
本文就陕西某地高磷低锰矿石选锰除磷工艺特点进行论述。
一、原矿性质
该矿属于沉积型含锰碳酸盐矿石。原矿含锰低(11%),杂质磷高(1.10%),锰矿物以碳酸锰为主,锰的氧化物极少。碳酸锰矿物有锰白云石、菱锰矿、锰方解石,其含量占67.20%。其中锰白云石为主,菱锰矿约占8%,锰方解石极少。锰白云石主要呈粒状和脉状集合体,脉状粒径0.085~0.1455㎜,粒状多在0.0291~0.0485㎜,菱锰矿呈球状或环带状,包有石英细粒或碳质、泥质,粒径多在0.0485~0.194㎜。脉石矿物为石英、白云石、方解石等。有害杂质为胶磷矿,具有软体动物的生物构造,如苔藓虫、价形虫,并与石英及锰白云石呈脉状集合体连生,似蛋白石,有裂纹解理,并沿裂纹解理被方解石所替代,粒径多在0.1455~0.0813㎜,还有少量细晶磷灰石。
原矿多元素及物相分析
原矿多元素分析结果见表1,锰的物相分析结果见表2。
表1 原矿多元素分析结果%成 分
含 量Mn
10.88P
1.09TFe
0.80SiO2
17.20Al2O3
1.73CaO
19.21成 分
含 量MgO
9.74S
0.543Cu
0.003Pb
0.01Zn
0.01CO
0.002
表2 原矿锰的物相分析结果/%锰物相碳酸盐中锰二氧化锰与铁结合锰全锰含 量10.820.420.0211.26占有率96.063.730.18100.0
由于锰矿物和脉石矿物均为碳酸盐类,它们物化性质相近,阳离子半径近似,则彼此可无际代换,从而形成一系列类质同相矿物,使锰白云石中含锰的范围变化比较大,造成碳酸锰矿物多样性、复杂性、直接影响机械选矿指标。
二、机械选矿方法和工艺流程的研究
目前在世界范围内,对难选贫碳酸锰矿石的机械选矿方法及工艺,多趋向几种选矿方法组成的联合流程。如前苏联的波科罗夫斯克碳酸锰矿选矿厂,采用洗矿—磁选—浮选联合流程,使锰的品位由16.55%提高到28.60%,回收率为86.95%。前苏联的恰图拉选矿厂,采用洗矿—重选—磁选—浮选流程,使锰矿品位由7.85%提高到29.30%,回收率为85%左右。当碳酸盐中主要矿物为菱锰矿时,采用单一浮选方法进行分选。因菱锰矿是含锰矿物中可浮性较好的,用脂肪酸类阴离子捕收剂选别是比较成功的。如日本的大江菱锰矿,用浮选工艺处理含锰13.20%的矿石,以油酸为捕收剂(578g/t)可获得含锰32.30%、回收率为82.90%的锰精矿,该矿石中96%锰为菱锰矿和锰白云石,可采用浮选选别。
(一)浮选除磷提高锰矿品位
鉴于该矿石中含锰矿物和脉石矿物大多为碳酸盐类,其物理、化学性质差别不大,特别值得注意的是,胶磷矿与碳酸盐矿物除在密度、导电性、可浮性相近和互相紧密共生外,还因胶磷矿中部分PO43-被碳酸盐中的CO32-取代,F-被OH-取代,导致晶体常数、表面电性更接近于碳酸盐类矿物,因此使胶磷矿和含锰矿物可浮性相近,用脂肪酸类捕收剂直接浮锰,或反浮选除磷,均难达到富集锰、除磷的目的。如试验采用油酸为锰矿物的捕收剂,硅酸钠为抑制剂,在原矿细度为95%-74µm,矿浆pH8~9的条件下,浮选泡沫产品含锰12.19%、含磷1.2%,锰和磷均未富集。
试验研究了阳离子捕收剂进行反浮选除磷的可能性。选用十八碳胺500g/t,苛性淀粉800 g/t,碳酸钠1000 g/t,磨矿细度74µm占90%,矿将温度25℃左右,pH8~9的条件,经一次粗选,可除去原矿中33%以上的磷。即泡沫产品锰的含量为5.5%,占有率为11.37%,磷的含量为1.8%,占有率为60.06%,槽内产品中,锰的含量为12.70%,占有率为88.63%,磷的含量为0.82%,占有率为39.40%。为了除去这部分磷,曾试验了几种流程及选用不同类型 的抑制剂,但均未得到含磷在0.2%以下的锰精矿。
(二)干式强磁选试验
从所周知,无论碳酸锰或是锰的氧化物,均属于弱磁性矿物。因该矿含锰矿物与脉石矿物以及含有害杂质矿物的比磁化系数有较大的差异,故强磁选是该矿的有效选别方法之一。常见的几种锰矿物和脉石矿物的比磁化系数见表3。
表3 常见几种锰矿物和脉石矿物比磁化系数矿 物粒 度/㎜比磁化系数/(cm3·g-1)菱锰矿
软锰矿
水锰矿
硬锰矿
含锰方解石
方解石
白云石
石 英
磷灰石-0.83
-0.83
-0.83
-0.83
-0.83
-0.13
-0.13
-0.13
-0.13(135~140)×10-6
27×10-6
(28×81)×10-6
(24~49)×10-6
(66~94)×10-6
0.3×10-6
2×10-6
(0.2~10)×10-6
(9.39~819)×10-6
根据该矿石的特性,试验比较了脱泥与不脱泥、分级与不分级的干式强磁选方案,确定了脱泥—分级—磁选流图(见图1),获得表4的选别指标。由于矿泥的占有率为22.59%,锰、磷的含量都接近原矿品位,因此对矿泥进行温式强磁选,使锰的回收率增加10%左右。分级干式强磁选可除掉原矿中约67%的磷,即磁选精矿中锰的含量可提高到18.41%,磷可降到0.31%,达到部颁五级锰精矿的品位要求。若要再提高锰的品位,使磷降至0.2%以下,仍是该方法难以解决的问题。
表4 脱泥—分级—磁选试验结果/%产品名称产 率品 位回收率MnPMnP精 矿
尾 矿
合 计44.01
55.99
100.018.41
5.76
11.330.31
1.55
1.0071.16
28.84
100.013.46
86.54
100.0
(三)温式强磙选试验
湿式强磁选机适宜处理细粒物料,也是选别含锰矿物的有效磁选设备。
试验采用环式磁选机,进行不分级磁选。磁性产品锰品位提高到22%。磷降低0.3%,而锰的回收率仅为23%,尾矿品位6%以上。采用夹板式强磁选机,对三种流程作了比较:(1)脱泥(-25µm)磁选;(2)分级磁选;(3)反浮选精矿磁选。
原矿磨至-75µm占65%,脱泥后粗砂和矿泥单独进行湿式强磁选,获得含锰17.14%、回收率为63.03%、含磷为0.41%的产品。其流程和选别指标见图2、表5。表5 湿式强磁选试验结果/%产品名称产 率品 位回收率MnPMnP精 矿
尾 矿
合 计40.60
59.40
100.017.14
7.36
11.330.41
1.47
1.0463.03
36.97
100.016.21
83.79
100.0
分级湿式强磁选得到含锰17.17%、含磷0.42%的锰精矿,与脱泥后单独磁选的品位相近,回收率为59.42%。
反浮选除磷后,槽内产品进行强磁选再处理,可获得含锰17.35%、含磷0.39%、回收率为57.2%的锰精矿。
经过几种试验方案比较,干、温式强磁选均是处理该矿石的有效方法,但要进一步降低锰精矿含磷量和提高锰品位,单一强磁选则是不容易解决的。
三、化学方法除磷,提高锰矿品位
机械选矿所获得的锰精矿,其含锰矿物的物化性质及矿物组成未发生变化,亦属于碳酸盐矿物。锰的含量为18%左右,磷以脱磷矿及少量极细的磷灰石存在,其含量为0.4%左右,约占原矿的1/3,采用单一机械选矿方法难以除掉这部分磷。国内外在处理这种类型矿石时,多采用化学方法,如火法选锰、焙烧—酸浸或水浸、亚流酸盐法、二氧化硫法、硫酸锰—电化法、连二硫酸盐法、硝酸法、离子交换法、细菌浸出法等。
参照国内外对含杂质高的碳酸锰矿石类型的化学处理方法,对该锰矿的磁选粗精矿进行中性焙烧—酸浸试验,进一步提高锰矿品位,降低磷的含量。
(一)中性焙烧试验
根据矿物的化学性质和酸浸除磷的作用,将碳酸锰进行中性焙烧,使碳酸锰转化为锰的氧化物,而不被稀酸所溶解。并且焙烧时碳酸锰矿物分解,排出CO2和其它挥发物,使锰的含量进一步提高,降低冶炼过程中燃料耗及缩短冶炼时间。
碳酸锰矿石焙烧原理:碳酸锰受热分解,放出二氧化碳、结晶水及挥发物,使碳酸锰变成氧化物而得到氧化亚锰,这一变化随着温度的升高,氧化则较多,使焙烧矿中含锰量也相对降低。焙烧氧化过程为:
焙烧试验采用箱式马弗炉,进行焙烧时间、温度的条件试验。当温度为800℃,时间为75min时,焙烧后的锰精矿品位提高到26%~28%,磷的含量也随之上升到0.43%~0.53%。
(二)稀硫酸的除磷试验
由于焙烧试验本身不是一个完整的工艺,为此进行了酸浸除磷试验。根据氧化亚锰不易与稀硫酸作用、而磷易被稀酸所溶解的化学性质,进行了稀硫酸浸出除磷试验。酸浸除磷原理:
磷酸钙(胶磷矿)在稀硫酸溶液中,生成磷酸二氢(可做化肥)存在于溶液中。其化学反应式为:
Ca3(PO4)2+2H2SO4+4H2O=Ca(H2PO4)2+2(CaSO4·2H2O)
焙烧后的锰精矿,含钙镁氧化物也部分溶解在酸溶液中。由于焙烧不完全所致,焙烧后的锰精矿仍残存有少量的碳酸锰,而碳酸锰中的锰易被稀硫酸所溶解变为硫酸锰,故在酸浸除磷过程中,损失了部分锰。酸浸提标见表6。酸浸面机械搅拌下进行,当硫酸浓度为6%,浸出时间为60~90min,固液比为1:7至1:15时,锰精矿品位提高到30%~33%,磷降到0.2%以下,最终达到除磷、提高锰精矿品位的目的。
表6 酸浸试验结果/%焙烧入料浸渣重量/g浸渣中锰浸渣中磷浸渣中锰
占有率干式磁选精矿
湿式磁选精矿46.0
48.032.94
30.180.193
0.19282.31
83.40
四、结语
(一)该矿石中锰品位,且含锰矿物为一系列组分不定的锰白云石及其它碳酸锰矿物,而有害杂质磷含量高,且以胶结状非晶质胶磷矿存在,构成矿石性质复杂、多样,造成机械选矿难以处理。
(二)原矿磨至-74µm占65%~85%时,脱除-25µm的矿泥,各粒极进行干式或湿式强磁选,矿泥进行湿式强磁选,能获得低品级的锰精矿。
(三)用焙烧—稀酸浸出的化学方法处理机械选别的锰精矿,是除磷的有效途径,使最终锰精矿品位提高到30%以上,磷的含量降到0.2%以下,锰的回收率为60%左右。
(四)化学处理难选贫锰矿石,对原矿没有严格的要求,各种类型的含锰矿石都可以使用,并能获得含杂质少的优质精矿产品,特别适用于化学、电池、军工和冶金用锰原料,还可以综合回收其伴生元素。
