氧化镁
2019-01-25 15:49:17
MgO俗称苦土,是一种白色粉末状固体。熔点3125K,沸点3873K,密度3.58g/cm3(298K),硬度6.50。MgO对水呈一定惰性,特别是高温煅烧后的MgO难溶于水。MgO溶于酸。 MgO的制备方法: (1)金属镁在高温下燃烧。 2Mg + O2 == 2MgO (2)工业上一般通过煅烧碳酸镁或氢氧化镁来生产氧化镁。 MgCO3 ==== MgO + CO2 Mg(OH)2 ==== MgO + H2O 煅烧温度在923K左右制成的为轻质MgO,煅烧温度在1923K以上时制成的为MgO。 MgO大量用于耐火材料、金属陶瓷、电绝缘材料,轻质MgO与MgCl2或MgSO4溶液混合后可制成镁质水泥。医疗上用MgO作抗酸药和轻泻药。常与易致便秘的CaCO3配合应用。在水处理、人造纤维织物加工、造纸、催化剂生产等方面MgO都有重要应用。
什么是钨铜合金板?
2019-05-24 11:10:38
钨铜合金板运用的是真空熔渗法制 造。产品具有优秀的物理机械功能,并有杰出的抗烧损才能。1.老练的限制烧结熔渗技术操控,产品内部无孔洞。2.高导电率及电制作速度。3.塑性好,易制作成型。
稀土化合物
2017-06-06 17:50:12
稀土化合物及功能性稀土助剂的研究开发 采用易于工业化生产的沉淀法,应用结晶化学的原理,使用不同的工业沉淀剂,对晶体的生成和长大的关键工艺进行了优化,得到了适合于工业化生产的制备条件,制备特殊物性的稀土化合物。其中大颗粒稀土氧化物,CeO2的D50≥25μm、松装密度≥2.0g·cm-3,Y2O3的D50≥20μm;高比表面积稀土化合物,CeO2的比表面积≥100m2·g-1,老化后比表面积≥15m2·g-1;Ce1-xZrxO2的比表面积≥140m2·g-1,老化后比表面积≥25m2·g-1;超细稀土化合物,CeO2和Y2O3的D50≤1μm;低比表面积稀土化合,CeO2、Ce1-xZrxO2和Y2O3的比表面积≤5m2·g-1。同时还有多种功能性稀土助剂,如:玻璃助剂、橡胶助剂、塑料助剂、稀土催化剂、无毒稀土颜料等的制备工艺。 稀土化合物的直接法合成技术,其特征在于配方及工艺方法包括: A、稀土化合物的组成为: a)至少一种或二种以上的有机酸或/和有机酯及其它们的混合物,用量为81~89份(重量),有机酸或/和酯是指C6~C18的一元或二元饱和、不饱和酸或/和酯; b)至少一种或二种以上或全部下列纯度为90~99%的氧化轻稀土元素的单质或它们的混合物,用量为11~19份(重量),氧化轻稀土ReO是指:Re 为La、Ce、Pr、Nd、Y; c)催化剂,用量为0.5~3份(重量),催化剂是指醋酸(冰醋酸)、双氧水、碳酸、草酸; B、直接法工艺条件为:首先在反应釜中加入按上述配方量的有机酸或/和酯及其它们的混和物,熔化后在搅拌状态下加入上述配方量的催化剂,在60~110℃下,向反应釜中加入上述配方量的氧化轻稀土Re0,控制反应温度为90~140℃,反应时间为2~3.5小时,得稀土有机化合物。 稀土化合物及功能性稀土助剂的研究开发项目工艺简单,成本低,便于工业化生产,拥有自主知识产权,其技术达到国内领先水平,稀土是包头的特色资源,其储量、
产量
及出口量均列世界第一,包头稀土矿中50%为氧化铈,由于磁性材料的飞速发展,氧化钕过度开采,导致氧化铈等轻稀土大量积压。必须尽快扭转这种局面,打开轻稀土,特别是铈的应用面。而氧化铈是一种特殊的功能材料,大颗粒氧化铈可以做玻璃添加剂使用代替有毒的白砒,大比表面积CeO2和Ce1-xZrxO2可作为催化剂用于汽车尾气净化,超细CeO2可以作为抛光粉、陶瓷材料使用,低比表面积CeO2可以陶瓷材料、固体氧化物燃料电池材料使用。同时,铈类化合物还是高效的橡胶及塑料添加剂。更多有关稀土化合物的内容请查阅上海
有色
网
含铝化合物
2019-03-11 09:56:47
铝在地壳中的含量相高,主要以铝硅酸盐矿石存在,还有铝土矿和冰晶石。氧化铝为一种白色无定形粉末,它有多种变体,其间最为人们所了解的是α-Al2O3和β-Al2O3。自然界存在的刚玉即归于α一Al2O3,它的硬度仅次于金刚石,熔点高、耐酸碱,常用来制作一些轴承,制作磨料、耐火材料。如刚玉坩埚,可耐1800℃的高温。Al2O3因为含有不同的杂质而有多种色彩。例如含微量Cr(III)的呈赤色,称为红宝石;含有Fe(II),Fe(III)或Ti(IV)的称为蓝宝石。
β一Al2O3是一种多孔的物质,每克内表面 积可高达数百平方米,有很高的活性,又叫活性氧化铝,能吸附水蒸气等许多气体、液体分子,常用作吸附剂、催化剂载体和干燥剂等,工业上冶炼铝也以此作为质料。
氢氧化铝可用来制备铝盐、吸附剂、媒染剂和离子交换剂,也可用作瓷釉、耐火材料、防火布等质料,其凝胶液和千凝胶在医药上用作酸药,有中和胃酸和医治溃疡的效果,用于医治胃和十二脂肠溃疡病以及胃酸过多症。
偏铝酸钠常用于印染织物,出产湖蓝色染料,制作毛玻腐、番笕、硬化建筑石块。此外它仍是一种较好的软水剂、造纸的填料、水的净化剂,人造丝的去光剂等。
无水是石油工业和有机组成中常用的催化剂;例如:芳烃的烷基化反响,也称为傅列德尔—克拉夫茨烷基化反响,在无水三催化下,芳烃与卤代烃(或烯烃和醇)发作亲电替代反响,生成芳烃的烷基替代物。六水合可用于制备除臭剂、安全消毒剂及粹等。
化铝是常用的有机组成和异构化的催化剂。
遇湿润或酸放出剧毒的气体,可毒死害虫,农业上用于谷仓虫的熏蒸剂。
硫酸铝常用作造纸的填料、媒染剂、净水剂和灭火剂,油脂弄清剂,石油脱臭除色剂,并用于制作沉积色料、防火布和药物等。
冰晶石即六氟合铝酸钠,在农业上常用作虫剂;硅酸盐工业中用于制作玻璃和珐琅的乳白剂。
由明矾石经加热萃取而制得的明矾是一种重要的净水剂、染媒剂,医药上用作收敛剂。可用来鞣革和制白热电灯丝,也可用作媒染剂;硅酸铝常用于制玻璃、陶瓷、油漆的颜料以及油漆、橡胶和塑料的填料等,硅铝凝胶具有吸湿性,常被用作石油催化裂化或其他有机组成的催化剂载体。
在铝的羧酸盐中;二铝、三铝常用作媒染剂,防水剂和菌剂等;二乙酸铝除可作媒染剂外,还被用作收剑剂和消毒剂,也用于尸身防腐液中;三乙酸铝用于制作防水防火织物、色淀;药物(含漱药、收敛药、防腐药等),并用作媒染剂等;十八酸铝(硬脂酸铝)常用于油漆的防沉积剂、织物防水剂、润滑油的增厚剂、东西的防锈油剂、聚氯乙烯塑料的耐热稳定剂等;油酸铝除用作织物等的防水剂、润滑油的增厚剂外,还用于油漆的催干剂、塑料制品的润滑剂等。 硫糖铝又叫胃溃宁,学名蔗糖硫酸酯碱式铝盐,它能和胃蛋白酶络合,直接按捺蛋白分化活性,效果较耐久,并能构成一种维护膜,对胃粘膜有较强的维护效果和制酸效果,协助粘膜再生,促进溃疡愈合,毒性低,是口种杰出的胃肠道溃疡医治剂。
近些年,人们又开发了一些新的含铝化合物,如烷基铝等,跟着科学的开展,人们将会更好地使用铝及化合物福人类。
锰的化合物
2017-06-06 17:49:52
锰的化合物,锰元素及其化合物有很多的应用,现在具体和小编一起来了解一些常见的。 锰(Manganese) 元素符号Mn,原子序数25,原子量54.94,外围电子排布3d54s2,位于第四周期ⅦB族。原子半径124皮米,第一电离能727kJ/mol,电负性1.5。主要氧化数+2、+4、+6、+7。银白色金属,硬而脆,密度7.20g/cm3,熔点1244+3℃,沸点1962℃。固态时有四种同素异形体,常温下为α锰。在空气中易氧化生成褐色氧化物覆盖层。燃烧时生成四氧化三锰。红热时与水反应生成四氧化三锰和氢。溶于稀盐酸、稀硫酸生成二价锰盐。高温时跟卤素、硫、磷、碳、氮直接化合。用于制合金,少量锰能改善钢的抗冲击性能,锰铁用作炼钢过程的脱氧、脱硫添加剂。还用于冶炼铝合金、镁合金。1774年瑞典人甘恩用木炭跟软锰矿共热得到锰。主要矿物有软锰矿MnO2·xH2O、黑锰矿Mn3O4,最近发现大洋底部有大量锰结核矿。在地壳中丰度为0.1%。用铝还原软锰矿制得。二氧化锰(manganese dioxide) 分子式MnO2,分子量86.94,黑色结晶体或无定形粉末。密度5.026g/cm3。熔点390℃。不溶于水和硝酸。在热浓硫酸中放出氧而生成硫酸亚锰。在盐酸中放出氯而生成氯化亚锰。与苛性碱和氧化剂共熔,放出二氧化碳而生成高锰酸盐。在535℃分解成三氧化二锰和氧。是强氧化剂。 用作干电池去极剂,合成工业的催化剂和氧化剂,玻璃工业和搪瓷工业的着色剂、消色剂、脱铁剂等。用于制造金属锰、特种合金、锰铁铸件、防毒面具和电子材料铁氧体 等。另外,还可用于橡胶工业以增加橡胶的粘性。硫酸锰(Manganous sulfate) 分子式MnSO4,分子量151,白色或微红色细小结晶体。无嗅.味苦。密度2.95g/cm3。加热到200℃以上开始失去结晶水,500℃左右变为无水物。易溶于水,不溶于醇。无机工业用于电解锰生产和制备各种锰盐。涂料工业用于生产催干剂(环烷酸锰和亚麻仁油酸锰等),金属制品的磷化剂(酸式磷酸锰)。农业上是重要微量元索肥料,也是植物合成叶绿素的催化别。施以适量的硫酸锰溶液,可使多种经济作物生长良好,增加产量.碳酸锰(Manganese carbonate) 又称锰白,分子式MnCO3,分子量114.95,玫瑰色三角晶系菱形晶体或无定形亮白棕色粉末。相对密度3.125。几乎不溶于水,微溶于含二氧化碳的水中。溶于稀无机酸,微溶于普通有机酸中,不溶于醇和液氨。在干燥空气中稳定。潮湿时易氧化,形成三氧化二锰而逐渐变为棕黑色,受热时分解放出二氧化碳。与水共沸时即水解。在沸腾的氢氧化钾中,生成氢氧化锰。广泛用作脱硫的催化剂, 瓷釉颜料, 锰盐原料, 也用于肥料, 医药, 机械零件和磷化处理.硝酸锰(Manganese nitrate) 分子式Mn(NO3)2,分子量143,无色或玫瑰红色单斜晶系结晶。相对密度1.82。熔点25.8℃。沸点129.4℃。易溶于水、微溶于醇。工业品通常为含61%和70%的硝酸锰溶液。用于制纯二氧化锰;也用于金属表面磷化处理, 陶瓷着色, 制催化剂等。溶液装于塑料桶内,外用木板箱包装,每桶净重25kg。 属二级无机氧化剂,危规编号:23023。应贮存于通风、干燥的库房中。应防止受潮、受热。运输时防雨淋和日光曝晒。装卸时要轻拿轻放,防止包装破损。 失火时,可用水、砂土和各种灭火器扑救。硬酯酸锰(manganese stearate) 分子式C36H70O4Mn,结构式C17H35COO-Mn-OOCC17H35,淡红色至粉红色细微粉末。分子量621.0。熔点100-110℃。不溶于水。溶于乙醚、氯仿、石油。遇芳香族烃类或脂肪族烃类生成胶状物。遇强酸分解为硬脂酸和相应的锰盐。一般商品中含有一定比例的棕榈酸锰。生产方法:主要采用复分解法。以硬脂酸为原料,先加热熔融,与氢氧化钠溶液进行皂化反应,然后与硫酸锰进行复分解反应,最后经洗涤、离心脱水、干燥而得。用途:阴离子型表面活性剂。主要用作膏霜类化妆品的助乳化剂、增稠剂和润肤剂。具有良好的乳化作用,有利于保持油包水型乳化体的稳定性。酸式磷酸锰(Manganous dihydrogen phosphate) 又称马日夫盐,分子式Mn(H2P04)2 ,分子量248.94,白色到灰白色或带微红色的结晶体。吸湿性较强。易溶了水,易水解,水溶液呈酸性。不溶于醇。与氧化物接触极易引起变质。有腐蚀作用。常以水合物形式出现。水合物在100℃以上时脱水。主要用作钢铁防锈的磷化剂。特别适用于大型机械设备,经磷化处理后涂上油漆,可防止设备受大气侵蚀,并可提高绝缘性。更多关于锰的化合物的信息和资讯,请继续关注本站锰频道!