崔恩静 任金菊 马晶 李洁
(陕西有色金属控股集团有限公司,西安 710006)
参考文献
[1]西北有色地质研究院,陕西陕南地区高磷低锰难选矿石试验报告[R],2000,12。
[2]西北有色地质研究院,陕西石泉钒钛磁铁矿石选矿试验研究报告[R],2003,8。
[3]丁楷如,余逊贤,锰矿开发与加工技术[M],长沙:湖南科学技术出版社,1991,527。
某高磷钒矿浸出试验研究
2019-01-21 18:04:47
我国钒矿资源极为丰富,但大部分品位低,多数没有得到充分开发利用。钒主要以三价和五价形式存在于矿石中,其中三价钒几乎主要存在于含铁矿物或含铝矿物中,没有独立矿物;五价钒一般形成独立矿物-钒酸盐,常与铀和磷矿物共生。当矿石中的钒以三价状态赋存于硅酸盐类矿物中时,通常采用加添加剂在高温下焙烧来破坏钒矿物的结构,将三价钒氧化为五价钒后进行浸出。但高温焙烧污染大、能耗高、投资大。
西北地区某钒矿的V2O5平均品位0.75%,矿物组成复杂,磷含量较高,采用传统的焙烧工艺进行氧化焙烧,钒转化率较低,所以该资源始终未能得到很好的开发。试验研究了对原矿直接进行酸浸,确定了可行的工艺条件。
一、矿石类型及物质组成
(一)矿石类型
矿石组成十分复杂。钒吸附于泥质岩和胶状褐铁矿中,没有相应的独立矿物存在,钒的载体物质多以泥质内碎屑形式存在。脉石矿物主要有方解石、石英和泥质,围岩为碳酸盐岩。磷灰石多以胶磷矿内碎屑胶结物形式存在,为胶体脱水形成的微晶磷灰石。
(二)矿石物质组成
原矿的多元素化学分析结果见表1,原矿的X射线衍射分析结果见表2。
表1 原矿多元素化学分析结果 %表2 钒矿石X射线衍射分析结果 %二、试验原理
用氧化性酸破坏泥质岩和胶状褐铁矿的矿石结构,氢离子进入矿物晶格中置换相应金属离子,使矿物结构发生变化,将钒释放出来,并被氧化成四价钒。四价钒易溶于酸并生成钒氧基离子(VO)2+,反应式为:三、试验设备及方法
(一)试验设备
试验设备主要有HH-2型电热恒温水浴锅,JJ-1型精密增力电动搅拌器,2X2-2型旋片式真空泵等。
(二)试验方法
取一定浓度的硫酸溶液于四口瓶中,置于水浴锅中加热至一定温度;称取一定质量的原矿加入到放有酸液的四口瓶中,继续加热搅拌;反应一段时间后停止搅拌,过滤,洗涤。滤渣、滤液分别计量、分析。
四、试验结果及讨论
(一)原矿直接酸浸正交试验
原矿直接用硫酸浸出,钒浸出率主要受浸出剂浓度、浸出温度、液固体积质量比、浸出时间、矿石粒度的影响。选定此5因素,每因素3水平,安排L27(313)正交试验。因素及水平见表3,试验结果见表4和图1~4。
表3 试验因素及水平
表4 正交试验结果图1 H2SO4质量浓度对钒浸出率的影响图2 液固体积质量比对钒浸出率的影响图3 浸出时间对钒浸出率的影响图4 浸出温度对钒浸出率的影响图5 矿石粒度对钒浸出率的影响
可以看出,对原矿直接进行酸浸,各因素影响顺序为:浸出温度>液固体积质量比>硫酸质量浓度>浸出时间>原矿粒度;较优工艺参数为:浸出温度90℃,液固体积质量比3∶1,H2SO4质量浓度250 g/L,浸出时间6h,矿石粒度小于0.175mm。温度和液固体积质量比是影响钒浸出的主要因素:温度升高,有利于浸出反应的进行,但温度过高,对操作不利,以不高于90℃为宜;液固体积质量比较大时可获得较高的浸出率,但也会降低浸出液中钒的质量浓度,影响后续的净化富集,以2∶1较为适宜;H2SO4质量浓度增大,钒浸出率提高,但酸度过大会降低溶液pH值,影响后续工序,经济上也不合算,所以,H2SO4质量浓度确定为250g/L。
(二)验证试验
根据原矿直接酸浸正交试验结果,在最适宜条件下进行验证试验,结果钒浸出率达90.72%~92.56%,平均值为91.81%,有较好的结果。
五、结论
对高磷钒矿采用直接硫酸浸出法浸出钒是可行的。直接酸浸最佳工艺条件为:浸出温度90℃,液固体积质量比2∶1,H2SO4质量浓度250g/L,浸出时间6h,矿石粒度小于0.175mm,此条件下,钒浸出率达90.72%~92.56%。
高磷鲕状赤铁矿还原焙烧同步脱磷工艺研究
2019-02-21 12:00:34
赤铁矿是自然界散布很广的铁矿藏,是重要的炼铁质料,也可用作赤色颜料。赤铁矿石中的鲕状赤铁矿石嵌布粒度级细,且常常与菱铁矿、鲕绿泥石或含磷矿藏共生或彼此包裹,难以达到钢铁工业对铁矿石含磷的要求[1],因而鲕状赤铁矿石是现在国内外公认的最难选的铁矿石类型之一,该类资源根本没有得到有用使用。我国铁矿资源储量的约1/9为鲕状赤铁矿,因而研讨怎么有用使用鲕状赤铁矿石在我国有重要意义[2]。
国内外对该种矿石现已进行了许多研讨工作[3-7],但作用都不抱负。研讨标明,选用增加脱磷剂进行谈类矿石直接复原焙烧-磁选办法能够得到较好的目标,因而研讨了直接复原焙烧-磁选进程要素的影响,断定该类矿石直接复原焙烧-磁选的最佳条件,为该类矿石的有用使用供给新的途径。
一、矿石性质及实验办法
研讨所用矿石(原矿)为鄂西高磷鲕状赤铁矿石,其铁和磷的档次分别为43.65%和0.83%。其间首要有用矿藏为赤铁矿和少数褐铁矿,赤褐铁矿之铁点97.82%。
复原焙烧以煤为复原剂,一起参加脱磷剂NCP混匀,放在加盖的坩埚中,然后在马费炉中在必定的温度下焙烧-定时刻,冷却后进行两盲动磨矿和磁选。首要调查的条件要素包含煤的用量、脱磷剂用量、复原焙烧温度、复原焙烧时刻、磨矿细度等。
因直接复原焙烧-磁选终究得到的产品中铁的档次大于90%,为防止同惯例的铁精矿混杂,将该产品命名为复原铁产品。实验中焙烧后产品的总质量同焙烧前比较有较大改动,故用复原铁产品中铁的肯定金属量同焙烧实验中参加的原矿的肯定金属量的比值来核算回收率。煤与NCP的用量指煤或NCP与矿石质量的比值,均用百分比来表明。
二、实验成果及评论
(一)二段磨矿时刻实验
前一阶段的实验成果标明铁档次的进步和磷档次的下降都要通过细磨来完成,因而首要调查籽焙烧进程中二段磨矿细度的影响。固定条件为,煤的用量40%,NCP用量20%,焙烧温度1000℃,焙烧时刻60min,磨矿浓度70%,榜首段磨矿细度为-0.074mm55%,磁选,磁选场强87.6kA/m,精矿再磨。实验成果见图1。从图1中能够看出,跟着二段磨矿时刻的增加,铁的档次和回收率都呈上升趋势,但磷的档次在磨矿时刻为20min时有较大的下降,应是嵌布粒度较细的脉石矿藏在此刻能够充沛与铁矿藏解离,而且不会发作聚会。故断定第二段磨矿时刻为20min,此刻磨矿粒度100%小于16μm。
(二)煤的用量实验
固定其他条件不变,调查了焙烧进程中煤的用量的影响,成果见图2。从图2能够看出,跟着煤用量的增加,铁的档次和回收率均加,磷的档次下降,此进程中煤能够同原矿充沛反响,将原矿中的Fe2O3复原,但当用量超越40%时,煤在反响中过量,尽管对铁的回收率仍有必定的进步,但会影响到脱磷剂税磷的作用,一起铁的档次略有下降。因而断定煤最佳用量为40%。
(三)NCP用量实验
固定煤的用量为40%,其他条件不变,改动NCP用量进行实验,成果见图3。从图3能够看出,在NCP用量到15%之前,铁档次、回收率都有显着进步,磷档次有显着下降,当NCP用量超越20%之后,对成果的影响变小,因而断定NCP的最佳用量为20%。NCP的首要作用是在焙烧的进程中与原矿发作反响,从而在磁选进程中将磷去除,一起还能够下降焙烧进程中复原生成铁的温度,对复原有必定的促进作用。
(四)焙烧温度实验
固定NCP用量为20%,其他条件不变,改动焙烧温度进行实验,成果见图4。从图4能够看出,当温度低于1000℃后,跟着温度的升高,铁的回收率升高,而磷的档次下降,阐明在此温度条件下,升高温度有利于铁的复原以及磷的去除,当温度超越1000℃持续升高时,磷的档次显着升高,而铁的回收率随之下降,由此可知在该范围内,温度对脱磷剂的作用产生了晦气的影响。实验中发现温度高于1000℃时,焙烧后的产品结块严峻,有大的铁颗粒生成,终究复原铁产品中磷的档次升高。揣度在焙烧进程中有部分铁熔融后同磷结合,使脱磷更难完成。因而断定最佳温度为1000℃。
(五)焙烧时刻实验
固定温度为1000℃,其他条件不变,改动焙烧时刻进行实验,成果见图5。从图5能够看出,跟着焙烧时刻的延伸,铁的档次、回收率随之增加,磷的档次随之下降,但当时刻超越60min后时刻的影响变小,能够断定当时刻为60min时,复原反响根本进行结束,因而断定焙烧时刻为60min。
通过实验断定鄂西高磷鲕状赤铁矿焙烧复原磁选的最佳条件为:复原剂用量40%,NCP用量20%,焙烧温度1000℃,焙烧时刻60min,一段磨矿细度为-0.074mm55%,二段磨矿细度为-16μm,磁选场强87.6kA/m。经重复实验,得到复原铁产品平均目标如下:铁档次90.09%,铁回收率88.91%,磷档次0.07%。
三、定论
(一)在鲕状高磷赤铁矿石复原焙烧进程中增加脱磷剂,能够完成得到高档次复原铁产品的一起,使其间磷的含量下降到0.07%。为合理使用难选高磷赤铁矿供给了一种新的途径。
(二)在复原焙烧的进程中,NCP起到脱磷的作用,一起能够下降焙烧进程中的温度;
(三)复原焙烧温度应控制在1000℃,过高的温度将会使铁矿藏与磷从头结合,而温度过低时达不到复原的作用。
(四)因为鲕状赤铁矿自身的嵌布粒度极细,所以通过复原焙烧的产品需求充沛细磨才干有用分选。
参考文献
[1]姚敬劬.应从头规划开发宁乡式铁矿,国土资源科技管理,2005(5):13-16。
[2]童雄,黎应书,周庆华,等,难选鲕状赤铁矿石的选矿新技术实验研讨,我国工程科学,20057(9):323~325。
[3]肖巧斌,戈保梁,杨波,等.云南某鲕状赤铁矿选矿实验研讨.金属矿山,2005,8(增刊):153~155。
[4]周继程,薛正良,张,等。高磷鲕状赤铁矿脱磷技术研讨.炼铁2007,26(2):40~43。
[5]纪军.高磷铁矿石脱磷技术研讨.矿冶,2003(2):33~37。
[6]刘亚辉,孙炳泉.赤铁矿的正-反浮选研讨,金属矿山,2004(1):39~41.