贵金属化合物
2017-06-06 17:50:14
贵
金属
化合物指由碳直接和贵
金属
组成键的化合物。贵
金属
化合物指一类由碳直接和
金属
组成键的化合物。由于不同
金属
的特性,此键稳定性不同。例如格林尼亚试剂里的镁原子直接和碳链相连,再加上碳比镁的电负性高;于是邻近镁原子的那个碳原子就积聚了较多负电荷,导致这根碳—镁键极具反应活性。当形成合金的元素其电子层结构、原子半径和晶体类型相差较大时,易形成
金属
化合物(又称
金属
互化物)。
金属
化合物的晶体类型不同于它的分组
金属
,自成新相。
金属
化合物合金的结构类型丰富多样,有20000种以上,不胜枚举,有的结构可找到离子晶体或共价晶体的相关型,有的则是独特的结构类型,如NaTl晶胞是CsCl晶胞的8倍超构;MgCu2是所谓拉维斯相(Laves phase)的一个例子;CaCu5是层状结构的例子;Nb3Sn结构是重要的合金超导体,同型化合物Nb3Ge实用于高分辨核磁共振仪;MoAl12是具有复杂配位结构的例子。贵
金属
化合物合金与组成它的
金属
的性质常有较大差别。随着新技术、新工艺的发展,现已研制出多种新功能材料和结构材料,其中最典型的
金属
功能材料有非晶态
金属
、形状记忆合金、减振合金、超导材料、蓄氢合金、超微粉等;新型结构材料有超塑性合金、超高温合金等。这些
金属
材料性能优异,用途广泛,具有广阔的应用前景。《贵
金属
化合物及配合物合成手册(精)》是国内外发表的8种贵
金属
元素金(Au)、银(Ag)、铂(Pt)、钯(Pd)、铑(Rh)、铱(Ir)、锇(Os)和钌(Ru)合金相图及相关数据的荟萃,其中大部分内容是经过国际相图委员会组织专家评审的,因而具有较高的可靠性。想要了解更多关于贵
金属
化合物的资讯,请继续浏览上海
有色
网(
www.smm.cn
)
有色金属
频道。
铋的化合物的生产
2019-01-31 11:06:04
一、三氧化二铋
氧化铋是重要的铋化合物,用于化学试剂、铋盐制作、无机组成、玻璃陶瓷上色、以及防火纸的制作,电子元件的制作、高折光率玻璃和核工程玻璃的制作,和作核反响堆燃料。
氧化铋的出产办法有火法与湿法两种,皆能产出契合质量要求的产品。
(一)火法
1、工艺流程。如图1。图1 火法出产氧化铋工艺流程
(二)首要技能条件。将1号精铋熔化,缓慢呈细流参加水淬池中水淬成疏松多孔、粒度为5毫米以下的颗粒。
硝酸溶解:将硝酸体积用蒸馏水稀释一倍,常温下参加水淬铋,其反响为:
Bi+4HNO3=Bi(NO3)3+NO+2H2O
为避免氮氧化物很多逸出,水淬铋应缓慢参加。反响后之溶液即溶液。
浓缩结晶:浓缩温度控制在100℃左右,溶液体积蒸发到50%再冷却结晶,10小时后溶液中所含的有60%~70%结晶分出来;将分出之结晶别离后,一次母液再进行浓缩,体积缩小一倍,还可得到20~30%的结晶,杂质悉数留在二次母液中,将二次母液加热并用水处理以构成碱式沉积,将Bi(OH)2NO3滤出后再回来用硝酸溶解:将分出的结晶用少数含酸水洗刷(H2O∶HNO3=5∶2),常温下风干,此进程将开释部分氮氧化物尾气。
煅烧:温度控制在600℃左右,焚烧时刻为3~4小时,此刻有很多氮氧化物气体逸出。其反响为:
4Bi(NO3)2=2Bi2O3+12NO2+3O2
煅烧至无氮氧化物逸出中止,然后降温,取出煅烧后的氧化铋,用瓷球磨机破坏至粒度一60目。
3、首要设备。马弗电炉一台;瓷球磨机一台。
(二)湿法
1、工艺流程。如图2。图2 湿法出产氧化铋工艺流程
包含溶解、中和、枯燥等工序,产出氧化铋;滤液经转化、结晶,产出。
2、首要技能条件。水淬与硝酸溶解同火法出产。
中和:与液碱反响如下式:
2Bi(NO3)3+6NaOH=Bi2O3+6NaNO3+3H2O
将固体碱用蒸馏水溶解制成30%的NaOH溶液,弄清后撇去悬浮物,取上清液备用。要求上清液清亮通明,不染杂色。然后取体积1.5~2.5倍于硝酸溶液的NaOH溶液加热至95℃左右,将饱满的溶液逐步缓慢注入加热后的NaOH溶液,边加边拌和边升温,使生成的氧化铋沉积呈黄色。留意不能加得太快,太快则易发生白色的氢氧化铋与碱式沉积。
当参加之饱满溶液体积约为NaOH溶液之一半时,尽管此刻溶液中NaOH浓度仍约为5N,但不能再加,再加则生成白色絮状氢氧化铋胶体物。持续拌和及保温半小时,使生成的氧化铋由浅黄色转变为澄黄色,再转变为暗黄色,然后坚持暗黄色不变。
过滤洗刷:中和后中止加温拌和,弄清过滤,沉积即Bi2O3粉末,用水屡次淋洗至洗水呈中性,枯燥后的氧化铋粉末(约200目)即产品。
硝酸转化:滤液中除NaNO3外,尚有NaOH存在,缓慢参加HNO3于滤液中,使NaOH转化为NaNO3,其反响为:当溶液呈中性时,阐明已悉数转化为溶液,然后加温浓缩结晶,分出副产品。
3、首要设备。不锈钢溶解槽一只:中和罐一个、浓缩结晶罐一个、选用夹套式珐琅反响釜,附机械拌和:离心机一台;烘箱一台。
4、产品质量。当用自来水出产时,可达工业纯级,其成分为(%):Bi2O3>98.5%,Fe<0.01,碱金属硫酸盐低于0.1,不溶物低于0.1;当用蒸馏水出产时,可达化学纯级,其成分为(%):Bi2O3高于99.5,Fe<0.005,碱金属硫酸盐低于0.03,不溶物低于0.005。
二、氯氧化铋
氯氧化铋是三氯化铋的水解产品,首要用于塑料工业,使塑料制品具有美丽的珍球光泽。用量一般为氯氧化铋:树脂为0.4%~0.8%,可根据种类要求适量增减。
(一)工艺流程。如图3,包含溶解、转化水解、洗滤、烘干等工序。图3 氯氧化铋出产工艺流程
(二)首要技能条件。水淬后的铋粒,用稀释一倍的硝酸溶液溶解,生成溶液。
食盐转化:将溶液参加到饱满食盐水(密度1.2克/厘米3)中,拌和均匀,若发生白色水解物,则稍加稀溶化。
水解:将相当于氯化铋溶液体积4倍的稀释水加热至95℃,参加相当于稀释水体积0.7%~0.8%的于稀释液中,在拌和下将铋液倒入,再用热水稀释至pH=2.3,弄清后,与上清液别离,用蒸馏水洗刷BiOCl至pH>5。
枯燥:BiOCl在95~100℃下恒温枯燥脱水,枯燥后经过80目。
(三)首要设备。不锈钢溶解罐一个:硬聚氯乙烯塑料焊制转化槽一个;水解槽一个:离心机一台。
(四)产品质量。产出之氯氧化铋成分为(%):BiOCl>98.5,H2O<0.5,酸不溶物低于0.1。
锑化合物多种用途
2019-03-07 10:03:00
锑化合物种类繁复.运用规模适当广泛,在医药、电子、玻璃制作、阻燃剂、陶瓷、珐琅、印染、化工、化学分析等方面都有运用。 葡萄糠酸锑钠是医治黑热病的首选药,作用很好,且很少发作副作用,可由葡萄糖酸钠与锑酸作用制得。酒石酸锑氧钾C4H4O7KSb·I/2H2O(吐酒石)和锑一273(次没食子酸锑钠)都是医治血吸虫病的药物,前者经过打乱血吸虫虫体代谢到达消除血吸虫的意图.后者则能将肠系膜睁脉中血吸虫转人.堵塞于肝小血管.被吞咙细胞所围住,最终消火。酒石酸锑敏钾由三氧化锑与酒石酸氢钾溶液共热后结晶制得;锑一273则由没食子酸和三氧化锑在中性液中作用制得。 锑与IIIA族、VIA族元素构成的化合物InSb, AISb, GaSb, Sb2Se3, Sb2Te3等都是很好的半导体材料。金属锑和铟在高a熔合.再经熔炼提纯即为锑化锢的单晶.该单晶可制成具有特殊功能的红外线勘探器材。 氧化锑(Sb203 )、锑酸钠(NaShO3)、水合锑酸钠[NaSb(OH)6]等都可用于玻璃生产中作弄清剂,仅仅Sb2O3用于普通玻璃,而NaShO3和NaSb(OH)6用于显像管玻壳、 光学玻璃及各种高档玻璃。 Sb2O3作玻璃弄清剂运用时,要和硝酸盐并用,其原理为在1000-1200℃温度下,Sb2O3,被硝酸盐放出的氧所氧化(Sb2O3 → Sb205);当温度到达1300℃以上时又放出氧(Sb2O5→Sb2O3),然后起弄清作用;在冷却过程中Sb203再变为Sb205.这样便把氧气气泡吸收除掉。一般玻璃中Sb203的用量为0.05~0.5%.NaSbO3和NaSb(OH)6作为 玻璃弄清剂比Sb203作用要好.它们独自运用,所起作用与Sb2O3类似,也是高温时生成Sb2O3而放出氧,冷却时Sb2O3再转变为Sb2O5吸收氧气气泡,然后到达弄清玻璃的意图. 在钠钙玻瑞中加人一定量的Sb203、硫黄、炭粉,熔炼后再经显色热处理.即得到报价便宜、便于推行锑红玻璃.此种玻璃用作信号玻璃和艺术玻璃等。 锑系阻燃剂在无机阻燃剂中占有越来越重要的位置,阻燃荆已成为锑的最大运用领域.其耗费盘占锑总耗费盘的80%以上。选用Sb2O3、非胶体Sb205、胶体Sb2O5、SbCl3 , NaSbO3等,已别离开发出了组成不同、特性不问、运用于不同场合的系列种类,广泛运用于橡胶、塑料、化纤、地毯、涂料等阻燃制品中。跟着Sb203超微细技能的开展,可以得到粒径更细的Sb203,其添加功能更好,对被阻燃基材物理功能的恶化更少。胶体Sb2O5的均匀粒径仅0.03μm,约为般Sb2飞粒径的1/100.因为极细,基本上不恶化树脂基材的物理功能,一起对树脂的色彩也罕见影响。实验证明,胶体Sb205阻燃性高于同系列的非胶体Sb205、Sb2O3,及NaSbO3等.是锑系阻燃剂中最好的一种。 SbCl3用于查验生物碱和元素。NaSbO3,和焦锑酸钾(K2H2Sb207·4H20)都可用于钠离子的判定。SbCl3常作为无机和有机氯化反响的催化剂。 Sb203是最重要的锑化合物之一,除了前面说到的用处外,它还可用作石油化工和组成纤维的催化剂;用于制作媒染剂、乳白剂;用作组成锑盐的质料;在珐琅工业中用作添加剂,以添加面釉的不透明性和表面光泽。别的.Sb203仍是一种优秀的白色颜料.其遮盖力略次于钛白,而与锌白附近。在钛白的生产中.Sb203能有效地按捺铁白的光致变色反响。使用Sb203杰出的抗粉化、对光安稳功能以及阻姗燃功能,人们现已制备出各种用处的含锑二氧化钛,如钛镍黄、化纤钛白、超细含锑二氧化钛等。
纯钼化合物的制取(三)
2019-02-15 14:21:16
离子交流法 A 离子交流法净化钼酸铵溶液 有关工艺及目标见下表。
离子交流法净化钼酸铵溶液扼要工艺及目标
[next]
B 用AH-80-7II从硝酸分化辉钼矿的母液中收回钼 母液成分:Mo15.6g/L; Fe:14.2g/L; SO42-65~67g/L; HN03205g/L,中和至必定pH值后流过N03-型的离子交流柱,至流出液含钼1~1.4g/L,此刻树脂含钼达115~136g/L, H的吸附率达92.7%~92.8%。负载树脂用pH =2.5~3的水淋洗去铁,再用10%~15%NH4OH溶液解吸,得含钼60~155g/L的钼酸铵溶液。解吸后的树脂用50~60g/L HN03转型为N03-型。 含钼1~1.4g/L的流出液用NH4OH中和至pH =7~8,使其间Fe3+成Fe(OH)3沉积,上清液再用AH-80-7II吸附收回钼,最终流出液含钼30mg/L,进程总收回率为99.4%~99.6%。 萃取法 A 胺类萃取剂萃取 a 用叔胺或季按盐从加压氧分化辉钥矿的母液中别离钼铼 母液中含有原猜中简直悉数的铼和15%~20%的钼,以及约400g/L的H2S04。其间钼和铼主要以Mo8O264-、MoO2(SO4)22-、ReO4-等形状存在。不同胺类萃取剂和硫酸浓度对萃取钼、铼的影响见下两表。不同胺类萃取钼、铼的成果萃取剂比较(o/a)溶剂载钼量/(g·L-1)萃取率/%MoReAliquat 336(季铵)210.360.6>99Alamine 304(叔胺)27.946.2>99XLA-3(伯胺)27.443.3>99
注:有机相:5%不同萃取剂-芳香族稀释剂(闪点 47.2℃);料液:34g/L Mo,0.24g/L Re,380g/L H2SO4。[next]
料液中硫酸浓度对Alamine 304 萃取钼、铼的影响料液中H2SO4浓度/(g·L-1)萃取率/%MoRe10099.398.33008998.36001498.3注:有机相:4% Alamine 304-5% 十三醇-火油;料液:8.0g/L Mo,0.05g/L Re,比较(o/a)=4;萃取时刻 1min。
从表中看出,在较宽的硫酸浓度范围内,叔胺或季胺均能有效地萃取铼,但钼的萃取率随硫酸浓度增大而显着下降。 原中科院化工冶金研讨所对铼、钼的萃取别离进行了研讨,发现伯胺与中性磷的混合溶剂系统能从高浓度钼的弱碱性水溶液中高效萃取铼,铼、钼的别离系数高达104,而中性磷对伯胺萃铼的协萃系数高达103。 为了萃取别离钼、铼,一般选用下图的准则流程,即首先用胺或季铵盐一起萃钼、铼并与Cu等别离,以NH4OH反萃,使钼、锌一起进人反萃液,再操控条件从反萃液中选择性萃铼,而钼留在萃余液中,进而用从有机相反萃铼。但也有的先用低浓度叔胺(N235)萃铼,然后用高浓度叔胺萃铼。[next] 例如,压煮母液含8~11g/L Mo,0.1~0.2g/L Re,1.8~2.5mol/L H2SO4,用2.5%N235-10%仲辛醇-火油在比较(o/a) = 1:5下先萃铼,用反萃铼,返萃液中加人KCl制成高铼酸钾产品。萃铼后的水相用20% N235 -10%-仲辛醇-火油在比较(o/a) =1:5条件下萃钼,用反萃钼得到钼酸铵溶液。[next] b 用叔胺萃取和强碱阳离子树脂交流联合法从硝酸分化辉钼矿的母液中收回钼、铼 联合法的准则流程见下图。
[next]
母液含:Mo 23g/L;Re 0.O1g/L:Cu 8.1g/L;Fe 10.6g/L;H2SO4 312.5g/L。用20%三辛胺和三癸胺混合物-10%十三醇-火油有机相萃取,在比较为1时,钼和铼的分配比分别为7.30和100以上。在混合弄清槽进行4级逆流萃取后,钼的萃取率为99%,铼的萃取率为100%。负载有机相用0.0l mol/L的H2S042级洗刷除掉共萃取的铜、铁,然后用3 mol/L的NH4OH3级反萃钼、铼。反萃液经过强碱阴离子交流柱,铼被吸附,用解吸铼。吸附铼后的溶液进行蒸腾结晶收回仲钼酸铵,其纯度达99.94%,含量最高的杂质是铁(0.01%)。 B P204萃取 在弱酸性介质中,钼(VI)能以MoO22+存在,故适于用酸性磷型萃取剂萃钼:
MoO22+(aq)+2(HR2PO4)2(org)==== MoO2(R2PO4)2(org)+2H+(aq)
由下图可知,pH值过高钼能以Mo70246-等阴离子存在,不利于萃取;一般以平衡pH=2为宜。溶液中的Fe3+会与MoO22+一起萃取,而Cu2+即便达2g/L时也不被萃取。
锑的金属间化合物
2019-01-24 17:45:48
锑与元素周期表中许多族的金属容易生成金属间化合物,简称锑化物。
第Ⅰ族金属的锑化物有:Li3Sb,Na3Sb,K3Sb,KSb,Cu3Sb,Cu2Sb和Ag3Sb;第Ⅱ族金属的锑化物有:Mg3Sb2,Ca3Sb2,ZnSb,CdSb和Ca3Sb;第Ⅲ族金属的锑化物有:BSb,AlSb,GaSb和InSb;第Ⅵ族的锑化物有:Sb2S3,Sb2Se3和Sb2Te3;第Ⅷ族的锑化物有:FeSb2,Ni2Sb3和NiSb。这些金属间化合物多具有半导体性质,在这个领域最重要的是锑与第Ⅲ和第Ⅵ族金属形成的锑化物。
目前已有研究报道锑的半导体化合物多达18种,而研究较多的是AlSb,GaSb和InSb。这些金属间化合物属混合键型。
AlSb是Al-Sb二元系中唯一稳定的化合物,其禁带宽度值高达1.6eV,熔点为1050℃。AlSb的电子迁移率为900cm2∕(V·s),空穴迁移率为400cm∕(V·s)。
纯钨化合物的制取
2019-01-07 07:51:26
为从碱分解钨矿物原料所得的粗钨酸钠溶液制取纯APT或WO3,原则上都要完成下列任务:净化除去杂质P、As、Si;将钨由Na2WO4溶液形态转型为(HH4)2WO4溶液,(NH4)2WO4溶液蒸发结晶得APT,此外还要经历除钼过程,为完成上述任务,常用的流程综合如图1所示,即常用的工艺有:
(1)Na2WO4溶液经离子交换除P、As、Si并转型得纯(NH4)2WO4溶液后,结晶得APT。
(2)Na2WO4溶液用化学沉淀法除P、As、Si后再转型得(NH4)2WO4溶液,转型主要是用萃取法,亦有用离子交换法的。
(3)Na2WO4溶液用化学沉淀法除P、As、Si后再用经典法得APT,现已基本被淘汰。图1 从粗Na2WO4溶液制取纯钨化合物原则流程图
贵金属主要化合物和配合物(二)
2019-02-15 14:21:10
续上表 常见贵金属氯配阴离子及特色元素价态电子构型首要合作物标准氧化复原电位/V合作物空间构形 Ⅳd5IrCl62-IrCl62-/IrCl63-0.93正八面体OsⅢd5Os(H2O)Cl52-OsCl63-/Os0.71正八面体 OsCl63- Ⅳd4OsCl62-OsCl62-/OsCl63-0.85正八面体 Os(H2O)Cl5- Ⅳ OsO2Cl2- RuⅢd5Ru(H2O)Cl52-RuCl63-/Ru0.6正八面体 RuCl63- Ⅳd4Ru2O(H2O)2Cl82-RuCl62-/RuCl63-1.2正八面体
酸性溶液中这些配阴离子都与氢阳离子构成可离解的弱酸,并都具有从黄到红的鲜色彩。影响这些氯合作物安稳性的最首要要素是氧化价态,Rh(Ⅲ)、Ir(Ⅲ)合作物最安稳,Pt(Ⅱ)、Pd(Ⅱ)合作物最不安稳。Ir(Ⅳ)易复原为Ir(Ⅲ),且反响很快。Pt(Ⅳ)复原为Pt(Ⅱ)的反响速度很慢。此外,溶液的酸度、氯离子浓度、温度、放置时刻、氧化复原电位的改变等条件也是影响其安稳性的重要要素。不同的条件下,氯配阴离子会发作水合、羟合、水合离子的酸式离解等反响并转化生成各种组成的氯-水合、氯-水-羟基合作物,其性质也发作相应的改变。[next] 重组铂族金属(锇、铱、铂)比轻组铂族金属(钌、铑、钯)的相同价态的化合物或合作物的热力学安稳性和反响动力学慵懒大,即Os(Ⅳ)>Ru(Ⅳ),Ir(Ⅳ)>Rh(N),Ir(Ⅲ)>Ir(Ⅲ),Pt(IV)>Pd(Ⅳ),如(OsCl6)2-比(RuCl6) 2-安稳,后者易复原为贱价;(IrCl6)2-比(RhCl6)2-安稳,前者能安稳存在于酸性溶液中,而后者只要在氧化电位大于1.8V的强氧化条件下才干存在,且很易被复原为贱价;(IrCl6)3-比(RhCl6)3-安稳,后者易被负电性金属(如锌、镁、铁、铝等)直接从溶液中复原为金属,前者却较难;(PtCl6)2-比(PdCl6)2-安稳,后者在溶液中煮沸即主动复原为贱价,前者却不能;(PtCl4)2-比(PdCl4)2-安稳,它们被复原为金属的速度后者比前者快。此外在中和水解及水合反响中也有上述规则。 2.亚硝酸根合作物 铂族金属(除钌外)的氯合作物溶液中参加过量NaNO2或KNO2,都可生成不同组成的亚硝基合作物。NO2-替代Cl-以及彼此替代极易进行。替代反响随同着复原作用,使中心离子的终究氧化态表现为贱价态。两种配位基在合作物中的数量改变导致合作物性质的改变。以铱合作物色彩改变为例,IrCl63-黄绿色→[IrCl4(NO2)23-]金黄色→[IrCl2(NO2)43-]淡黄色→[Ir(NO2)63-]无色。因此在两种配位基共存的系统中,彻底的亚硝基合作物不可能存在。 大多数贵金属亚硝基合作物显白色,而水溶液则无色。仅少量显黄色至绿色。钠盐溶于水,钾盐和铵盐的溶解度较小。在KCl和NH4Cl溶液中几乎不溶。 钌的硝基合作物结构中一起有NO和NO2时,如[RuNO(OH)(NO2)4]2-,其盐为橙色,易溶于水和醇。乃至其钾盐也易溶于醇中。与反响时,转化为混合配位基的合作物[RuNOCI5]2-,其钠、钾、钕、盐皆为安稳的难溶于水的玫瑰色结晶。 铂、钯、铑、铱的亚硝酸根合作物钠盐Na2Pt(NO2)4、Na2Pd(NO2)4、Na3Rh(NO2)6、Na3Ir(NO2)6皆易溶于水,且比相应的氯合作钠盐在水解性质方面更安稳。当加热煮沸并用碱液中和时,铂、铑合作盐在pH12-14,钯盐在pH 8-10的条件下都不发作水解反响。使用这一特性可进行贵贱金属别离。 用可从铂、钯、铑的可溶性亚硝酸根合作物溶液中沉积出金属硫化物。但不能沉积铱。 在铑的六亚硝基合作钠盐水溶液中参加氯化铵,通过铵、钠离子的不断交流,最终转化为(NH4)3Rh(NO2)6白色沉积,不溶于冷水及乙醇,微溶于热水,不溶于氯化铵。这个性质可用于铑与其他贵金属的别离和铑的精粹提纯。[next] 铱的亚硝酸根合作钠盐用上述相同办法处理,其铵钠混合盐微溶于水却可溶于10%浓度的氯化铵溶液中。持续进步氯化铵浓度,最终也转化为微溶于水、不溶于氯化铵的白色沉积(NH4)3Ir(NO2)6。 3.合作物 Ag+与生成阳离子合作物AgNH3+及Ag (NH3)2+,AgCl2-与生成可溶性的AgCl2(NH3)2。 从氯合作物中替代Cl-,随NH3配位数的不同,可构成不同结构及溶解性质差异很大的许多合作物。合作物的性质比相应氯合作物安稳。乃至用都难从合作物中沉积出金属硫化物。 Pt(Ⅱ)的含合作物通式为:[Pt(NH3)nCl4-n]n-2。用NH4OH和Na2PtCl4反响生成亮黄色的顺式二氯二亚铂[Pt(NH3)2Cl2]沉积,这就是有名的顺铂抗癌药。但它不易溶于水,25℃水中溶解度仅0.25%。但含1、3或4个的合作物却易溶于水。四合作物R(NH3)4Cl2与浓反响并煮沸则分出亮黄色的反式二氯二亚铂沉积。 钯的氯配阴离子与反响分出难溶于水的玫瑰色盐Pd (NH3) 4•PdCl4(称为沃式盐),但持续参加并加热则转化为可溶的无色盐Pd(NH3)4Cl2。从头再参加则又转化尴尬溶于水的反式二氯二亚钯[Pd(NH3)2Cl2]黄色沉积。使用这个性质树立的精粹钯的办法一向沿用至今。 铑生成三价的氯合作物,如Rh(NH3)3Cl3、[Rh(NH3)5CI]Cl2,皆难溶于水。前者在25℃水中溶解度仅为0.828%。 铱也构成相似铑的氯合作物,如Ir(NH3)3Cl3,难溶于水。但[Ir(NH3)5Cl]Cl3却易溶于水。 4.合作物 银与生成可溶性的AgSC(NH2)2和Ag2SC(NH2)2合作物,用于从矿石中提取银。 铂族金属与也构成一系列合作物,特色是中心离子随同合作进程被复原为贱价,且在酸性溶液中最终转化为硫化物沉积。相对而言铂的合作物较安稳,如黄色的合作物Pt[4SC(NH2)2]Cl2可溶于水,并可浓缩结晶。但Pd[4SC(NH2)2]Cl2虽可溶于水,加热则易分解为硫化钯沉积。 在硫酸或碱金属硫酸盐溶液中,上述四合作物中的Cl-,可被SO42-替代并分出难溶于水的结晶Pt[4SC(NH2)2]SO4(黄白色)及Pd[4SC(NH2)2]SO4,它们溶于浓硫酸。稀释后又从头分出结晶。