[7]朱江,萧敢,汪桂萍,湖北宜昌某高磷赤铁矿的选矿工艺研讨,金属矿山,2006(8):189~191。
高磷赤褐铁矿提铁降磷氯化离析工艺条件试验研究
2019-02-21 15:27:24
跟着我国钢铁工业的迅速开展,迫切需要依托技能进步来最大极限地合理开发利用国内现有铁矿资源,尤其是受现在选矿技能约束而不能开发利用的杂乱难选铁矿石,增储增效,充沛发掘现有铁矿山的生产潜力,进步铁矿石的自给率,缓解进口铁矿石的压力,保持安稳、足量、优质的铁矿质料供应,以保证钢铁工业继续安稳的开展。现在,我国有占总储量14.68%,问题达74.5亿t的高磷铁矿石,因技能问题而没有开发利用。所以,研讨高磷铁矿石降磷的工艺,对保证我国钢铁工业质料的供应,具有十分重要的理论含义和现实含义。
本课题以云南某矿高磷赤褐铁矿为研讨目标,进行了高磷赤褐铁矿提铁降杂实验研讨。在惯例的强磁选、重选和浮选得到的选矿目标不行抱负的情况下,选用复原焙烧-弱磁选工艺得到了较好的选矿目标。
一、研讨办法
(一)试样性质
试样是云南某高磷赤褐铁矿,试样光谱分析见表1,试样化学成分分析见表2,试样铁物相分析见表3
表1 试样光谱分析成果/%元素AgAlAsBBaBeBiCa概量0.000210.007<0.001<0.03<0.0010.0030.3元素CdCoCrCuFeGaGeMg概量<0.0010.010.0020.03>>100.001<0.0010.2元素MnMoNiPPbSbSiSn概量0.80.0030.050.30.004<0.01>100.002元素TiVWZnInTaNb概量0.40.006<0.0030.05<0.01<0.005<0.01表2 试样化学成分分析成果成分Fe/10-2S/10-2P/10-2SiO2/10-2As/10-6含量35.550.0260.8830.18<1
表3 试样铁物相分析成果/%成分碳酸铁中Fe赤褐铁矿中Fe硫化铁硅酸铁磁性铁总铁含量0.3034.740.050.050.1135.25占有率0.8598.560.140.140.31100.00从表1、表2及表3能够看出,该矿中铁首要以赤褐铁矿方式存在,占总铁的98.56%。有害元素硫、砷的含量较低,对该矿石影响不大,经化学分析矿石磷超支严峻。
通过矿石赋存状况研讨,矿石中的铁首要是以褐铁矿的方式产出。其它脉石矿藏首要为石英,还有少数的长石、绢云母和高岭石等。石英和长石简单从褐铁矿中选别出。经电子探针成分分析,褐铁矿中首要含MnO、SiO2和P2O5等杂质。矿石中的磷含量为0.88%,其间85.9%的磷以类质同象的开工散布于褐铁矿中,这部份磷不能用机械选矿的办法和褐铁矿别离。还有14.1%的磷是以胶磷矿的方式发生,但胶磷矿也是以浸染状或极细的机械混入物的方式散布于褐铁矿中,这部份磷也难用机械选矿的办法和褐铁矿别离。
(二)实验计划
实验过程中发现,选用复原焙烧的办法,能够将铁的档次进步到55%左右,但磷含量依然较高,仍不能到达合同目标。因而,在复原焙烧实验研讨过程中,参加了其它药剂,把磷的含量下降到0.3%以下。该实验是将试样在必定温度下,枯燥脱水后干磨制粉,参加必定量的氯化剂和复原剂与粉状试样混匀,将之置入焙烧中进行焙烧;焙烧后的产品,通过水淬、磨矿及弱磁场磁选机选别后,得到磁性产品;磁性产品通过过滤脱水枯燥后,得终究的铁精矿。实验流程见图1。图1 氯化离析-弱磁选工艺流程
二、研讨成果与评论
(一)氯化剂用量实验
氯化剂用量实验成果见表4。焙烧温度900℃,焙烧时刻60min,磁选物料细度-0.074mm占75%,弱磁选磁场强度H=0.1T。
表4 氯化剂用量实验成果用量/%产品产率/%档次/%收回率/%FePFeP10铁精矿42.3762.660.60065.0324.22尾矿57.2324.951.3834.9775.78算计100.0040.821.05100.00100.0015铁精矿37.9074.500.32868.6612.06尾矿62.1020.751.4631.3487.94算计100.0041.121.03100.00100.0020铁精矿43.7574.170.31577.3313.28尾矿56.2516.911.6022.6786.72算计100.0041.961.04100.00100.0025铁精矿40.3477.700.28074.5810.95尾矿59.6617.911.5425.4289.05算计100.0042.021.03100.00100.0030铁精矿40.3577.300.27974.3010.92尾矿59.6518.091.5425.7089.08算计100.0041.981.03100.00100.00
从表4能够看出,跟着氯化剂用量的添加,铁档次呈逐步上升趋势改变,铁收回首先呈升高趋势改变,当氯化剂用量添加至25%时,铁收回率有必定的下降;铁精矿中的磷含量呈逐步下降的趋势改变。归纳考虑,挑选氯化剂用量为25%比较适宜,能够得到产率为40.34%、含磷0.280%、铁档次为77.70%、铁收回率74.58%的铁精矿选矿目标。
(二)复原剂用量实验
复原剂用量实验成果见表5。焙烧温度900℃,焙烧时刻60min,磨矿细度-0.074mm占75%,弱磁选磁场强度H=0.1T。
表5 复原剂用量实验成果用量/%产品产率/%档次/%收回率/%FePFeP5铁精矿12.9477.160.24423.832.99尾矿87.2636.001.15676.1797.01算计100.0041.241.04100.00100.007铁精矿23.2669.340.21443.404.93尾矿76.7427.411.2556.6095.07算计100.0037.161.01100.00100.009铁精矿42.4276.980.19179.997.95尾矿57.5814.181.6320.0192.05算计100.0040.821.02100.00100.0011铁精矿40.9879.040.16880.666.42尾矿59.0213.161.7019.3493.58算计100.0040.161.07100.00100.00
从表5能够看出,跟着复原剂用量的添加,铁档次呈逐步上升趋势改变,铁收回首先呈升高趋势改变,铁的收回率有必定的下降;铁精矿中的磷含量呈逐步下降的趋势改变。归纳考虑,挑选复原剂用量为11%比较适宜,能够得到产率为40.98%、含磷0.191%、铁档次为79.04%、铁收回率74.58%的铁精矿选矿目标。
(三)磁场强度实验
磁场强度实验成果见表6。焙烧温度900℃,焙烧时刻60min,磁选物料细度-0.074mm占75%。
表6 磁场强度实验成果磁场强度/T产品产率/%档次/%收回率/%FePFeP0.06铁精矿36.4678.940.19668.447.69尾矿63.5420.881.3532.5692.31算计100.0042.050.93100.00100.000.08铁精矿42.6878.110.19879.119.17尾矿57.3215.361.4620.8990.83算计100.0042.160.92100.00100.000.10铁精矿43.2978.020.21480.1110.19尾矿56.7114.791.4419.8989.81算计100.0042.160.91100.00100.000.12铁精矿43.9377.680.21981.1410.91尾矿56.0714.151.4918.8689.01算计100.0042.060.93100.00100.000.15铁精矿44.4276.920.22381.3910.36尾矿55.5814.061.4918.6189.64算计100.0041.980.94100.00100.000.20铁精矿44.4576.900.24081.4311.35尾矿55.5514.031.5018.5788.65算计100.0041.980.94100.00100.00
从表6能够看出,跟着磁场强度的添加,铁档次改变较小,铁收回率呈升高趋势改变,铁的收回率有必定的下降;铁精矿中的磷含量改变比较小。归纳考虑,挑选磁场强度H=0.15T比较适宜,能够得到产率为44.42%、含磷0.223%、铁档次为76.92%、铁收回率81.39%的铁精矿选矿目标。
(四)磨矿细度实验
焙烧温度900℃,焙烧时刻60min,磨矿纤细磁选磁场强度H=0.1T,磨矿细度实验成果见表7。
表7 磨矿细度实验成果细度产品产率/%档次/%收回率/%FePFeP-0.154mm占100%铁精矿36.9160.630.53154.5320.70尾矿63.0929.581.1945.4779.30算计100.0041.040.95100.0100.00-0.100mm占100%铁精矿39.0770.120.35566.6314.61尾矿60.9322.521.3333.3785.39算计100.0041.120.95100.00100.00-0.074mm占100%铁精矿39.7582.330.23979.669.99尾矿60.2513.871.4220.3490.01算计100.0041.080.95100.00100.00-0.045mm占100%铁精矿38.7780.290.20276.138.05尾矿61.2315.941.4623.8791.95算计100.0040.890.97100.00100.00-0.038mm占100%铁精矿34.7780.690.20268.538.05尾矿65.2319.751.4631.4791.95算计100.0040.910.97100.00100.00
从表7能够看出,跟着细度的添加,铁档次改变较小,铁收回首先呈升高趋势改变,但细度添加至-0.045mm铁档次改变比较小,铁的收回率有必定的下降;铁精矿中的磷含量改变比较小。归纳考虑,挑选磁场细度为-0.074mm占100%比较适宜,能够得到产率为39.75%、含磷0.239%、铁档次为82.33%、铁收回率79.66%的铁精矿选矿目标。
(五)氯化离析-弱磁选工艺流程全程实验
选用氧化离析-弱磁选工艺对铺铁矿的混合样进行了工艺条件实验,得到了实验条件;焙烧温度900℃、焙烧时刻60min、复原剂用量11%,氯化剂用量25%,弱磁选磁场强度H=0.10T,磁选物料细度-0.074mm占100%。下面就所获得的实验条件,分别对高档次样和混合样进行氯化离析-弱磁选工艺流程全程实验,实验成果见表8。
表8 氯化离析-弱磁选工艺流程全程实验成果产品产率/%档次/%收回率/%FePFeP铁精矿36.2677.240.21880.209.76烧失率16.260.000.000.000.00尾矿47.4814.561.5419.8090.24算计100.0041.700.967100.00100.00
从表8的氯化离析-弱磁选工艺流程全程实验成果可知,对试样能够得到铁档次为77.24%、含P 0.218%、铁收回率为80.20%的选矿目标。
三、定论
(一)通过矿石赋存状况研讨,矿石中的铁首要是以褐铁矿的方式产出,褐铁矿中首要含MnO、SiO2和P2O5等杂质。矿石中的磷含量为0.88%,其间85.9%的磷以类质同象的方式散布于褐铁矿中,还有14.1%的磷是胶磷矿的方式产出。