贵金属主要化合物和配合物(一)
2019-02-15 14:21:10
(一)氧化物 铂族金属有多种价态的氧化物,如PdO, Rh2O3, Ir2O3, RuO2, RhO2, IrO, PtO2,RuO4、OsO4等。除锇、钌氧化物外,大都氧化物不安稳,易高温分化为金属。在提取冶金中,钯、锇、钌的氧化物的许多重要性质直接影响到它们的有用富集和别离。钯在精粹进程顶用其络合盐缎烧为海绵金属时,极易氧化为PdO,这个氧化物不溶于任何酸,且难溶于,这使重溶再精粹的进程很难进行。 锇、钌的金属粉末在常温下即可被空气中的氧氧化。当以锇、钌酸盐或锇钌的氯合作物存在于碱性或酸性溶液中时,氧、氯、氯酸盐、、硝酸等各种氧化剂皆可将其氧化为蒸发性高价氧化物。八价氧化物OsO4、RuO4是特征氧化物,皆有烧碱气味,有毒。常温下OsO4是无色或浅绿色通明固体,正四面体结构,但熔点仅41℃,沸点141℃,较低温度下即易汽化蒸发,气态OsO4近乎无色。RuO4常温下为黄色针状固体,也为正四面体结构,熔点25℃,沸点65℃,比OsO4更易汽化蒸发。气态RuO4为橙色,热安稳性差,在汽化、提高或蒸馏时,若遇较高温度(约180℃)会自行发生爆炸分化。但OsO4的热安稳性较好。 两种高价氧化物都属强氧化剂,分化或遇复原剂皆被复原为OsO2, RuO4,并放出氧气。RuO4、OsO4极易溶于许多有机溶剂且比较安稳,如在CC14中OsO4的溶解度高达250%,这成为从溶液中萃取提锇、钌的办法之一。两种八价氧化物都属酸性氧化物,可溶于水。OsO4的水溶液无色,25℃水中高达7.24%。RuO4的水溶液为金黄色,20℃水中可达2.03%。都可溶于碱性溶液中生成锇、钌酸盐,但温度较高时它们又会从头蒸发。OsO4在酸性溶液中的溶解性不如RuO4,后者溶于溶液后被复原并转化为安稳的贱价态氯钌酸。终究呈何种价态与浓度及放置时刻有关,如在6mol/L HC1中悉数以Ru(Ⅳ)氯配酸状况存在,酸度降至0.5mol/L并放置较长时刻则悉数转化为Ru(Ⅵ)。酸度降至0.1 mol/L则悉数转化为RuO4黑色沉积。提取冶金中使用锇、钌易氧化为强蒸发性的八价氧化物的性质与其他金属别离,然后用冷态的稀碱溶液和稀溶液别离吸收,彼此别离。 (二)水合氧化物(氢氧化物)[next] 铂族金属不同价态的氧化物基本上都有其对应的水合氧化物,它们都从各金属的盐或合作物的水溶液顶用碱中和水解的办法制备。水解时一起参加氧化剂或复原剂,则可操控并制备出要求价态的水合氧化物。若溶液中参加维护胶则水解时生成相应的胶体溶液。提取冶金中常常碰到的水合氧化物首要有Au(OH)3、Rh(OH)3、Ir(OH)3、Rh(OH)4、Ir(OH)4、Pt(OH)2、Pt(OH)4、Pd(OH)2、Ru(OH)3、Ru(OH)4等。它们有不同的色彩,如新沉积的四价铂的水合氧化物呈白色,煮沸后变为赭棕色,枯燥后变为黑色。铑、铱的水合氧化物色彩则取决其水解条件,如用浓碱沉积则制得黑色的Rh(OH)3(难溶于无机酸)及Ir(OH)3,用稀碱液中和发生的沉积则别离呈黄色Rh(OH)3•H2O和绿色的Ir(OH)3。 一切水合氧化物溶解度都很小,很易从头溶于无机酸,若加热彻底脱水后则转化为相应的氧化物,在酸中难溶或彻底不溶。新鲜的沉积用溶解后皆转化为相应的氯配阴离子。有些水合氧化物,如PdO2•xH2O、RhO2•xH2O还可溶于有机酸(如乙酸),也溶于苛性碱溶液生成相应的金属酸盐,如NaRhO2。 (三)硫化物 硫化物是贵金属的重要化合物。自然界存在性质十分安稳的硫化矿藏。一般从含有贵金属的水溶液中通入气体或参加,皆可取得其硫化物沉积。也可直接用金属与硫在高温及真空条件下反响制取。提取冶金中常常遇到的不同价态的硫化物有Au2S、Au2S3、Ag2S、RuS2、RuS3、Rh2S3、Rh2S5、PdS、PdS2、OsS2、IrS、Ir2S3、IrS2、IrS3、PtS、PtS2等。因为或自身带有必定的复原性及生成的硫化物中带有S-S键,因而沉积出的硫化物实际上呈贱价态。若溶液中贵金属浓度很稀则生成的硫化物呈胶体状况,很难过滤别离。有些新鲜沉积的硫化物,如PtS2、PdS还能在空气中被缓慢地氧化为硫酸盐。 一切贵金属硫化物的色彩均较深(灰到黑)。高价态硫化物加热时可逐级降解为贱价硫化物,直至分化为金属。一切硫化物都不溶于水,沉积法制备的新鲜态硫化物易重溶于无机酸,有氧化剂存在可加速溶解进程。但高温组成的硫化物化学性质很安稳,难溶于无机酸,甚至在中都难溶。[next] (四)硫酸盐和硝酸盐 按金属存在形状这两类化合物分为两种:一种是金属呈阳离子的简略盐,如Ag2SO4、AgNO3、Ru(SO4)2、Rh2(SO4)3、Ir2(SO4)3、Ir(SO4)2、PdSO4•H2O、Pt(SO4)2、Pd(NO3)2等;另一种是合作物,如H[Rh(SO4)2]、H[Pt(SO4)2]、K2[Pt(NO2)6]等。银、铱、钯、铑的氧化物或水合氧化物与硫酸在加温下反响可制得相应的简略硫酸盐。金属银、钯粉与热浓硫酸反响或与硝酸硫酸混合酸反响都可制得硫酸盐。钌、铱的硫化物用硝酸氧化即可转化为相应金属的硫酸盐。金属铂与浓硫酸共热至380℃生成硫酸铂。金属铑与KHSO4或K2S2O7焙烧转化为硫酸铑。铑(Ⅲ)、铱(Ⅲ)的硫酸盐易与碱金属硫酸盐生成复盐——矾。矾盐的通式为M′M(SO4)•12H2O。式中M′为锂、钠、钾、、等碱金属阳离子。 铂族金属的硫酸盐可溶于水。铂、铑的硫酸盐还可溶于乙醇和。硫酸盐的色彩从黄红到红棕改变,首要取决于结晶水的数量,如带两个结晶水的硫酸钯为红棕色,一个结晶水为橄榄绿色,15个结晶水的硫酸铑为灰黄色,减为12个结晶水变为浅黄色,减为4个结晶水则变为赤色。 AgNO3是最重要的银盐,无色通明晶体,易溶于水。 (五)氯化物 最重要的是AuCN、Au(CN)2-、AgCN、Pd(CN)2等,它们都易溶于碱性溶液中,成为提取金、银的重要办法。 (六)合作物 贵金属能生成多种价态且性质差异很大的合作物,各种合作物的性质不同和不同的生成条件,是许多重要和共同的贵金属别离、精粹办法的重要根底。 金和铂族金属合作物中的配位体有卤素(氟、氯、、碘)、硝基、亚硝基、硫的氧化物或其他化合物、根、、水分子、有机基团等很多种,配阴离子又与许多其他元素的阳离子生成合作盐,这些合作盐又有四面体、八面体、顺式、反式等很多种结构。现在仅铂的合作物就已知数千种。贵金属提取冶金中使用最多的是卤素(特别是氯),其次是以、亚硝基(NO2-)、为配位体的配阴离子及与碱、钾和铵阳离子构成的合作盐。以下是提取冶金中使用较多的贵金属合作物。[next] 1.氯合作物 氯化物系统(、、氯酸盐等)溶解贵金属一直是最首要的办法,贵金属彼此别离和精粹办法的树立和开展也多以其氯合作物性质的差异为根底。该类合作物是最重要且研讨得比较充沛的系统。 AgCl在水中溶解度很低,但在过量C1-介质中则生成可溶性合作物AgCl2-。 金和铂族金属皆能生成通式为mx′[M″Cly]的氯合作物。式中M′为H+、Na+、K+、NH4+等阳离子,M″为贵金属阳离子,随M″价态不同,x一般为1-3, y为4或6。呈晶体状况时还含不同数量的结晶水。中心离子的氧化价态对合作物的安稳性及其他化学性质的改变,对用沉积或萃取别离精粹办法的挑选和拟定有重要的影响。贵金属在氯化物溶液中可呈现的氧化价态为:Ru(Ⅲ Ⅳ Ⅱ Ⅵ Ⅷ Ⅴ Ⅶ);Rh(Ⅲ Ⅳ Ⅱ Ⅰ):Pd(Ⅱ Ⅳ Ⅲ);Os(Ⅳ Ⅷ Ⅵ Ⅱ Ⅲ Ⅴ);Ir(Ⅳ Ⅲ Ⅵ Ⅱ);Pt(Ⅳ Ⅱ Ⅲ Ⅴ Ⅵ );Au(Ⅲ Ⅰ)。 每个金属的前两种氧化态最常见,第一种是最安稳的氧化态。最常见的氯配阴离子品种和特色列于下表。常见贵金属氯配阴离子及特色元素价态电子构型首要合作物标准氧化复原电位/V合作物空间构形AuⅢd8AuCl4-AuCl4-/Au1平面正方PdⅡd8PdCl42-PdCl42-/Pd0.59平面正方 Ⅳd6PdCl62-PdCl62-/PdCl42-1.29正八面体PtⅡd8PtCl42-PtCl42-/Pt0.75平面正方 Ⅳd6PtCl62-PtCl62-/PtCl42-0.68正八面体RhⅢd6Rh(H2O)3+RhCl63-/Rh0.43正八面体 RhCl63- Rh(H2O)Cl52- IrⅢd6Ir(H2O)Cl52-IrCl63-/Ir0.77正八面体 Ir(H2O)Cl63-
铟的特点和储量及其化合物
2019-02-26 09:00:22
铟在地壳中的含量为0.1ppm(1ppm=1μg/g,下同),属稀散元素,它自身不能构成独立的矿藏,在天然条件下零散地涣散在其他矿化矿藏中。铟首要表现出亲硫的性质,在硫化矿藏尤其是铅和锌的硫代锡酸盐和硫化锑酸盐的一些矿藏中含量较高。铟的首要来历是(铁)闪锌矿,含量为100~10000ppm,在铜矿中也有必定含量的铟。因为铟在矿藏中含量很低,不能作为独自一种工业质料挖掘;即便铟在闪锌矿中含量最富,也依然不能作为独立挖掘的矿藏,只能在重有色金属冶炼过程中作为归纳使用质料的副产品收回。一般在进行质料的归纳冶炼时,只需铟的含量到达200ppm,就具有归纳收回的价值。
铟是一种银白色的金属,相对密度为7.3,熔点为156.6℃,沸点为2075℃;其性质柔软,可塑性强,并有延展性,可压成极簿的薄片,但拉伸极限低,黏度大,故难拉成丝和不利于切削。铟的导电性比铜约低4/5,其热膨胀系数几乎是铜的1倍以上。
铟的化学性质与铁近似,常与锌、铁一同构成类质同象物。铟可生成一价、二价和三价化合物,但只要三价化合物是安稳的,在水溶液中只存在三价铟的化合物。
氧化铟是黄色不溶于水的物质,当铟在空气中氧化或将氢氧化铟煅烧时都可得到氧化铟。氧化铟可在700~800℃时被氢或炭复原成为金属。贱价氧化物是复原时的中间产品。
将碱或与铟盐的溶液效果,可以制得氢氧化铟,呈白色胶状沉淀。氢氧化铟在pH值为3.5~3.7的稀溶液中就开端分出,当铟的浓度添加时,氢氧化铟分出的pH值可向酸性移动。
三氯化铟是无色、易于蒸发的化合物,熔点为586℃,可是,在450 ℃时已开端提高,可溶解于水。
硫酸铟是铟的重要盐类之一,在中性溶液中结晶出五水化合物,在100~120℃时,还逐步脱水成为无水化合物。硫酸铟为白色固体,溶解于水。
铟和硫可以生成硫化物,如将通人中性或弱酸性的醋酸铟溶液中,就会分出黄色硫化物InS。
现在,铟的矿产资源首要会集在美国、俄罗斯、加拿大、南非和我国,可是,其他地方如西欧有精粹厂。按USGS计算,2000年国际精矿生产量为220吨,比上年添加了3%,国际贮存(库存)量约5600吨。我国铟矿产资源散布于卜多个省份,首要会集在广西、云南、广东和内蒙古四个省区,占全国已探明储量的82.90%,占保有储量的84%。我国稀贵金属资源比较丰富,例如铟资源拥有量现已超越加拿大、美国、俄罗斯、秘鲁和日本,跃居国际第一。我国已探明的铟储量超越1万吨,已探明的铅锌储量分别为3573万吨和9379万吨;我国铅锌矿床含铟率高于国外,与铅锌矿床共生的铟储量为8000吨左右。
铟元素的发现已有100多年的前史,之后通过大约60年,才开端在工业和技能方面得到使用。现在铟的使用领域已显着扩展,这是对元素自身及其化合物越来越透彻了解的成果。
铟是一种多用处的金属,具有熔点低、沸点高、传导性好,氧化物能构成通明的导电膜等特性,其使用规模正在不断扩展,特别是近年来,发现铟的用处越来越广泛,尤其是在半导体、导体、低熔点合金、铟锡氧化物、硒铟铜薄膜太阳能电池、光纤通讯、原子能、电视、防腐以及其他工业方面的使用越来越引起人们的注重和注重。除了以上用处外,使用铟合金熔点低的特色还可制成特殊合金,用于消防系统的闭路保护设备及自动控制系统的热控设备。因为铟具有较强的抗腐蚀性以及对光的反射才能,可以制成军舰或客轮上的反射镜,既可坚持亮光持久不变,又本领海水的腐蚀。别的,铟作为耐磨轴承、牙科合金、钢铁和有色金属的防腐装修件、塑料金属化以及传统首饰纪念物的用处仍在持续增加。大约70%的铟是用于制备IT()(铟锡氧化物),它可制成通明电极,用于计算机和其他显现屏上,尤其是LCD液晶显现器上,
这是ITO的最大(终端)用户。平面显现器是人类与电子国际“沟通”的“界面”,它大大促进了可移动电子设备的开展,例如手机、掌上型电脑等。用于平板显现中的IT()膜对可见光通明、吸收紫外线、反射红外光具有很好的耐蚀性以及环境和热安稳性。
铟的第二大使用领域是焊料,例如焊膏和低熔点(易熔)合金,这些材料又有多方面的使用。铟还用于制造半导体材料,这种材料所制器材促进了高速数字网络的开展,然后可以处理日益增大的声响、印象和数字传输容量。
锑的有机化合物
2019-02-18 15:19:33
锑的有机化合物是指Sh-C键的化合物,品种许多,大致可分为三价锑和五价锑两大类,前者包含1~4个有机基团(SbR4、SbR3、H2SbX和RSbX2),后者包含1~6个有机基团(R5Sb、R4SbX、R3SbX2、R2SbX3、RSbX4及SbR6),此外还有有机二锑R2Sb-Sb-R2,含有多于一个Sb-Sb键(RSh)a的低聚合和多聚合化合物以及芳香有机锑的衍生物锑,许多二羟基锑酸的衍生物RabO(OH)2和锑酸衍生物。最近研讨较多,具有重要意义的是乙二醇锑和硫酵锑。
纯钼化合物的制取(四)
2019-02-15 14:21:16
C Kelex 100萃取 用KeleX100可从硫酸介质中萃取别离钼、铜。从下图可知。平衡pH=0.5一2.0范围内优先萃钼,而跟着平衡pH增大至4,则优先萃铜在平衡pH=0.5时,随触摸时刻的添加,Mo/Cu的别离系数进步。为了更好地别离铜,负载的有机相用150~200g/L H2SO4 洗去铜。除铜后再用NaOH反萃钼,得到 Na2MoO4溶液。 D 中性磷型萃取剂萃取 a 用TBP和TOPO从、硝酸、硫酸溶液中萃钼 用TBP和TOPO从酸性液中萃钼的首要反响如下: H2MoO4(aq)+3TBP(org) ==== H2MoO4·3TBP(org) H2MoO4(aq)+TOPO(org)==== H2MoO4·TOPO(org)[next] MoO2·X2(aq)+2TBP(org)====MoO2X2·2TBP(org) (X=Cl或NO3) MoO2·X2(aq)+2 TOPO(org)====MoO2X2·2 TOPO(org) MoO2SO4(aq)+2 TOPO(org)==== MoO2SO4·2 TOPO(org)
不同条件下用TBP和TOPO萃钼的成果见下表。从表中能够看出,用TOPO从较高浓度的溶液中萃钼作用最好。
[next]
b 用DBBP萃取剂从加压氧分化辉钼矿的母液中萃取钼、铼
DBBP(丁基二丁酯)可优先萃铼,例如料液含Mo 21.89g/L,Re 142.5mg/L,H2SO4 210.8g/L用25% DBBP-萃取,在不同比较下,两相平衡浓度见下表。用DBBP萃取钼、铼的成果比较(o/a)Mo/(g·L-1)Re/(mg·L-1)H2SO4浓度/(g·L-1)水 相有机相水相有机相1015.140.671.7914.07205.9517.890.83.5727.78205.9121.010.8816.67125.83208.80.521.381.0225.71213.58208.80.221.651.277.38335.6208.80.121.741.5101.19413.3208.8
氢氧化镁简单介绍
2019-02-14 10:39:59
碱土金属的氢氧化物都是白色固体,置于空气中就吸水潮解。其间Ca(OH)2就是常用的干燥剂。碱土金属氢氧化物在水中的溶解度比碱金属氢氧化物要小得多,从表中数据看,从Be到Mg,氢氧化物的溶解度顺次递加,它们的碱性也顺次递加。Be(OH)2和Mg (OH)2是难溶的氢氧化物。Be(OH)2是氢氧化物,Mg (OH)2归于中强碱,其他均归于强碱。表1 碱土金属氢氧化物的某些性质物质Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2性质色彩白白白白白熔点/K脱水分化脱水分化脱水分化脱水分化脱水分化水中溶解度/mol-dm-3(293K)8×10-1S×10-11.8×10-26.7×10-22×10-1酸碱性中强碱强碱强碱强碱 碱金属和部分碱土金属的焰色离子Li+Na-K+Rb+Cs+Ca2+Sr2+Ba2+焰色红黄紫紫红紫红紫红洋红黄绿波长/nm670.8589.6404.7629.8459.3616.2707553.6
Mg(OH)2的密度为2.36g/cm3,加热至623K即脱水分化: Mg(OH)2 ==== MgO + H2O Mg(OH)2易溶于酸或铵盐溶液: Mg(OH)2 + 2HCl ==== MgCl2 +2H2O 这一反响可应用于分析化学中。 将海水和廉价的石灰乳反响,能够得到Mg(OH)2沉积,亦称氧化镁乳: Mg2+ + Ca(OH)2 == Mg(OH)2 + Ca2+ Mg(OH)2的乳状悬浊液在医药上用作抗酸药弛缓泻剂。
纯钨化合物离子交换法净化转型工艺
2019-01-07 17:38:37
一、基本原理
离子交换法净化并转型工艺的原理在于:在碱性溶液中强碱性阴离子交换树脂对WO42-、Cl-以及杂质AsO43-、PO43-、SiO32-、SO42-等的亲和力不同,常用强碱性阴离子交换树脂对不同阴离子的亲和力顺序大体为:表1列出了钨冶金中常用的阴离子交换树脂的性质,从其分离系数β值也可看出上述规律,因此当含上述阴离子杂质的Na2WO4溶液与Cl-型的树脂接触时,当溶液中Cl-浓度很小,则将发生变换反应,WO42-被吸附,反应为:表1 用于钨离子交换的某些树脂的性质牌号201×17(717)WAW201Amberlite
4200CAmberlite
400C在交换柱内动态吸附时穿透交换容量,(WO3与干树脂质量比)0.25~0.28(交换前液WO3 20g∕L)0.30~0.35(交换前液WO3 30g∕L)0.28~0.31~0.32~0.32与不同阴离子分离系数(1)0.85
(2)0.6937.6~31.7
([OH]=4~10g∕L)37.9~3.08
[OH]=4~10g∕L)50.7~40.9
[OH]=4~10g∕L)2.5~3.78(1)9.5~11.1
([As]=0.04~0.16)
(2)10.6~10.8
([WO3]=16g∕L
[As]=0.37~0.69g∕L)10~14
([As]=0.04~0.16g∕L)12.8~20.5
([As]=0.04~0.16g∕L)0.65~1.09
([WO3]=25 g∕L
Cl-37~0.7 g∕L)3344.7其他阴离子,特别是相对亲和力小的SiO32-、PO43-离子将留在交换后液中与WO42-分离,阳离子Na+同样留在交换后液中与WO42-分离。
吸附有WO42-的树脂再用NH4Cl解吸,反应为:因而经过吸附和解吸就同时实现了将Si、P、As、Sn等杂质除去,同时将Na2WO4溶液转型成了(NH4)2WO4。
(一)影响交换容量的因素
201×7树脂的全交换容量约为WO3 360mg∕g干树脂,表1中的数据为给定浓度的Na2WO4溶液流过树脂层时的穿透交换容量,穿透交换容量随溶液中Cl-浓度、WO42-浓度(以WO3计)、OH-浓度以及线速度而变,人们对210×7树脂的吸附进行了全面研究,具体如下:
1、Cl-浓度的影响。由于Cl-对树脂的亲和力与WO42-相近,因此,Cl-浓度严重影响交换容量,根据试验测定,当起始Cl-浓度由0g∕L增至4.2g∕L,则相同条件下,穿透交换容量减小约1∕2。