(二)在惯例的强磁选、重选和浮选得到的选矿目标不行抱负的情况下,选用复原焙烧-弱磁选工艺得到较好的选矿目标。实验标明:氯化剂用量为25%,复原剂用量为11%,磁场强度为0.15T,磁场细度为-0.074mm占100%比较适宜。在最优工艺下,进行氯化离析-弱磁选工艺流程全程实验,能够得到产率64.46%、铁档次为55.77%、铁收回率为85.48%的铁精矿选矿目标。
某难选高磷赤褐铁矿提铁降磷选矿试验研究
2019-01-24 09:36:23
铁矿石作为钢铁工业的主要原料是一个国家的重要战略资源,近年来随着钢铁冶金工业的飞速发展,对铁矿石原材料的需求也越来越大。但是地球上有限的富铁矿和易选铁矿资源将逐步枯竭,研究高磷铁矿石的高效分选技术显得十分重要。高磷铁矿的选矿一直是选矿界的一大难题,我国高磷铁矿石储量占总储量的14.86%,达74.5亿t。因此加大对高磷铁矿石选矿和降磷的研究,开发有效、经济、实用的新方法、新技术势在必行[1、2]。云南某高磷铁矿矿石储量大,原矿含铁42%左右,铁矿物主要以赤铁矿和褐铁矿形式存在,有害杂质磷含量达0.586%,且磷矿物与铁矿物相互浸染,嵌布粒度极细,属高磷难选铁矿石。通过大量试验,确定采用还原焙烧-磁选-反浮选工艺处理该矿石,获得了铁精矿铁品位为61.72%、铁的回收率67.48%,铁精矿磷含量为0.20%选矿指标。
一、矿石性质
云南某高磷铁矿石中主要矿物为赤铁矿和褐铁矿,还有少量磁铁矿。脉石矿物主要为方解石、绿泥石、石英等。主要元素分析结果及物相分析结果见表1和表2。
表1 原矿主要化学成分(质量分数)/%表2 铜物相分析结果由表1和表2可知,该铁矿物主要目的元素是铁,原矿铁品位达到42.66%;有害元素硫和砷含量较低,有害元素磷的含量较高,为0.586%;该铁矿属于铁质泥铁矿,铁主要以赤褐铁矿形态存在,属高磷赤褐铁矿石,且磷矿物与铁矿物相互浸染,主要呈粒状分布于赤铁矿和褐铁矿中,嵌布粒度极细,属于非常难选铁矿石。
二、试验方案
对矿样分别进行了单一流程试验(强磁选、重选、直接浮选)和联合流程的试验(分级磁选、分级重选、磁浮/浮.磁联合选别和磁.重/重一磁联合选别),均未得到较好指标的铁精矿,精矿中磷的含量也不能降到0.2%以下。为此,改变思路,决定先用还原焙烧的方法把原矿还原为磁铁矿,再用磁选方法选出铁品位较高的铁精矿,再用反浮选的方法将铁精矿中的磷降到0.2%以下,得到品位合格和杂质磷不超标的铁精矿。
三、试验结果
(一)还原焙烧试验
焙烧温度、还原剂用量和焙烧时间是焙烧试验的主要影响因素。温度太低,反应进行太慢;温度太高会生成弱磁性的富氏铁或硅酸铁,从而影响精矿指标。焙烧时间太短,反应没有完全进行,会降低精矿品位和回收率;焙烧时间太长,会消耗大量的热能,同时使反应生成物的磁性大大降低,影响后面磁选的效果[3]。
将原矿破碎到-2mm后与粒度为-1mm、用量为5%的焦炭混合,还原焙烧20min,然后磨至-0.074mm粒级占100%,在磁选电流为2A条件下进行磁选,还原焙烧温度对试验效果的影响见图1。图1 焙烧温度试验结果
由图1可见,随着焙烧温度升高,铁品位和回收率均呈上升趋势。当焙烧温度达到1000℃之后,铁品位和回收率均下降。可见适宜的焙烧温度为1000℃。
将原矿破碎到-2mm后与-1mm的焦粉混合,焙烧温度为1000℃时还原焙烧20min,然后磨至-0.074mm粒级占100%,在磁选电流为2A条件下进行磁选,还原剂焦炭的用量对试验效果的影响见图2。图2 还原剂用量试验结果
由图2可见,随着焦炭用量增加,铁品位和铁回收率均呈先上升后下降的趋势,在焦炭用量为8%时出现极值。可见适宜的焦炭用量为8%。
将原矿破碎到-2mm后与-1mm焦炭混合,焦炭用量为8%,在1000oC下还原焙烧,然后磨至-0.074mill粒级占100%,在磁选电流为2A条件下进行磁选,还原焙烧时间对试验效果的影响见图3。图3 还原焙烧时间试验结果
由图3可见,随着还原焙烧时间延长,铁品位和铁回收均呈先上升后下降的趋势,在还原焙烧时间为30min时,铁品位和回收率均达到最大值。可见适宜的还原焙烧时间为30min。
(二)磁选试验
1、磁场强度试验将原矿破碎到-2mm后添加-1mm焦炭8%,在1000℃下焙烧30min,然后磨至-0.074mm粒级占100%,进行磁选,磁选电流对试验效果的影响结果见图4。图4 磁选电流试验结果
由图4可以看出,磁选电流太高时精矿铁品位达不到60%,磁选电流太低则铁精矿回收率达不到50%。磁选的电流为2.5A时选别指标较为适宜,此时的精矿品位为61.77%,回收率为68.25%。
2、磨矿粒度试验将原矿破碎到-2mm后添加-1mm焦炭8%,在1000℃下焙烧30min,然后磨矿,在磁选电流为2.5A条件下进行弱磁选,磨矿粒度对试验效果的影响结果见图5。图5 磨矿粒度试验结果
由图5可以看出,物料越细,铁矿物单体解离越充分,精矿铁品位越高,但物料太细导致磁选时铁的损失严重。根据试验结果,确定适宜的磨矿粒度为-0.054mm粒级占90%。
3、综合试验通过条件试验,确定各工艺参数后进行了综合试验。将原矿破碎到-2mm后添加-1mm焦炭8%,在1000℃下焙烧30min,然后磨矿至-0.054mm粒级占90%,在磁选电流为2.5A条件下进行弱磁选,可获得铁品位为60.86%、磷含量为0.42%、回收率为70.68%铁精矿。
(三)铁精矿降磷试验
由于该铁矿所含的磷矿物与铁矿紧密共生,浸染于氧化铁矿物颗粒边缘,并有少量的磷存在于铁矿石及铁质粘土的晶格中,部分磷矿物在焙烧过程中与铁矿物分离开,磷的含量由原来的0.59%降到了0.42%,但仍有部分磷矿物留在磁选精矿中,造成铁精矿的磷含量超标,所以进行了铁精矿反浮选降磷试验[4]。
以碳酸钠为pH调整剂、淀粉为抑制剂、RP为捕收剂、2油为起泡剂,对弱磁选精矿进行了一粗一精反浮选脱磷,试验流程见图6,试验结果见表3。图6 反浮选流程
表3 反浮选试验结果由表3结果可知,反浮选流程可以得到铁品位61.68%、回收率91.87%的铁精矿(相对于原矿为65.93%),铁精矿中磷降到了0.21%。
(四)全流程试验
在以上条件试验的基础上进行了全流程试验,试验流程见图7,试验结果见表4。图7 还原焙烧-磁选-反浮选全流程
表4 全流程试验结果由表4结果可知,采用还原焙烧.磁选.反浮选工艺处理该赤褐铁矿石,获得了铁精矿铁品位为61.72%、铁的回收率67.48%,铁精矿磷含量为0.20%的选矿指标。
四、结语
1、云南某铁矿石铁矿物主要以赤褐铁矿形式存在,磷含量达0.586%,矿物嵌布粒度微细,用常规物理选矿方法难以获得符合冶炼要求的铁精矿。通过大量试验,确定用还原焙烧-磁选-反浮选工艺流程处理该矿石,获得了精矿铁品位61.72%、磷含量0.20%、铁回收率67.48%的较好选别指标。
2、随着铁矿石资源的日益紧张和冶炼对原料越来越高的要求,本研究提出的焙烧-磁选-反浮选工艺为类似难处理微细粒高磷赤褐铁矿的开发利用提供了新的思路。
参考文献:
[1] 林祥辉,罗仁美.鄂西难选铁矿的选矿与药剂研究新进展[J].矿冶工程,2007(3):28-29.
[2] 孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006(3):11-13.
[3] 肖军辉.某细粒难选赤褐铁矿提铁降磷新工艺工业试验[J].金属矿山,2007(1):44-46.
[4] 李广涛,张宗华.四川某高磷鲕状赤褐铁矿石选矿试验研究[J].金属矿山.2008(4):43-46.
作者单位
江西理工大学(艾光华、余新阳)
广西大学(魏宗武)
关于红铜你知道多少?
2019-05-24 11:10:38
红铜即纯铜,又叫紫铜,具有很好的导电性和导热性,可塑性极好,易于热压和冷压力制作,很多用于制作电线、电缆、电刷、电火花专用电蚀铜等要求导电性杰出的产品。由硫化物或氧化物铜矿物提炼得来的纯铜,可用以铸钱及制作器物。 红铜因为高纯度,安排细密,含氧量极低,无气孔、沙眼、裂纹、杂质,导电功能佳。电蚀出的模具表面光洁度高,经 红铜热处理技术,电极无方向性,合适精打、细打。现很多用于制作电线、电缆、电刷、电火花专用电蚀铜等要求导电性杰出的产品,须防磁性搅扰的磁学仪器、外表,如罗盘、航空外表等。硫酸铜在农业和林业上可防看病虫灾,按捺水体中藻类的很多繁衍。
磷青铜
2019-05-30 18:44:29
磷青铜一、特性及适用范围: 因含磷量较高,其抗疲劳强度较高,弹性和耐磨性较好,但在热制作时有热脆性,只能接受冷压力制作。二、化学成份:铜 Cu :余量锡 Sn :6.0~7.0铅 Pb:≤0.02铅 Pb:≤0.02硼 P:0.26~0.40铝 Al:≤0.002铁 Fe:≤0.02硅 Si :≤0.002铍 Sb :≤0.002铋 Bi:≤0.002三、力学性能:抗拉强度 σb (MPa):≥410伸长率 δ10 (%):≥15伸长率 δ5 (%):≥18
磷青铜特性
2019-05-30 19:33:13
磷青铜带具有杰出的延展性,深冲功能以及电镀性,广泛用于建筑、轿车、装修、电子接插件、制作职业。带材的板型、表面及尺度精度控制为国际一流水平;锡磷青铜带普带(Sn4%)、高精带(Sn8%)均可加工。具有杰出的延展性、深冲性、较高的强度、硬度等优秀的归纳功能,多用于电子电气设备弹性材料、集成电路引线结构材料等。锡磷青铜有更高的耐蚀性,耐磨损,冲出时不发生火花。用于、中速、重载荷有轴承,作业最高温度250℃。具有主动调心对偏斜不灵敏,轴承受力均匀承载力高,可一起受径向载荷,自润滑无需保护等特性。锡磷青铜是一种合金铜,具有杰出的导电功能,不易发热、确保安全一起具有很强的抗疲劳性。锡磷青铜的插孔硬连线电气结构,无铆钉衔接或无冲突触点,可确保触摸杰出,弹力好,拨插平稳。该合金具有优秀有机械制作功能及成屑功能,可使零件制作进程敏捷缩短了制作时刻。
铝青铜价格参考
2019-05-28 09:59:04
铝青铜价格参阅
铝青铜除了我国自己加工制作之外,还有许多质量优秀的铝青铜材料是从国外进口的,特别是从日本进口的比较多。铝青铜的多少钱也是各大做铝青铜材料制作的有色金属厂商一向重视的问题之一。
铝青铜是含铝量一般不超越11.5%,有时还参加适量的铁、镍、锰等元素,铝青铜以进一步改铝青铜善功能。铝青铜可热处理强化,其强度比锡青铜高,抗高温氧化性也较好。有较高的强度 杰出的耐磨性 用于强度比较高的螺杆、螺帽、铜套、密封环等,和耐磨的零部件,最杰出的特色便是其杰出的耐磨性。为含有铁、锰元素的铝青铜有高的强度和耐磨性,经淬火、回火后可进步硬度,有较好的高温耐蚀性和抗氧化性在大气、淡水和海水中抗蚀性很好,可切削性尚可,可焊接不易纤焊,热态下压力制作杰出。
锰矿
2017-06-06 17:49:58