2、WO3浓度的影响。参照交换反应可知,每交换1mol WO42-,将使溶液中增加2mol Cl-,因此WO3浓度严重影响交换容量,试验表明,当WO3浓度由10g∕L增至40g/L,则在相同条件下交换容量降低50%~60%。
3、NaOH浓度。尽管OH-对树脂的相对亲和力比WO42-小得多,但当其浓度较大时,同样与WO42-进行竞争吸附,当原液含WO3 14.85g∕L、起始OH-浓度由10-3g∕L增至40g∕L,则交换容量减少30%左右。
4、直线速度。线速度过快,即溶液流过树脂层时,与树脂接触的时间太短,来不及完全交换发生过早穿透,使交换容量降低,一般以5~10cm/min为宜。
(二)影响解吸效果的因素
解吸过程通常用NH4Cl+NH4OH作解吸剂,NH4OH的作用主要是防止溶液pH值过低,以致形成APT结晶。
NH4Cl的浓度及流速明显影响解吸效果如图1、图2所示。图1 不同NH4Cl浓度的解吸曲线
1-4.5mol∕L NH4Cl;2-3.5mol∕L NH4Cl;
3-2.5mol∕L NH4Cl;4-1.5mol∕L NH4Cl图2 不同解吸线速度时的淋洗曲线
1-2cm∕min;2-4cm∕min:3-6cm∕min
二、工业实践
(一)原则流程
参见图3,图中应当说明的问题有:
l、吸附前树脂为Cl-型,吸附时WO42-与Cl-交换入树脂相。AsO43-、SiO32-、PO43-等主要进入交换后液。
2、当处理标准黑钨精矿或白钨精矿时,交换前液中杂质较少,一般不需用淋洗剂淋洗除杂,仅用水清洗后直接解吸;当处理低品位复杂的钨中矿时,交换前液中杂质较高,要经过淋洗除杂过程。
3、解吸后的树脂即Cl-型。不作处理即可转入下周期的吸附。图3 从粗Na2WO4溶液制取纯钨化合物原则流程图
(二)设备
我国采用离子交换柱进行动态交换,柱底有筛板,交换前液及解吸液均先后从上流过树脂层进行吸附和解吸过程,其特点是结构及操作简单,常用的规格及其生产能力如表2所示。
表2 常用离子交换柱的规格及生产能力(三)主要工艺条件及技术经济指标
主要工艺条件及技术经济指标如下。
粗钨酸钠溶液成分:WO3 15~30g∕L;
交按时线速度:6~10cm∕min;
淋洗及解吸线速度:2~4cm∕min;
吸附过程除杂率:As为85%~95%;P及SiO2为90%~95%;Sn为95%以上;
吸附、淋洗总除杂率:P、As、SiO2、Sn均为95%~99%;
过程总回收率大于99%;
生产1t的WO3消耗0.45~0.65t NH4Cl,1~1.5kg树脂。
产品质量:解吸液经蒸发结晶后,当结晶率控制90%左右,则产品APT中杂质能符合GB10116-88APT-0级要求,但钼、锡的含量可能由于原料中含量较高而超标,K及Na亦可能由于NH4Cl中K、Na过高而超标。
类氰化合物法提金
2019-03-06 09:01:40
类化合物法包含法、酸法、α-羟基腈法、硫酸盐法等。
(CNCH2CN)别名为二代,为无色结晶,可溶于水,在碱性溶液中由亚甲氢的离子化生成[CH(CN)2]-。该离子与金构成Au[CH(CN)2]-合作离子进入溶液。此合作物比金合作离子要大,超过了碳质颗粒的内孔隙巨细,使得碳对其吸附的才能下降,因而用浸出碳质金矿时能够到达较高的浸出率。例如,用0.05%和适量石灰制成pH=9的矿浆,浸出含有机碳0.2%的金矿时,金浸出率为83%,而惯例化法的金浸出率是67%;如选用树脂矿浆工艺,金浸出率提高到95%,吸附在树脂上的金可用强无机酸进行洗脱。尽管的毒性是的1/6,但仍是有毒性,并具有挥发性,所以优越性不杰出。
酸是由水与溶液制造而成,在中性或微酸性溶液中与金构成KAu(CN)2 ;澳大利亚曾用此法浸出含碲金矿的作用较好,但试剂耗费量大、不经济。α-羟基腈包含2-羟和α-羟基异,是出产其他制品进程的中间产品,报价便宜;它在碱性溶液中能缓慢水解生成,适用于处理含辉锑矿的金矿。
硫酸盐是含有-SCN基团的有机和无机化合物。硫酸及其盐类统称为硫。硫酸类似于酸,以H-S-C≡和H-N=C=S两种结构存在。硫酸根离子与金有较大的合作才能,比的合作才能大。在有氧化剂存在时,能与金构成Au(CNS)2-合作离子溶解进入溶液。国内曾实验用硫酸铵溶液(50g/L)作浸取剂,用软锰矿(MnO2)5wt%作氧化剂,浸出含金、银的黄铁矿浮选精矿(Au59.3g/t,Ag110g/t,Fe21.3%,S34.8%),在pH=1.5、50℃、3h条件下,金浸出率92.24%,银浸出率84.58%,但硫酸盐的耗费量较大。一起,还实验了含金、铜的黄铁矿浮选精矿(Au52.78g/t,Ag143.6g/t,Cu6.45%,Cu6.45%,Fe37.35%,S39.3%),先在610~650℃下硫酸化焙烧和稀硫酸浸出铜后,然后用5%硫酸铵溶液浸出该焙砂,运用Fe3+作氧化剂,在pH=1、30℃、4h条件下,金的浸出率为93%~94%,硫酸铵的耗费量为1.00~1.03kg/t。
卤素及其化合物法浸金
2019-02-22 09:16:34
19世纪中叶,人们就开端用浸黄金,后因化法呈现后而停止运用。这种工艺自20世纪70年代始从头被人们注重起来,并开展了高温氯化蒸发焙烧法、电氯化浸出法等。氯化法提金的化学反响为:由于氯的活性很高,不存在金粒表面被钝化的问题,因此在给定的条件下,金的浸出速度很快,一般只需1~2h。这种办法更适于处理碳质金矿、经酸洗过的含金矿石、含砷精矿等。
美国Freerport矿业公司的Jerrit Canyon选金厂选用空气氧化,氯化浸金法处理含砷的碳质金矿石,氯化时刻18h,矿浆浓度55%左右,温度49~54℃,均匀耗量为17.5kg/t,金浸出率达94%。
Newmont公司1988年改形成闪速氯化体系,进步6%的金提取率,并下降25%的耗费。
最近,秘鲁和法国报导了一种金的盐水浸出法新工艺,即用高浓度的NaCl作氧化剂,在溶液中发作元素氯。在水溶液的效果下后者就能很快溶解金。
美国研讨的名为炭氯浸的办法是将粗粒活性炭与碳质难浸金矿一同拌和。在酸性条件下与矿浆效果。金溶解为金氯合作物,然后在炭粒表面还原成金属金。浸出完成后,载金炭从细磨矿浆中筛出,进行金收回处理。该法的特点是:难浸矿石的预处理、浸出与收回金在同一体系中进行。美国还创造晰一种与之附近的办法,选用氯化物浸出、离子交换树脂提金,适用于处理碳质矿石或碳质矿与氧化矿的混合矿石。
南非投产了一座大型水氯化法处理重选金精矿实验厂,精矿在800℃下氧化焙烧脱硫,焙砂在通气的溶液中浸出,金的浸出率高达99%。
北京矿冶研讨总院对从贵州苗龙砷、锑、硫、碳含量较高的细粒嵌布金矿石中所得的含Au为65g/t的浮选金精矿,焙烧脱除杂质后的焙砂选用水氯化法浸出,金浸出率达91.48%,浸出时刻仅为化浸出时的5%。
用及其化合物作为浸金试剂同用氯相同,由于卤素变为卤离子时氧化电位高,足以溶解金,并且卤离子(x-)是Au+和Au3+的强配位体,从热力学上来说,有利于浸金反响的发作。
早在1881年Shaff就宣布了用提金工艺的专利,但直到近10年由于环保和矿石性质改变等原因,才开端从头进行仔细的研讨。
1990年前后,加拿大和澳大利亚等国相继宣布了许多文章,声称要以生物浸出-D法和K-法等化浸出法与化浸出法相抗衡,着重这些新办法具有不污染环境的长处。
在生物浸出-D法中,选用了一种称之为Bio-D的浸出剂,它是一种由化钠与氧化剂装备的浸出剂,可用来浸出贵金属,对密度较大金属的亲和力大于对密度较小的金属,可用于弱酸性至中性溶液中,其稀溶液无毒,试剂易再生,并具有生物降解效果,大都矿石浸出2.5 h浸出率就可到达90%。但因在反响过程中会有相当多的蒸汽由溶液中逸出,这样不只增加了试剂耗费,并且还会形成严峻的腐蚀和健康问题,故现在仍处于实验室与半工业实验阶段。
K-浸出法是由澳大利亚Kalias公司创造的,本质是运用一种选用化物作浸出剂的新工艺,可在中性条件下从矿石中浸金,但现在仍处于开发实验阶段,工业上推行运用尚有必定困难。
另据报导,美国亚利桑那州的Bahamian精粹公司于1987年开发了一种浸出金银矿石的新办法,用于代替化法。运用的浸出剂本质上就是化钠和卤素。它除了具有浸出速度快的长处外,还能在较低的温度下浸出。
化法提金工艺的长处可概括为:浸出速度快、无毒、对pH改变的适应性强、环保设备费用低。对难浸金矿处理时,由于能在酸性介质中溶解金,所以在加压氧化后可将直接加人矿浆中,省去了预先中和处理工序。
纯钼化合物的制取(二)
2019-02-15 14:21:24
钼酸铵溶液的净化 a 基本原理 焙砂浸所得的钼酸铵溶液中含有铜和少数二价铁、镍、锌等杂质离子。为除掉这些杂质,可利用它们的硫化物浓度积很小的特性,参加硫化铵,使之成为硫化物沉积。其主要反应为:
[Cu(HN3)4](OH)2+(NH4)2S+4H2O ==== CuS+6NH4OH
[Fe(HN3)4](OH)2+(NH4)2S+4H2O ==== FeS+6NH4OH
其它二价重金属离子也能生成MS沉积。二价的铜、铁、铅以及砷、锑基本上可沉积彻底。因为Ni(NH3)42+、Zn(NH3)42+的络合安稳常数较大,一起其硫化物的溶度积又较小,故除镍、锌的作用差。 b 工业实践 沉积进程在不锈钢或珐琅拌和槽中进行。拌和槽容积为1~2.5m3,装有蛇形加热管和拌和器,拌和速度为80~100r/min。(NH4)2S溶液浓度为8%~12%,加主量略高于沉积铜、铁所需的理论量,终究pH=8.5~9.0。在85~90℃条件下拌和10~20min,净化后的(NH4)2MoO4溶液为无色通明,密度大于1.16g/cm3,对工业纯要求而言,其铜、铁含量应低于0.003g/L,对高纯产品则应低于0.0006g/L。钼的回收率高于99%。 从纯钼酸铵溶液中分出钼化合物 从净化后的(NH4)2MoO4溶液中分出钼化合物的办法主要有:1)直接从净化后的溶液分出钼化合物;2)净化后的溶液先经浓缩、低温酸沉、浸,再从浸液中分出钼化合物。后者也称联合法,可获得纯度高、粒度均匀、契合煅烧或复原要求的仲钼酸铵。 a 联合法 (1)浓缩(NH4)2MoO4溶液 浓缩进程在不锈钢拌和槽中进行,技能条件为:拌和速度80~100r/min,欢腾蒸腾至密度为1.18~1.20g/cm3(热时)或1.20~1.23g/cm3(冷时),pH值为7.0,或游离约15g/L,然后滤去凝集的Fe(OH)2、Fe(OH)3等。 (2)低温酸沉 在珐琅拌和槽顶用中和钼酸铵溶液至pH=2~3,终究温度为55~60℃,在激烈拌和下分出二水多钼酸铵:
4(NH4)2MoO4+6HCl ====(NH4)2O·4MoO3·2H2O+6NH4Cl+H2O 或4(NH4)2MoO4+ 5H2O pH=2~2.5 →(NH4)2O·4MoO3·2H2O+6NH4OH[next]
因为二水多钼酸铵不安稳,故酸沉后需当即过滤,用1%~2%的或硝酸洗刷1~2次。滤液中含0.5~1.0g/L的MoO3和少数铁、镍、锌、镁等杂质。所得多钼酸铵应为白色、颗粒均匀松懈的晶体,水分
7(NH4)2MoO4 →(NH4)6Mo7O24·4H2O+8NH3 2(NH4)2MoO4 →(NH4)2Mo2O7+2NH3+H2O
蒸腾进程在耐腐拌和槽中进行,技能条件为:拌和速度为75~80r/min,蒸汽压力为0.1~0.15MPa,以坚持槽内溶液欢腾。蒸腾进程应坚持游离4~6g/L,母液密度1.20~1.24g/cm3,冷却结晶后过滤。对纯度要求高的产品,结晶率一般为70%左右;对一般纯度的产品,结晶率为85% ~90%。 联合法所得仲钼酸铵的化学成分见表联合法所得仲钼酸铵化学组成等级MoFe、Al、Si、MnCa、Mg、Ni、CuTi、VPb、Bi、Sn、CdW高纯5工业纯55
b 直接从净化后的钼酸铵溶液分出钼化合物 (1)蒸腾结晶法 蒸腾前溶液密度为1.09~1.12gcm3(120~140g/L MoO3),蒸腾至密度1.2~1.23 g/cm3,静置过滤,然后滤液再蒸腾至密度1.38~1.4g/cm3(含400g/L MoO3),冷却结晶、过滤。此刻约有50%~60%的钼成仲钼酸铵结晶。[next] (2)中和结晶法 用硝酸或中和至溶液pH=1.5~2.5,分出四钼酸铵(NH4)MoO13或四钼酸铵的聚合物(NH4)4Mo8O26、(NH4)6Mo12O39、(NH4)12Mo24O78。反应为:
8(NH4)2MoO4+12HCl ==== (NH4)4Mo8O26·4H2O+12NH4Cl+2H2O
一般以为较恰当的工艺条件为温度 45~55℃,pH=1.5~2.5原始溶液比重为1.16~1.20,在正确操控的情况下往往可得β型四钼酸铵。 仲钼酸铵的煅烧 仲钼酸铵在高于350℃分解出和水,生成MoO3:
3(NH4)2O·7MoO3·4H2O → 7MoO3+6NH3+7H2O
在不同温度下仲钼酸铵脱水和的进程为:
3(NH4)2O·7MoO3·4H2O 90~110℃ →3(NH4)2O·7MoO3~200℃ →(NH4)2O·4MoO3 280~380℃ → MoO3
工业上的煅烧在反转式煅烧炉中进行,反转管为不锈钢制造,其结构和操作与钨酸的煅烧类似。炉温为(600±20)℃,(物料表面为500~550℃),所得MoO3粉末应为淡黄绿色,堆装密度为1.20~1.60g/cm3,其高纯MoO3化学成分为:Pb,Sn,Cd<0.0001%;Mg、Sb <0.001%;V、Co、Ti、Mn<0.0013%;Fe<0.003%;S、P、As、Ni、Bi<.0005%;Cu<0.0004%;Ca,Si<.0008%;Al<.0006%;W<.15%。
纯钼化合物的制取(一)
2019-02-15 14:21:24
传统的化学法 为制取纯钥化合物,广泛选用传统化学法,其准则流程见下图:
[next]
A 焙砂的浸 a 首要反响 焙砂中除含Mo03外,还含钙、铁、铜、铅、锌等的钼酸盐及钙、铜的硫酸盐, MOS2 、MoO2、Si02、Fe203等。在浸时,Mo03生成(NH4)2Mo04进人溶液: Mo03+2NH40H====(NH4)2 Mo04+H20 铜、锌、镍的钼酸盐和硫酸盐也部分被浸出: MMo04+4NH40H====[M(NH3)4〕Mo04+4H20 MS04+6NH4OH====〔M(NH3)4〕(OH)2+(NH4)2S04+4H20 钼酸亚铁、钼酸铁与NH40H反响时生成掩盖膜Fe(OH)2或Fe(OH)3,故反响缓慢。二价铁部分以铁络合物进人溶液: FeMo04+2NH4 OH====(NH4)2Mo04+Fe(OH)2 Fe(OH)2+4NH4OH====[Fe(NH3)4〕(OH)2+4H20 CaSO4与浸出液中的Mo042-反响生成CaMo04沉积: CaS04十Mo042-====CaMo04+SO42- [next] CaMo04不与NH40H反响,但CO32-存在时,能发作以下反响: CaMo04+(NH4)2C03 ====CaC03+(NH4)2 Mo04 CO32-的存在还有利于使Fe(OH)2变成FeC03,避免其构成薄膜掩盖未反响的颗粒。焙砂中的MoS2,Mo02不溶于,进人浸出残渣。 b 工业实践 (1)传统的浸取工艺 浸取进程在钢制拌和槽中进行,其技术参数为:室温约50℃,固液比1:(3-4),拌和速率为80~500r/min,用量为理论量的1.2~1.4倍,开始浓度为8%~10%,操控pH=8~10,钼浸出率为80%~90%;浸出渣含钼10%~25%,渣率25%左右,浸出液密度1.18~1.20g/cm3,含Mo03140~190g/L。某厂三段浸取作业的条件见下表。三段浸取的条件段 号料:水(或稀溶液):溶液密度/(g·cm-3)pH温度/℃拌和时刻/min一段浸取1:0.7~0.8:1.2~1.41.18~1.208.5~9.0室温30~40二段浸取1:1.5~1.7:0.17~0.2≥1.058.5~9.070~7530~40三段浸取1:1.5~1.7:0.51.058.5~9.075~8020~30[next]
当时对传统工艺的改善首要有: 1)加(NH4) 2 C03使CaMo04浸出。处理流态化焙烧产出的钼焙砂时,加人(NH4) 2 CO3,钼浸出率由83%~85%增至93%~96%。 2)浸出时参加(NH4)2S,使被浸出的Cu2+等重金属离子呈硫化物沉积,省去加S2-净化工序。曾在工业规划下浸出时,参加理论量300%的(NH4)2S,操控温度为70℃,终究浸出液含钼150.4g/L;镍0.001 ~ 0.005g/L;铜、铁
H2MoO4进一步与NH4+构成难溶化合物,留在渣中,渣再浸收回钼。所得浸液不用净化,直接酸沉可得纯度比传统工艺更高的产品,其间钾含量可降至(3~5)×10-3%,比传统工艺低2~3个数量级。传统工艺与该工艺比照见下表。传统浸工艺与酸预处理-浸工艺比照(焙砂含钼45.11%)工艺称号特色各工序的损耗/%由焙砂至钼酸铵的直接收回率/%预处理浸净化传统工艺浸后再净化除杂 渣率25~30,渣含钼11~15,渣中钼丢失3~150.5左右85左右酸预处理-浸工艺酸预处理损坏难溶的钼酸盐并除杂后再浸0.6~1渣率22~25,渣含钼2.5~3,渣中钼丢失1.5~3 95~96
锑资源应用之锑化合物
2019-01-31 11:06:17
锑化合物种类繁复,运用规模适当广泛,在医药、电子、玻璃制作、阻燃、陶瓷、珐琅、印染、化工、化学分析等方面都有运用。
葡萄糖酸锑钠是医治黑热病的首选药,作用很好,且很少发作副作用。可由葡萄糖酸钠与锑酸作用制得。酒石酸氧锑钾(吐酒石)和锑—273(次没食子酸 锑钠)都是医治血吸虫病的药物。前者经过打乱血吸虫体代谢到达消除血吸虫的意图;后者则能将肠系膜静脉中血吸虫转入,堵塞于肝小血管,被吞噬细胞所包 围,最终消除。酒石酸氧锑钾由三氧化锑与酒石酸氢钾溶液共热后结晶制得;锑—273则由次没食子酸和三氧化锑在中性溶液中作用制得。
锑与ⅢA族、ⅥA族元素构成的化合物InSb、AlSb、GaSb、Sb2Se3、Sb2Te3 等都是很好的半导体材料。金属锑和铟在高温熔合,再经熔炼提纯即为锑化铟的单晶,该单晶可制成具有特殊功能的红外线勘探器材。
氧化锑(Sb2O3)、锑酸钠(NaSbO3)、水合锑酸钠(NaSb(OH)6)等都可用于玻璃出产中作弄清剂,仅仅Sb2O3用于普通玻璃,而 NaSbO3和NaSb(OH)6用于显像管玻壳、光学玻璃及各种高档玻璃。Sb2O3作玻璃弄清剂运用时,要和硝酸盐并用,其原理为在 1000~1200℃温度下,被硝酸盐放出的氧所氧化;当温度到达1300℃以上时又放出氧,然后起弄清作用;在冷却过程中Sb2O3再变成Sb2O5,这样便把氧气气泡吸收除掉。一般玻璃种Sb2O3的用量为0.05%~0.5%。NaSbO3、NaSb(OH)6作为玻璃弄清剂比Sb2O3 作用要好,它们独自运用,所起作用与Sb2O3类似,也是高温时生成Sb2O3而放出氧,冷却时Sb2O3再转变成Sb2O5吸收氧气气泡,然后到达弄清 玻璃的意图。
在钠钙玻璃中参加一定量的Sb2O3、、碳粉,熔炼后再经显色热处理,即得到报价便宜、便于推行的锑红玻璃。此种玻璃用作信号玻璃和艺术玻璃 等。别的,由Te—Ge—Sb—S制成的硫族化合物玻璃是一种半导性开关用玻璃。
锑系阻燃剂在无机阻燃剂中占有越来越重要的位置。Sb2O3、非胶体Sb2O5、胶体Sb2O5、SbCl3、NaSbO3等分别开发出了组成不 同、特性不同、运用于不同场合的系列种类,广泛运用于橡胶、塑料、化纤、地毯、涂料等阻燃制品中。跟着Sb2O3超微细技能的开展,使咱们可以得到粒径更 细的Sb2O3,其添加功能更好,对被阻燃基材物理功能的恶化更少。胶体Sb2O5的均匀粒径仅0.03um,约为一般Sb2O3粒径的1/100,因为 极细,基本上不恶化树脂基材的物理功能,一起对树脂的色彩也罕见影响。试验证明,胶体Sb2O5阻燃性高于同系列的非胶体Sb2O5、及NaSbO3等,是锑系阻燃剂中最好的一种。
SbCl5用于查验生物碱和;NaSbO3和焦锑酸钾(K2H2Sb2O7·4H2O)都可用于钠离子的判定。SbCl3常作为无机和有机氯化反 应的催化剂。
Sb2O3是最重要的锑化合物之一,除了前面说到的用处外,它还可用作石油化工和组成纤维的催化剂;用于制作媒染剂、乳白剂;用作组成锑盐的质料。 在珐琅工业中用作添加剂,以添加釉的不透明性和表面光泽。别的,它仍是一种优秀的白色颜料,其遮盖力略次于钛白,而与锌白附近。在钛白的出产 中,Sb2O3能有效地按捺钛白的光致反响。使用Sb2O3杰出的抗粉化、对光安稳功能以及阻燃功能,人们现已制备出各种用处的含锑二氧化钛,如钛镍黄、 化纤钛白、超细含锑二氧化钛等。
利用硼泥制备氢氧化镁
2019-02-18 15:19:33
硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。
现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。
现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。