锰矿物的利用历史十分悠久,据文献记载,世界上利用锰矿物最早的国家有埃及、古罗马、印度和中国。我国利用锰矿物的历史可追溯到距今约4500~7000年前后新石器时代的仰韶文化(彩陶文化)时期。由于软锰矿呈土状,它的颜色呈黑色,极易染手,在古人看来,这是一种奇妙的陶器着色颜料。 中国锰矿资源的分布:中国锰矿资源较多,分布广泛,在全国21个省(区)均有产出;有探明储量的矿区213处,总保有储量矿石5.66亿吨,居世界第3位。中国富锰矿较少,在保有储量中仅占6.4%。从地区分布看,以广西、湖南为最丰富,占全国总储量的55%;贵州、云南、辽宁、四川等地次之。从矿床成因类型来看,以沉积型锰矿为主,如广西下雷锰矿、贵州遵义锰矿、湖南湘潭锰矿、辽宁瓦房子锰矿、江西乐平锰矿等;其次为火山-沉积矿床,如新疆莫托沙拉铁锰矿床;受变质矿床,如四川虎牙锰矿等;热液改造锰矿床,如湖南玛璃山锰矿;表生锰矿床,如广西钦州锰矿。从成矿时代来看,自元古宙至第四纪均有锰矿形成,以震旦纪和泥盆组为最重要。 锰矿一般分为氧化锰和碳酸锰,氧化锰一般是颗粒状的黑色矿物,硬度较小。而碳酸锰则是块状的黑色矿物,一般硬度较大。一般锰矿里含有的杂质为石英沙等其它杂质。一般选锰矿最好的办法是磁选法。一直以来,人们认为锰矿不会被磁所吸引,其实是因为所采用的磁场强度不够大。当磁场达到7000GS左右,锰矿就很明显地被磁所吸引。因此选锰最好的办法是磁选法,即采用锰矿磁选机。 锰在地球岩石圈中以及硅酸盐相的陨石中表现有强烈的亲石性质,但在岩石圈上部则有强烈的亲氧性质,锰与铁在岩石圈中以及陨石中虽有许多相似的化学性质,但锰并不亲铁。锰矿在自然界中已知的含锰矿物约有150多种,分别属氧化物类、碳酸盐类、硅酸盐类、硫化物类、硼酸盐类、钨酸盐类、磷酸盐类等。但含锰量较高的矿物则不多。 更多关于锰矿的资讯,请登录上海有色网查询。
锰矿
2017-06-06 17:49:58
锰在地球岩石圈中以及硅酸盐相的陨石中表现有强烈的亲石性质,但在岩石圈上部则有强烈的亲氧性质,锰与铁在岩石圈中以及陨石中虽有许多相似的化学性质,但锰并不亲铁。锰矿在自然界中已知的含锰矿物约有150多种,分别属氧化物类、碳酸盐类、硅酸盐类、硫化物类、硼酸盐类、钨酸盐类、磷酸盐类等。但含锰量较高的矿物则不多。 中国锰矿开拓方法有:露天开采、露天水力开采和地下开采三种。 1、露天水力开采 露天水力开采虽属露天开采范畴,但差别较大。该方法始于1963年投产的广西八一锰矿。随后在广西平乐、荔浦锰矿和湖南东湘桥、半边月等锰矿推广应用。当前露天水力开采量约占全国锰矿开采量的10%左右。露天水力开采的基本特征是:利用水头压力和同一水流依次完成冲采、运输、洗选和尾矿排放等连续性生产工艺。因此,它适用于水源充足的风化型锰矿床。 据1995年《中国锰矿志》记载,湖南东湘桥、半边月和广西平乐二塘、荔浦太平等锰矿或采区,在其下部有一种粘性大、塑性很强的胶质粘土层,无论用水枪还是其他机械都难以回采。由长沙黑色冶金矿山设计院和东湘桥锰矿共同试验采用“爆破风化预先松动水采法”获得成功。经多年的生产实践,取得了较好的技术经济效果。该法包括穿孔、爆破、风化、水化和冲采5个步骤:首先采用冲击钻穿孔,孔深一般1.5~2.5m,炮孔呈梅花形布置,然后装药爆破,爆堆隆起,再自然风化即风吹、日晒3~6d后,在爆堆上均匀喷洒适量水,矿土便开始分离,再过1~2d即可冲采。露天水力开采具有工艺简单、采矿效率高,劳动条件好,基建投资省等优点,适合于具有一定坡度和水源充足的矿山采用。其缺点是剥离和水采洗矿,造成大量的尾泥浆,需占用面积大的尾泥库,同时水、电消耗多,只能因地制宜。 2、露天开采 目前,风化堆积型氧化锰矿大部分是露天开采,其开采量占全国开采量的60%以上。主要矿山有湖南玛瑙山锰矿;广西下雷(浅部)、木圭、土湖锰矿;云南建水、斗南(浅部)锰矿;福建连城锰矿;广东小带、新榕锰矿等等。这些矿山生产流程基本相同,但装备水平相差甚大,重点矿山装备水平较高,如下雷锰矿采、装、运全部实现机械化生产,打眼采用潜孔钻穿孔,柴油铲铲装,汽车运输矿岩。但大多数地方中小矿山采、装、运还处于半机械化或土法生产,手工操作。 更多关于锰矿的资讯,请登录上海有色网查询。
某鲕状高磷赤、褐铁矿回转窑磁化焙烧试验
2019-01-24 09:35:03
钢铁工业是国民经济的支柱产业之一,尤其是正处于国民经济高速发展中的我国钢铁工业就显得更为重要。解决铁矿原料不足、弥补供需缺口的途径有两条,一是寻找和开发新的铁矿原料基地;二是继续利用国外铁矿资源。我国的铁矿石资源中,具有易选、含杂低、含铁高、选矿工艺简单等特点的铁矿石正逐步面临枯竭;相反,具有含杂高(主要是P和S)、含铁低、嵌布粒度细等特点的难选铁矿石资源仍然没有得到合理的开发利用。
目前,难选铁矿石中的鲕状高磷赤、褐铁矿由于选矿工艺复杂,所得铁精矿产品铁品位低,含磷高仍然没有合理的选矿工艺利用这部分宝贵的铁矿石资源,故开发合理的选矿新工艺处理鲕状高磷赤、褐铁矿具有重大的现实意义。
一、试样性质
本次半工业试验试样来自四川某地区,嵌布粒度较细的高磷鲕状赤、褐铁矿,该矿石呈块状、硬度较大。原矿最大粒度在50mm以下约占全样的20%,一部分在25mm以下约占全样35%,其余的均在m15mm以下,从肉眼观察原矿中的脉石(石英、方解石等)矿物比较多,同时呈致密状分布,鲕状比较明显。原矿铁品位为39.38%,磷含量为0.763%。矿石主要铁矿物成分为赤、褐铁矿,其次为磁铁矿、硅酸铁矿、菱铁矿、黄铁矿等;矿石主要脉石矿物为石英、方解石、透辉石、普通辉石、绿泥石、文石、石榴石等。为满足工业试验的要求,将试样加工制备成-10mm以下进行试样的光谱分析、多元素分析、铁物相分析和筛分试验,试验结果依次见表1~表4。
表1 试样光谱分析结果 %元素AgAlAsBBaBe含量0.0030.280.04<0.001<0.02<0.001元素BiCaCdCoCuFe含量<0.0010.5<0.0010.0030.04>10元素GaGeMgMnMoNi含量0.001<0.0010.90.080.0030.006元素PPbCrSiSnTi含量<0.10.0070.00150.0020.02元素VWZnInTaNb含量0.08<0.01<0.005<0.01<0.005<0.01
表2 试样多元素化学分析结果 %元素FeSPAsSiO2MgOCaOAl2O3含量39.380.0160.76395.9815.982.981.126.09
注:As单位为×10-6
表3 试样铁物相分析结果铁物相TFe磁性铁碳酸铁黄铁矿硅酸铁赤、褐铁矿其它铁含 量39.381.894.920.565.1226.660.23占有率100.004.8012.491.4213.0067.700.59
表4 试样筛分试验结果粒级/mm产率/%Fe品位/%P品位/%Fe分布率/%P分布率/%个别累积个别累积个别累积个别累积个别累积-10+826.1226.1239.683.680.9020.90226.3126.3126.6526.65-8+530.0856.2040.1839.950.8980.90030.6856.9930.5657.21-5+2.515.9872.1838.8639.710.8650.89215.7672.7515.6472.85一2.5+111.9484.1239.2239.640.8620.88811.8984.3411.6484.49-1+0.457.2291.3437.8939.500.8830.8876.9491.587.2191.70-0.45+0.283.9895.3237.9239.430.7890.8833.8395.413.5595.25-0.28+0.13.1298.4438.1139.390.9010.8833.0298.433.1898.43一0.11.56100.0039.9339.400.8890.8841.57100.001.57100.00合计100.0039.400.884100.00100.00 从表1~表3的光谱分析结果、多元素分析结果、铁物相分析结果可知,试样中主要回收的元素是铁,其它有价值元素铜、锌、铅、钼、镍、钴、钛、金、银等含量均较低,无综合回收价值;有害元素硫、砷含量不超标,但磷严重超标为0.763%。试样中的可选性铁为赤、褐铁矿、菱铁矿和磁性铁,三者占原矿的84.99%。因此,该矿石主要是实现提铁降磷得到合格的铁精矿。
从表4可知,铁的分布随着粒度的变化不是很大,磷的分布随着粒度减小变化也比较小。
二、试验主要设备及降磷药剂
试验主要设备为φ800mm×9000mm回转窑、螺旋输送给料机、颚式破碎机、辊式破碎机、振动筛、雷蒙磨、末煤给煤机、螺旋分级机、水力旋流器、2台900mm×1800mm球磨机、筒式磁选机(B=0.30T)、永磁筒式磁选机(B=0.15T)、水淬螺旋连续运输机(自行研制)及辅助设备。
本次试验采用回转窑磁化焙烧,通过原矿的工艺矿物学研究表明,试样中的磷以胶磷矿形式赋存于矿石中,胶磷矿的特点是嵌布粒度相当细,并与铁矿物以晶格取代形式共生。同时,铁以鲡状形式嵌布于矿石中,粒度也比较细。这就决定了常规的磁化焙烧很难实现提铁降磷的理想效果,故采用自行研发的复合焙烧降磷药剂(代号为LCP)进行降磷。
该药剂属于盐类无机化合物,具有熔点低、亲磷矿物性、受干扰程度低等特点,主要机理是利用矿石在焙烧温度900~1100℃下,LCP迅速与铁矿石中的磷矿物反应生成以一种新矿物,实现磷矿物的有效转型,最终与铁矿物产生有效的分离。
三、半工业试验研究
经过前期的小型试验研究和扩大试验研究得出了适合该矿石的工艺流程为磁化焙烧一两段磨矿一两次磁选工艺流程,通过磁化焙烧过程添加自行研发的LCP组合降磷药剂,得到了铁品位65 %,含磷≤0.30%,铁回收率≥75%的选矿指标。故采用磁化焙烧一两段磨矿一两次磁选工艺流程进行回转窑(小800mm×9000mm)半工业试验研究,并根据半工业试验过程中所出现的问题和试验结果进行调整工艺参数,以寻求最优工艺参数得到理想的铁精矿产品指标,半工业试验工艺流程见图1。图1 半工业试验工艺流程
(一)焙烧条件试验
焙烧是整个工艺流程的关键因素之一,焙烧条件包括焙烧温度、焙烧时间(从物料进入回转窑到出料之间的时间差)、焦炭用量、降磷药剂(LCP)用量、焦炭粒度、球团直径。其中焙烧温度通过安装在回转窑上的温度传感器(A,B,C,D,E)来反映,高温带为A~B,长度2m,焙烧反应带为B~C,长度4m,烘干带为C~E,长度3m,焙烧时间通过调整回转窑的转速控制,回转窑不同转速通过调整变频器频率f实现,变频器不同频率对应焙烧时间关系见表5。
表5 变频器频率对应焙烧时间关系频率/Hz焙烧时间/min频率/Hz焙烧时间/min10904045207550303060 1、焙烧温度试验
焙烧温度通过回转窑的温度传感器来控制。回转窑变频器f=30Hz(焙烧时间为60min),LCP用量10%,焦炭用量8%,焦炭粒度-1mm,球团直径-20+5mm,弱磁选磁感应强度B1=0.30 T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行焙烧温度试验,试验工艺流程见图1,试验结果见图2。图2 焙烧温度试验结果
■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率
从图2可见,温度在900℃~1000℃,随着焙烧温度升高,铁品位逐渐升高,铁回收率也呈升高趋势变化;温度升高至1050℃时,铁品位有所降低,铁回收率也有一定的降低。铁精矿中的磷含量随着焙烧温度的升高呈先降低后升高的趋势变化。综合考虑选择焙烧温度为1000℃,可以得到铁品位为65.74%,含磷0.236%,铁回收率为78.11%的选矿指标。
2、焙烧时间试验
通过焙烧温度试验得出了焙烧温度为1000℃比较合适,故在控制回转窑温度为1000℃,LCP用量10%,焦炭用量8%,粒度-1mm,球团直径-20+5mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行焙烧时间试验。试验工艺流程见图1。试验结果见图3。图3 焙烧时间试验结果
■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率
从图3可知,随着焙烧时间的增加,铁品位逐渐降低,铁回收率也呈逐渐降低趋势变化,整个变化过程中当f=40Hz时,出现一个极值点,对应焙烧时间为45min(表5);时间增加磷品位升高,时间减少磷品位也升高,出现两头高中间低的变化趋势。选择焙烧时间为45min可以得到铁品位为66.01%,含磷0.225%,铁回收率为79.09%的选矿指标。
3、焦炭用量试验
还原剂的种类比较多,如褐煤、无烟煤、烟煤等,这类还原剂一般含杂(硫、磷、砷等)比较高,容易带入精矿中影响产品质量,故只选择焦炭作为还原剂进行试验。焦炭在整个焙烧过程中主要起提供还原性气氛和还原载体的双重作用,焦炭用量直接影响焙烧产品质量。故就回转窑变频器f=40Hz(焙烧时间45min),LCP用量10%,焦炭粒度-1mm,球团直径-30+5mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行焦炭用量试验,试验工艺流程见图1,试验结果见图4。图4 还原剂用量试验结果
■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率
从图4可知,焦炭用量增加,铁品位升高,磷含量降低,铁回收率升高,但用量增加至8%再继续增加用量时,铁品位、磷品位、铁回收率变化比较小,故选择焦炭用量8%比较合理,可以得到铁品位为65.98%,含磷0.215%,铁回收率为78.89%的选矿指标。
4、焦炭粒度试验
焦炭粒度主要体现为焦炭的比表面性质,粒度越大,比表面积越小;反之,比表面积越大。此外,由于需将试样进行球团,粒度越大,相应的均匀程度不够;粒度越细,与试样的接触面积越大。在焙烧温度1000℃(回转窑温度传感器),回转窑变频器f=40Hz(焙烧时间45 min),LCP用量10%,焦炭用量8%,球团直径-20+5mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045 mm占80%以上的条件下,进行焦炭用量试验,试验工艺流程见图1,试验结果见图5。图5 还原剂粒度试验结果
■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率
从图5可知,粒度在-1mm以下均可以得到铁品位大于65%,含磷低于0.3%,铁回收率高于78%的选矿指标,焦炭粒度增大至+1mm时,铁精矿中的磷升高至0.328%。因此,焦炭粒为-1mm比较合理。
5、球团直径试验
球团直径的大小主要影响焙烧时间,直径越大,焙烧时间增加;反之,焙烧时间越短。此外,焙烧时间过长影响回转窑的单位处理量,同等条件下增加了选矿成本。因此,球团直径不宜过大或者过小。在焙烧温度1000℃,回转窑变频器f=40Hz(焙烧时间45min),LCP用量10%,焦炭用量8%,焦炭粒度-1mm,弱磁选磁场强度B1=0.30T, B2=0.12T,一段弱磁选磨矿细度-0.100mm占95%,二段弱磁选磨矿细度-0.045mm占80%以上的条件下,进行球团直径大小试验,试验工艺流程见图1,试验结果见图6。图6 球团直径大小试验结果
■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率
从图6可知,球团直径在-30+5mm之间比较合适,所得到的铁精矿中铁品位均大于65%,含磷低于0.3%,铁回收率高于78%。但从焙烧过程中发现-10 +5mm有“结圈”现象,因此控制球团直径在-30+10mm之间比较合理,这样既可以得到较好的选矿指标,又可以降低回转窑的“结圈”程度。
6、LCP降磷药剂用量试验
LCP降磷药剂属于复合药剂,根据其组分的市场价格,综合价格约400元/t,用量的多少不仅影响铁精矿中的磷含量,而且影响选矿成本。在焙烧温度1000℃,回转窑变频器f=40Hz(焙烧时间45min),焦炭用量8%,焦炭粒度-1mm,球团直径-30+10mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行球团直径大小试验,试验工艺流程见图1,试验结果见图7。图7 LCP用量试验结果
■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率
从图7可知,随着LCP用量增加,铁精矿中的磷含量逐渐降低至0.109%,但铁品位和铁回收率呈先升高后降低的趋势变化。当LCP用量为15%时,铁品位63.65%,含磷0.109%,铁回收率71.68%。因此,兼顾铁精矿品位、铁回收率、磷含量等因素,选择LCP用量为10%,可以得到铁品位65.71%,含磷0.223%,铁回收率78.91%的选矿指标。
(二)连续焙烧全流程试验
通过回转窑焙烧的主要工艺参数试验得到了磁化焙烧-弱磁选(阶段磨矿阶段选别)工艺流程的焙烧条件:焙烧温度1 000℃,f=40 Hz(焙烧时间45 min),焦炭用量8%,焦炭粒度-1mm,球团直径-30+10mm,LCP用量10%,弱磁选磁感应强度Bl=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045 mm占80%以上。为考察所获得的工艺参数的可靠性和稳定性,在所取得的焙烧条件下进行连续72h工艺流程全流程试验,试验工艺流程见图1,试验结果见表6。
表6 连续72h焙烧全流程试验结果产物名称产率品位回收率FePFeP铁精矿50.4165.930.22578.9215.06尾矿49.5917.901.2911.0884.94合计100.0042.110.753100.00100.00
从表6可知,可以得到产率50.41%,铁品位65.93%,含磷0.225%,铁回收率78.91%的选矿指标,该指标与焙烧条件试验相比较,差别较小,故获得的工艺流程参数比较可靠,具有可重复性,产品指标稳定;此外,连续72 h回转窑焙烧过程中没有出现“结圈”现象,整个连续过程设备运转正常。
四、结论
(一)通过φ800 mm×9000mm回转窑磁化焙烧工业试验研究,得到了铁品位大于65%,含磷低于0.25%,铁回收率高于78%的选矿指标。
(二)采用自行研发成功的LCP复合降磷药剂有效地降低了铁精矿中的磷含量,得到了质量较高的铁精矿产品。LCP具有熔点低、价格便宜、来源方便、污染小等特点,在高磷铁矿石焙烧过程中添加一定量,可以有效地降低铁精矿中的磷含量。此外,用LCP对其它类型的高磷铁矿石也进行了大量的试验研究,也得到了较好的降磷效果。
(三)磁化焙烧(添加LCP降磷)一弱磁选(阶段磨矿阶段选别)工艺流程的成功,为难选高磷铁矿石的开发利用提供了一条新思路。
(四)在易选、含铁高、含杂低、工艺简单的铁矿石资源紧缺的状况下,难选含杂高的铁矿石资源的开发利用是必然趋势。因此,开发新技术、新工艺处理这部分宝贵的铁矿石资源将具有重大的现实意义。
高精度锡磷青铜带
2019-05-28 09:59:04
高精度锡磷青铜带
以CuSnP为首要合金元素的铜合金,称为锡磷青铜。
a、特 点 具有杰出的屈从强度和疲劳强度 具有杰出的弹性功能 优秀的制作成形功能和曲折功能 具有较好的延展性、耐用性、耐腐蚀性
b、用 途 CPU插槽、手机按键 轿车端子、接插件 电子连接器、电器接插件 波纹管、弹、口琴摩擦片 电气器材部件、精密仪器以及外表的耐磨部件以及抗磁部件、轿车部件以及机械的电气部件
云南某高磷褐铁矿石选冶联合工艺研究
2019-01-24 09:38:21
随着我国钢铁工业的高速发展,国内铁矿石资源日益紧张,可利用的铁矿资源日益趋向于贫、细、杂。为提高我国铁矿石资源的自给率,缓解进口铁矿石的压力,需要研究开发利用大量的难选铁矿石。我国铁矿资源中硫、磷、二氧化硅等有害杂质含量高,杂质与有用铁矿物紧密共生,给铁精矿除杂造成了一定的难度。磷是钢铁冶炼过程中主要的有害元素之一,严重影响炼钢工艺和钢材产品质量。随着冶金工业的发展和新工艺的实施,对铁精矿的质量要求越来越高,对磷的含量也有严格的限定,因此铁精矿高效降磷迫在眉睫[1-3]。
目前国内外对难选低品位高杂质褐铁矿的选矿多采用强磁选-正浮选、弱磁选-强磁选-正浮选、分级-重选-细粒级浮选、絮凝-强磁选、反浮选-焙烧-弱磁选、焙烧-弱磁选-反浮选等联合流程[4]。
云南某褐铁矿石资源量好,铁矿物粒度嵌布复杂,含磷高,且泥化现象严重,属难选呆矿石,长期以来一直没得到开发。为了开发利用矿产资源,提高企业矿产资源自给率,企业方委托昆明理工大学对该矿石进行选冶试验研究。经一系列探索性试验研究,发现采用常规单一的强磁选,重选,浮选方法选别后得到的精矿铁品位很难达到48%以上,含磷却在0.8%以上。针对这种情况,研究了反浮选-磁化还原焙烧-超细磨磁絮凝的选冶联合工艺,最终获得了铁品位为69.57%,回收率为71.62%的铁精矿,其中含磷0.29%、含硫0.17%、含硅5.75%、获得了令人满意的技术指标。
一、矿石工艺矿物学研究
云南某铁矿是一个多期、多因、多类型叠加的具有复合特征的大型铁矿床,地质储量达19.94亿t,主要分为原生矿和氧化矿两大类别。氧化矿石分布于矿体露天,占总储量的16%,氧化矿石矿物组分以褐铁矿为主,分子式为2Fe2O3•3H2O,含量约占70%。矿石中的褐铁矿通常是多矿物的集合体,由针铁矿、纤铁矿、水针铁矿、水纤铁矿、以及含水的氧化硅、泥质等机械混人物组成。褐铁矿常呈不规则粒状、网状、胶状嵌布在石英中,由于矿物单体大部分粒度细小,彼此大多互相呈浸染状分布而不易区分;脉石矿物主要为石英和绿泥石,其次为胶磷矿和蒙脱石。褐铁矿粒度一般为0.004~0.15mm,最小为0.002mm。该矿石中的褐铁矿有两种成因类型,一种为沉积型褐铁矿,是在沉积岩形成的过程中形成,常以胶结物的形式分布于石英碎屑之间,中间常混入细小的蒙脱石、绿泥石。沉积型褐铁矿呈隐晶状集合体;褐铁矿的第二种成因类型为外生作用下经氧化水解形成褐铁矿集合体。这种类型褐铁矿的成分差异比较大,其中磷的含量也有较大的变化。石英嵌布粗细不均,产出粒度为0.015~1mm。矿石中有3种成因形成的石英,第一种为沉积形成的硅质岩后重结晶形成显微粒状的石英;第二种为石英碎屑;第三种为后生石英,粒度相对较大,常成脉状条带状分布。矿石中有害元素磷是以胶磷矿的形式存在,胶磷矿是由极细的磷灰石集合体构成,胶磷矿产出粒度为0.003~0.2mm。矿石中含磷较高,而磷并不是以独立矿物的形式存在,而是有90%以上呈类质同象和极细的机械混入物的形式存在于载体矿物褐铁矿中。
原矿主要化学元素分析结果如表1所示。从表1可见,原矿全铁含量为43.75%,杂质硅和磷含量较高,而硫含量较低。原矿铁物相分析结果如表2所示。从表2可见:原矿中主要含铁矿物为褐铁矿,褐铁矿之中的铁占69.10%,其它矿物中的铁很少。鉴于对原矿工艺矿学的研究以及在对类似铁矿石研究的基础上,曾得出单一的选矿或冶金都不是最佳的方法,只有通过选矿与冶金的有机联合,才能获得比较好的经济效益,以下研究工作主要思路:通过选矿的方法尽量降低原矿中磷的含量,同时要确保铁的回收率,再将所得脱磷粗精矿进行磁化还原焙烧-弱磁选或磁絮凝试验,最终得到合格铁精矿。
二、选矿工艺技术的研究
(一)强磁选流程试验
褐铁矿与脉石矿物的磁性差异较大,具备强磁选的分选条件,因此进行强磁选流程试验。将原矿磨至-0.074mm占90%,调解好冲洗水,给矿浓度及分选时间等条件后,在磁场强度为880kA/m下进行强磁选,试验结果见表3。从表3可见,强磁选作业得到的铁精矿品位和回收率分别为45.35%,69.03%,磷在精矿中有所富集。其原因是双重的。一方面,铁物相分析结果表明硅酸铁占有率为17.67%,这部分铁在强磁选中不能很好地回收。另一方面,由于原矿中磷灰石嵌布粒度非常细,无法使其与铁矿很好地解离,因而不能降低精矿中磷的含量,最终磷随铁精矿的富集而富集。原矿经磨矿后,铁矿物的粒度两极分化严重,使得部分细粒铁矿物又损失在尾矿中,因此强磁选作业并没有达到预先抛尾保铁降磷的效果。
(二)直接反浮选脱磷流程试验
在一定的浮选条件下,利用弱磁性铁矿物与磷灰石矿物表面性质的差异,采用阴离子捕收剂进行直接反浮选脱磷试验[5],来达到“保铁降杂”的目的,下面对这一工艺的浮选条件及合理的药剂制度进行了探索性试验。
1、磨矿细度试验
磨矿细度对选矿的标影响非常大,对于细粒嵌布铁矿而言,磨矿不仅要使矿物达到单体解离的目的,同时不能使矿石泥化而影响分选指标。在矿浆自然pH为6.5的条件下,进行了磨矿细度试验。试验流程为一段反浮选脱磷粗选,试验结果见表4。从表4可见,随着磨矿细度的增加,铁精矿铁品位变化不大,但铁的回收率有所下降。磷品位有所上升,脱磷率不高。当磨矿细度增大后含磷矿物解离度会增加,同时褐铁矿也容易泥化,使得捕收剂选择性变差,此外由于含磷矿物基本上是以类质同象及极细的机械混入物的形式存在于褐铁矿中,通过细磨也无法使含磷矿物单体解理出来。综合考虑,反浮选磨矿细度-0.074mm占90%较为适宜。
2、Na2CO3用量试验
在磨矿细度为-0.074mm占90%下,为消除矿浆中Ca2+,Mg2+等有害离子的影响,同时反浮选脱磷宜在碱性矿浆中进行,试验采用Na2CO3调节矿浆pH值,进行Na2CO3用量试验,试验结果见表5。从表5可见,随着Na2CO3用量的增大,铁精矿中铁品位呈上升趋势,磷品位变化不大,铁回收率有所上升,尾矿中磷品位增大。综合考虑,Na2CO3用量6.5~7.4kg/t比较适宜,此时矿浆pH=9~10之间,铁精矿含磷0.75%,铁回收率为93.61%。
3、捕收剂种类试验
在磨矿细度为-0.074mm占90%,pH=9~10,新调整剂(1)240g/t,水玻璃4 000g/t,淀粉800g/t下,进行捕收剂种类试验,试验结果见表6。从表6可见,捕收剂M反浮选脱磷效果相对较好,M为脂肪酸类捕收剂按一定比例配制而成,当用量为600g/t时,得到精矿铁品位为44.86%,含磷0.74%,铁的回收率为93.23%。
4、二段反浮选脱磷试验
粗选条件探索性试验表明:一段反浮选脱磷后,槽内铁精矿含磷为0.74%,为进一步降低槽内铁精矿中磷的含量,进行了二段浮选脱磷试验,试验流程及条件如图1所示。试验结果见表7。 从表7可见,粗选2并没有使槽内精矿磷进一步降低,其尾矿含磷仍有0.84%,磷的脱除率低,同时损失近4个百分点的铁矿物回收率。因此通过多段反浮选来降低槽内铁精矿中磷含量的效果并不明显。此外,抑制剂及捕收剂用量探索性试验结果表明该矿石采用反浮选深度降磷的难度非常大,槽内精矿含磷在0.75%左右,铁矿物回收率在90%左右。
三、磁化还原焙烧工艺技术的研究
(一)焙烧温度试验
上述选矿工艺技术研究结果表明,整个作业磷的脱除率不高,铁精矿品位不到45%,含磷0.75%左右。为提高铁精矿品位,同时降低铁精矿中磷的含量,将脱磷铁精矿进行了磁化还原焙烧试验。磁化还原焙烧-弱磁选是在矿石中加入还原剂碳粉及助剂Na2CO3进行焙烧,使褐铁矿等弱磁性铁还原成强磁性铁矿物。助剂Na2CO3改变有害杂质的物相组成,然后采用弱磁选方法分选出铁精矿。影响焙烧的因素较多,主要有矿石性质、焙烧温度、焙烧时间、入烧粒度、焙烧气氛以及助剂种类和用量等。经一系列条件探索性试验后,确定了煤粉用量为15%,助剂Na2CO3用量为10%,焙烧时间为120min的条件。在最佳条件组合下,考察了焙烧温度的影响。脱磷精矿还原焙烧试验流程见图2,焙烧温度试验结果见表8。
从表8可见,在不同的温度下,脱磷精矿经磁化还原焙烧后,有5%~8%的烧失率,焙烧后铁品位能提高1%~3%。同时磷含量由0.75%上升到0.8%左右。还原焙烧温度对分选指标也有很大的影响,温度从800℃增大到1 070℃,精矿铁品位从51.52%升到63.80%,铁回收率从34.76%上升到74.31%。但铁精矿中磷品位含量超标。焙烧温度为1 070℃时,铁精矿含磷量也高达0.63%,试验中发现温度超过1 100℃后,矿石发生软熔,弱磁选作业铁回收率很低,因此取焙烧温度为1 070℃。
(二)磁絮凝试验
为降低最终铁精矿中磷的含量,对焙烧矿样进行超细磨以增大铁矿物与磷矿物的解离度,考虑到常规的弱磁选设备不能很好地回收细粒级铁矿物,试验中采用磁絮凝的方法来分选磁性矿物,同时进行了磁絮凝与磁选管对比试验。磨矿细度对磁絮凝的影响试验结果见表9。从表9可见,磨矿细度对磁絮凝指标影响比较大,随着磨矿细度的增加,最终精矿铁品位有所提高,磷含量明显降低。磨矿细度为38μm占90%时,磁絮凝精矿铁品位为68.06%,含磷0.3%,铁回收率为82.74%。同时通过表8数据对比可以看出,磁絮凝比磁选管能获得更高的铁回收率,精矿磷含量由0.63%降至0.30%;同时对38μm占90%的焙烧矿样进行了磁选管试验,在磁场强度为96kA/m下经1次粗选,最终铁精矿铁品位为70.12%、含磷0.28%、铁回收率为60.59%。这表明焙烧矿样经过超细磨后,增大了铁矿物与磷矿物的解离度,采用磁絮凝能很好地降低精矿中磷的含量。此外磁絮凝过程中微细粒铁矿物被外加磁场所磁化形成絮凝,进而增大了分选粒度,克服了弱磁选设备对微细粒铁矿物回收差的弊端,从而获得更高的铁回收率。
四、全流程试验
在以上试验的基础上,进行了反浮选-磁化还原焙烧-磁絮凝的全流程试验,试验全流程如图3,精矿主要化学元素分析结果见表10。试验结果表明,在反浮选-磁化还原焙烧-磁絮凝全流程试验中,可以获得品位为69.57%、回收率为71.62%的铁精矿。铁精矿含磷0.29%,含硫0.17%,含硅5.75%。
五、结论
(1)工艺矿物学研究表明:云南某褐铁矿铁石性质复杂、矿物粒度嵌布微细、泥化现象严重、含磷高、且大部分磷以类质同象和极细的机械混入物的形式存在褐铁矿中,属难选呆矿石。
(2)常规单一的强磁选、重选、浮选工艺对该矿石几乎没有分选效果。为此采用反浮选-磁化还原焙烧-超细磨磁絮凝的工艺流程处理该矿石,获得了铁品位为69.57%、回收率为71.62%、铁精矿含磷为0.29%、含硫为0.17%,含硅为5.75%,技术指标令人满意。
(3)超细磨-磁絮凝能很好降低精矿中磷的含量,提高精矿品位,同时解决常规弱磁选设备不能有效回收微细粒级铁矿物的问题。这一工艺为难选高磷铁矿石的提铁降杂提供了一种新的方法。试验中最佳参数的确定需要作进一步研究。
(4)随着矿石资源的日益紧张和对冶炼原料的要求越来越高,用简单的物理选矿工艺处理难选矿石变得越来越困难,寻求新的选矿工艺显得尤为重要。本研究为类似难选褐铁矿石的分选提供了一种新的思路。
参考文献
[1] 袁致涛,高太,印万忠,等.我国难选铁矿石资源利用的现状及发展方向[J].金属矿山,2007(1):1-6.
[2] 褚 永,李玉平.国际铁矿石资源市场均衡价格探讨[J].金属矿山,2008(2):13-15.
[3] 孙克己,卢寿慈,等.弱磁性铁矿石脱磷选矿试验研究[J].中国矿业,1999(6):61-64
[4] 孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006(3):11-14
[5] 胡为柏.浮选[M].北京:冶金工业出版社.1997.
[6] 罗立群,张泾生,高远扬,等.菱铁矿干式冷却磁化焙烧技术研究[J].金属矿山,2004(10):28-31.
锡磷青铜
2017-06-06 17:50:00
锡磷青铜是很多人都会关心的问题,因为格影响着锡的价格,下文中就会有这方面的知识。磷铜是一大类,包括了锡磷青铜的 锡磷青铜有更高的耐蚀性,耐磨损,冲出时不发生火花。用于、中速、重载荷有轴承,工作最高温度250℃。具有自动调心对偏斜不敏感,轴承受力均匀承载力高,可同时受径向载荷,自润滑无需维护等特性。锡磷青铜是一种合金铜,具有良好的导电性能,不易发热、确保安全同时具备很强的抗疲劳性。 锡磷青铜的插孔簧片硬连线电气结构,无铆钉连接或无摩擦触点,可保证接触良好,弹力好,拨插平稳。该合金具有优良有机械加工性能及成屑性能,可使零件加工过程迅速缩短了加工时间QSn4-3:为含锌的锡青铜,耐磨性和弹性高,抗磁性良好,能很好地承受热态或冷态压力加工;在硬态下,可切削性好,易焊接和钎焊,在大气,淡水和海水中耐蚀性好。制作弹簧(扁弹簧、圆弹簧)及其他弹性元件,化工设备上的耐蚀零件以及耐磨零件(如衬套、圆盘、轴承等)和抗磁零件造纸工业用的刮刀。QSn4-4-4:为添有锌、铅合金元素的有高的减磨性和良好的可切削性,易于焊接和钎焊,在大气、淡水中具有良好的耐蚀性,只能在冷态下进行压力加工,因含铅热加工时易引起热脆。制作在摩擦条件下工作的轴承、卷边轴套、衬套、圆盘以及衬套的内垫等。QSn4-4-4使用温度可达300℃以下,是一中热强性较好的锡青铜。如果你想了解锡磷青铜等更多关于锡的信息,你可以登陆上海有色网中的锡专区进行查询和访问。
锰矿选矿——锰矿石冶炼
2019-01-21 09:41:24
锰矿石冶炼产品主要有高碳锰铁、中低碳锰铁、锰硅合金以及金属锰等,通称为锰质合金或锰系合金。
高碳锰铁。我国主要采用高炉生产。50年代尚未形成专门厂家生产高炉锰铁(高碳锰铁),而是一些钢铁厂自炼自销,生产量很小。从1958年后,湘潭锰矿先后建起6.5m3、33m3高炉专炼锰铁,60年代以后,新余、阳泉、马钢三厂、重钢四厂等转产高炉锰铁,进入80年代,高炉锰铁发展更快。高炉锰铁产量由1981年的20万t增至1995年40万t。
电炉生产的产品包括碳素锰铁、中低碳锰铁、锰硅合金、金属锰四类。我国电炉生产最早的是吉林铁合金厂,于1956年建成投产,最大电炉容量为12500kVA;60年代初,湖南、遵义、上海等铁合金厂相继建成投产,这些厂都可生产碳素锰铁、中低碳锰铁和锰硅合金;遵义铁合金厂还用电硅热法生产金属锰。据冶金工业部1995年《全国铁合金主要技术经济指标》记载,1994年全国15家重点铁合金厂中有11家生产锰系合金产品。这些重点铁合金厂经过不断发展、扩大,为满足钢铁工业生产作出了重要贡献。
80年代以来,地方中小型铁合金企业发展迅速。据资料统计,地方中小企业铁合金产量占全国比重由1980年的32.39%,上升到1989年的54.01%,到1996年已达69.85%,企业数已达1000家以上。这些中小企业大多数是采用1800kVA的小电炉,设备落后,产品质量比较差。
电炉锰铁与锰硅合金生产所用设备基本相同,都是采用矿热电炉,电炉变压器容量一般为1800~12500kVA。湖南、遵义铁合金厂分别从德国引进3000kVA和31500kVA锰硅电炉,现已投产。
我国电炉高碳锰铁的生产,一般多采用熔剂法生产工艺。锰硅合金的生产,一般都采用有渣法生产工艺。
中低碳锰铁的生产,主要有电炉法、吹氧法和摇包法3种。摇包法包括在摇包中直接生产中低碳锰铁和摇包-电炉法生产中低碳锰铁。摇包-电炉法工艺比较先进、生产稳定可靠、技术经济效果好,目前上海、遵义等铁合金厂都采用此法。
金属锰生产方法有火法冶炼和湿法冶炼。火法冶炼金属锰,我国始于1959年,由遵义铁合金厂首次用电硅热法试制成功,一直独家生产至今。生产工艺采用三步法,第一步用锰矿石炼成富锰渣;第二步用富锰渣炼制高硅硅锰合金,第三步用富锰渣为原料,高硅硅锰作还原剂及石灰作熔剂,即电硅热法制成金属锰。湿法冶炼主要是电解法,常称电解金属锰。我国于1956年由上海901厂建成第一家电解锰生产厂,到90年代初已有大小电解金属锰厂50余家,年总生产能力达4万余t。生产工艺流程大致分硫酸锰溶液制备、电解、后处理3个生产工序。后处理是电解完成后包括产品纯化、水洗、烘干、剥离、包装等系列操作。最终获得合格电解金属锰产品,含Mn99.70%~99.95%。
易切削磷青铜
2019-05-30 19:27:38
易切削磷青铜概述青铜是一个大品种,包含磷青铜及磷铜。青铜是铜和锡的合金,含锡量约占5%~10%。有时也指铜和铝、硅、铍、锰所组成的二元或多元合金。这些合金又叫作特种青铜。不含锡的青铜又叫作无锡青铜,一般具有高的耐腐蚀性,杰出的润滑性、较高的导电性,还有的是具有杰出的机械性能。锡青铜(锡磷青铜)是我国很早就应用起来的合金,这种合金有很好的铸造性,以及很高的耐腐蚀性。在海水、稀硫酸、溶液,很稀的碳酸钠溶液中化学稳定性很强。用来铸造轴承、泵壳、阀门、齿轮。特种青铜可制造机械零件等。
铝青铜密度
2019-05-27 10:11:36
材料称号 密度 克/厘米3 材料称号 密度 克/厘米3 7铝青铜 7.8 LD7、LD9、LD10 2.8 192铝青铜 7.6 超硬铝 2.85 94、1031.5铝青铜 7.5 LT1特殊铝 2.75 1044铝青铜 7.46 工业纯镁 1.74 铍青铜 8.3 变形镁 MB1 1.76 31硅青铜 8.47 MB2、MB8 1.78 13硅青铜 8.6 MB3 1.79 1铍青铜 8.8 MB5、MB6、MB7、MB15 1.8 0.5镉青铜 8.9 铸镁 1.8 0.5铬青铜 8.9 工业纯钛(TA1、TA2、TA3) 4.5 1.5锰青铜 8.8 钛合金 TA4、TA5、TC6 4.45 5锰青铜 8.6 TA6 4.4
锰矿价格
2017-06-06 17:49:59
锰矿价格是很多锰矿投资人士、很多锰矿企业关注的焦点,及时掌握锰矿的价格信息、交易状况、市场供求关系、行情走势等,是在锰矿投资交易中获得成功的关键。 2010年8月18日讯,目前港口锰矿价格市场运作不愠不火,价格未见明显波动。今日,云南某高碳锰铁贸易商透露,65#高磷高碳锰铁价格上涨明显,由于最近一两周厂家提高出厂价格100-200元/吨,而经销商市场报价也相应提高到了7000-7100元/吨。该市场人士认为,虽然高碳锰铁报价上涨了,但是对于贸易商来说只是“水涨船高”,中间利润依然微薄。四川某高碳锰铁厂家表示,本周高碳锰铁价格基本持稳,65#高碳锰铁一组磷出厂含税报价7600元/吨,由于钢厂价格依然低迷,新一轮市场需求还未开始,因此短期内高碳锰铁市场锰矿价格不会出现太大变化。 昨夜伦镍维持盘整,小幅上涨160美元,至21560美元。不锈钢行情暂无变动,200系不锈钢依旧维持平稳。今日电解锰价格料平稳为主,市场报价料仍表现坚挺,但成交价格或出现进一步的下行趋势。以近期市场为例,吉首地区报价多集中在15400元/吨左右,但商家表示,熟人拿货还是比较容易的,现在仍有部分厂家坚持压货不出,加上停产较多,市场价格很容易被炒起来。今日产地指导成交价格15300-15400元/吨。 进口锰矿方面:上周,先是南非阿斯曼和澳大利亚BHP先后下调对华锰矿装船价格,然后是中钢炉料调涨主流锰矿3元/吨度。使得市场上锰矿价格再度出现混乱,并且近日澳矿、巴西矿、南非矿等主流锰矿价格表现坚挺。锰系合金方面,国内硅锰市场有小幅上涨,但成交清淡。今硅锰6517主流报价在7500-7700元/吨,硅锰6014实际成交价格广西在6500-6550元/吨。 更多关于锰矿价格的资讯,请登录上海有色网查询
锰矿行情
2017-06-06 17:49:58
2010年8月13日锰矿行情: 今日锰矿价格料继续虚涨,下游需求仅维持前期基本水品,但是市场实际现货却十分紧张。今锰矿少量成交在15300-15400元/吨,厂家报价持坚,下游不锈钢企业及贸易商观望为主。 上周调跌锰矿价格,使得现货市场锰矿行情再度呈现下跌趋势。但是目前港口矿商出货价格并未出现明显的下跌,反而是各地的硅锰合金价格都有100-200的涨幅。以贵州为例,由于关停128家企业,现货供应马上开始紧张。并且有消息称,贵州电费调整已经在调研中,目前贵州地区生产用电价格为0.41-0.42元/千瓦时,调整目标电价初步订在0.48元/千瓦时,即生产1吨硅锰6517成本增加240元左右。因此不少贵州地区厂家均惜售现货,暂停销售,待电价确定后定价销售。但无论电价上涨是否确定,西南地区短期锰矿行情上行已成定局。 日前,目前进口锰矿贸易商从国外进口较多,目前已经有一批货已经到港,另有一批在月底到港,但是市场消耗却比较慢,库存持续增多,锰矿行情持续低位运行。今日电解锰现货依旧紧张,厂家坚持虚涨,价格居高不下,但成交情况不佳,借机炒作的锰矿行情上行动力也明显不足,市场报价已经趋于平稳,实际出货已经有所放松。仍建议观望,暂不推荐大量囤货。目前吉首、秀山地区现货十分紧张,报价已上行至15300-15400元/吨,实际成交价格集中在15200-15300元/吨左右,但成交数量十分稀少。 而上周BHP也公布了8月的锰矿价格,品位为43%的小粒度锰矿报价在6.4美元/吨度(CIF中国主港),相比7月份的8.35美元/吨度,降幅为23.35%;44%的锰块矿装船价格在7.2美元/吨度,相比7月份的8.7美元/吨度,降幅为17.24%;品位为48%的锰矿装船价格为7.5 美元/吨度,环比上月的9.4美元/吨度,降幅为20.21%,但国内锰矿目前降幅不大,部分优质矿种甚至有提价打算,但销售仍无太大起色。 更多关于锰矿行情的资讯,请登录上海有色网查询。
软锰矿
2017-06-06 17:49:58
软锰矿化学成分为MnO2,晶体属四方晶系金红石型结构的氧化物矿物。与正交(斜方)晶系的拉锰矿成同质二象(见同质多象)。发育良好的晶体呈柱状,称为黝锰矿,但罕见。通常呈块状或肾状,有时并具放射纤维状构造;也呈土状;还常呈树枝状见于岩石裂隙面上,习称假化石。通常为铁黑色,条痕也为铁黑色。金属光泽。摩斯硬度1~2,摸之污手。比重4.75。但黝锰矿呈钢灰色,摩斯硬度高达6~6.5,比重为5.1,并显示完全的柱面解理。软锰矿是最普通的锰矿物,也是锰的重要的矿石矿物。在强烈氧化条件下形成。除呈矿巢或矿层产于残留粘土中外,主要在沼泽中以及湖底、海底和洋底形成沉积矿床。前苏联、加蓬、巴西、澳大利亚等国以及中国湖南、广西、辽宁、四川等地锰矿床中均有大量软锰矿产出。软锰矿含锰63.19%,主要用来提炼锰,也用作氧化剂和玻璃去色剂等。 二氧化锰用于干电池、玻璃和陶瓷的着色剂、制锰等。天然存在的二氧化锰是软锰矿。它是强氧化剂,不能与有机物或其他还原性物质如硫、硫化物、磷化物等一起加热或摩擦。二氧化锰可用于制造干电池和涂料;在搪瓷、玻璃釉药、陶瓷等方面做黑色或紫色颜料;在橡胶工业中用作催化剂;加在含铁玻璃中可去掉绿色;还可制锰化合物。软锰矿一种重要的无机盐工业产品。黑色或灰黑色晶体或无定形粉末。不溶于水,高温下与碳反应生成金属锰。是两性物质,具有良好的吸附性能和较强的氧化能力。 随着现代工业的快速发展,工业废气排放量也越来越大,其中SO2对大气的污染已经危及环境的生态平衡和经济的可持续发展。国内外研究开发了许多烟气脱硫技术,美国和法国多采用抛弃法,而我国国土资源宝贵,大多采用吸收法。目前采用的“石灰乳吸收法”和“钠碱法”,其投资和运行费用高,且脱硫副产品的价格低,经济效益不明显。因此,进一步开发低成本、能回收高价值副产品的脱硫技术成为当务之急。软锰矿浆是一种很好的SO2吸收剂,近几年来,我们进行了软锰矿浆吸收SO2废气的实验研究,“软锰矿浆吸收法”可以较好地解决SO2废气对环境的污染问题,而且副产品硫酸锰又有较高的应用价值。 更多关于 软锰矿的资讯,请登录上海有色网查询。
锰矿选矿
2017-06-06 17:50:14
锰矿选矿的主要特点及锰矿选矿设备的安装与维护:锰矿选矿浮选工艺与加工技术,锰矿选矿方法,锰矿的选矿技术 我国锰矿绝大多数属于贫矿,必须进行选矿处理。但由于多数锰矿石属细粒或微细粒嵌布,并有相当数量的高磷矿、高铁矿和共(伴)生有益
金属
,因此给选矿加工带来很大难度。目前,常用的锰矿选矿方法为机械选(包括洗矿、筛分、重选、强磁选和浮选),以及火法富集、化学选矿法等。1.锰矿选矿的洗矿和筛分,洗矿是利用水力冲洗或附加机械擦洗使矿石与泥质分离。常用设备有洗矿筛、圆筒洗矿机和槽式洗矿机。 洗矿作业常与筛分伴随,如在振动筛上直接冲水清洗或将洗矿机获得的矿砂(净矿)送振动筛筛分。筛分可作为独立作业,分出不同粒度和品位的产品供给不同用途使用。2.锰矿选矿中的重选:目前重选只用于选别结构简单、嵌布粒度较粗的锰矿石,特别适用于密度较大的氧化锰矿石。常用方法有重介质选矿、跳汰选矿和摇床选矿。目前我国处理氧化锰矿的工艺流程,一般是将矿石破碎至6~0mm或10~0mm,然后进行分组,粗级别的进行跳汰,细级别的送摇床选。设备多为哈兹式往复型跳汰机和6-S型摇床。3锰矿选矿所涉及.强磁选:锰矿物属弱磁性矿物〔比磁化系数X=10×10-6~600×10-6cm3/g〕,在磁场强度Ho=800~1600kA/m(10000~20000oe)的强磁场磁选机中可以得到回收,一般能提高锰品位4%~10%。 由于磁选的操作简单,易于控制,适应性强,可用于各种锰矿石选别,近年来已在锰矿选矿中占主导地位。各种新型的粗、中、细粒强磁机陆续研制成功。目前,国内锰矿应用最普遍的是中粒强磁选机,粗粒和细粒强磁选机也逐渐得到应用,微细粒强磁选机尚处于试验阶段。4.锰矿选矿的重-磁选:目前国内已新建和改建成的重-磁选厂有福建连城,广西龙头、靖西和下雷等锰矿。如连城锰矿重-磁选厂,主要处理淋滤型氧化锰矿石,采用AM-30型跳汰机处理30~3mm的洗净矿,可获得含锰40%以上的优质锰精矿,再经手选除杂后,可作为电池锰粉原料。跳汰尾矿和小于3mm洗净矿径磨至小于1m后,用强磁选机选别,锰精矿品位要提高24%~25%,达到36%~40%。锰矿选矿目前采用强磁-浮选工艺仅有遵义锰矿。该矿是以碳酸锰矿为主的低锰、低磷、高铁锰矿。据工业试验,磨矿流程采用棒磨-球磨阶段磨矿,设备规模均为φ2100mm×3000mm湿式磨矿机。强磁选采用shp-2000型强磁机,浮选机主要用CHF型充气式浮选机。经过多年生产的考验,性能良好,很适合于遵义锰选矿应用。强磁-浮选工艺流程试验成功并在生产中得到应用,标志着我国锰矿的深选已经向前迈进了一大步。