一、试验
(一)试验质料
硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。
表1 硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628
(二)试验内容
将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。
(三)工艺流程
工艺流程见图1。图1 硼泥制备氢氧化镁工艺流程
二、成果与评论
(一)煅烧温度对镁浸出率的影响
在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2 煅烧温度对镁浸出率的影响
(二)煅烧时刻对镁浸出率的影响
在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3 煅烧时刻对镁浸出率的影响
(三)硫酸与硼泥份额对镁浸出率的影响
在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4 硫酸与硼泥份额对镁浸出率的影响
(四)归纳条件试验
依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。
(五)氢氧化镁的检测与分析
1、氢氧化镁的XRD分析 选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5 Mg(OH)2样品XRD图
2、氢氧化镁的检测 对氢氧化镁产品进行成分分析,检测成果如表2所示。
表2 氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008
由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。
3、氢氧化镁的SEM分析 用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6 氢氧化镁SEM相片
(a)未烘干;(b)烘干后
三、定论
(一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。
(二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。
(三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。
铷和铯金属及其化合物的用途
2019-02-18 15:19:33
1926年还没有实质性的工业用处。在此之后,被用作电子管的吸气剂,后来首要用于制作光电池和其他光敏元件。直到上世纪七十年代末,的有限产值中的大部分是用于热离子功率转化,磁流体动力和离子发动机推动器的研讨,盐在化学工业、石油化工和生物工程中的用处正在添加。
和的优异光电特性及其化学生动性,在各技能范畴里有着共同的用处,非其他金属元素所能替代。现在,和绝大部分被用于开发研讨范畴。和共同的光电特性被用作制作光电管和光电倍增管的光电阴极材料。广泛用于光电仪器和电子射线仪器中,用于出产过程的自动控制、光度学、光谱测量、电影、电视、雷达及无线电传真技能、激光技能等方面,具有光波规模广,灵敏度高且安稳等特色。如电视技能中的低压电子束摄像管,都选用阴极。和又是红外技能的必需材料,可制作红外线滤光器、辐射能接受器、电子-光学变换器等,是瞄准望远镜,侦查望远镜、夜视仪、红外检测仪、红外通讯、红外照相和防火防盗等电子仪器的重要组件。辐射能的振动频率具有长期的安稳性,可用作频率和时刻的标准。其误差可小于每300年5秒,现在,原子钟已广泛用于通讯、运送,军事和宇航上。和还能够用于电光源、激光技能、荧光物质和电源等方面。
、的氧化物用作催化剂,氯化物和化物用于出产金属,化物和碘化物用作光学晶体,氢氧化物用于碱性蓄电池电解质和重油脱硫,硝酸盐用干微波发射器,碳酸盐用于开环磁流发电,碘化物用作荧光物质,氯化物还作为密度梯度介质在超速离心机中,别离过滤病毒、核糖核酸和其他大分子物质。在催化剂方面,和的化学活性高,电离电位低,能改动主催化剂的表面性质,使催化剂具有更好的活性、选择性、安稳性,并能延伸使用寿命,避免催化剂中毒。现在,已广泛使用于组成、硫酸组成、氢化、氧化、聚合等催化组成反响中。如组成顶用含钾、的催化剂、出产甲基酸树脂时用作催化剂。
在医药上,、盐类可用来出产安眠药、镇静剂及治疗癫痫病等药剂。用、放射性同位素符号体系来确诊肿瘤,尤其是对脑和其他部位安排的作用非常好。放射性在医药实验中可作为“符号”元从来盯梢血液活动。
此外,在光学纤维和纤维质透镜用的多成分玻璃中,用作光折射调整剂;碘化物作固体电解质,具有程大的离子导电率,用它可作成大容量、大电流放电的固体电解质电池组,变现电子组件的小型化与薄膜化;和及其混合金属或合金,在有色和黑色冶金或合金冶炼中作脱气剌和精粹剂;和的磷酸盐、盐单晶,可作为铣电体,压电体材料;和的盐、硼氢化物,可用作高能固体燃料;和钠、锂合金,可用作运载核动力体系的作业流体;碘化或参加硫化锌基底中作成的荧光屏,能够增强光亮度:激活的碘化晶体已用于制作闪耀计数器;钠激活的碘化具有比其他卤化物更大的X射线阻挠才能,已用于制作X射线印象增强管,用于医用X射线机,具有很高的分辨率、强度和安稳性,且折光率很低。现在,正在研讨它们在磁流体发电、热电转化器和离子火箭推动引擎等新的能量转化范畴中的使用。
镍精矿降低氧化镁工艺技术
2019-01-21 18:04:33
一、概述
金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。
目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。
本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。
二、矿石性质及主要矿物选矿工艺特性
(一)龙首混合矿石中主要金属矿物及选矿工艺特性
龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。
一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。
研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。
(二)含镁脉石矿物的浮选工艺性质
金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。
1、主要脉石矿物的结构
蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。
绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。
2、脉石矿物的可浮性
蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。
绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。
滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。
三、降镁现状分析
(一)工艺流程及其特点
90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:
1、通过改变工艺流程降镁;
2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;
3、采用改变工艺流程和添加新药剂相结合的方式降镁。
通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。
图1 一造厂磨浮原则流程
(二)生产指标分类统计分析
对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。
1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。
2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。
3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。
四、降镁问题分析
(一)矿石性质对降镁的影响
1、MgO赋存矿物的自然可浮性
大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。
2、矿石硬度
矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。
3、矿石品位
矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。
(二)降镁方案的局限性
针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。
五、降镁工作的研究方向
(一)工艺矿物学研究
一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。
(二)选矿新工艺研究
金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。
澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。
(三)浮选新药剂研究
在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。
(四)应注意整体指标的优化
各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。
六、结语
金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。
颜料、烧料和釉料中的镍化合物
2018-05-09 18:42:31
颜料、烧料和釉料中的镍化合物氧化镍作为原料用于无机颜料和烧料的生产,而后者又用于釉料和珐琅的生产。烧料与玻璃类似,用于让釉料具备某些特性和颜色。氧化镍还用于提高底涂层釉料的附着性并作为着色剂使用。这类釉料用于装饰和保护成品表面,例如餐具、地砖、墙砖、艺术陶瓷制品和搪瓷钢件。某些无机颜料中,氧化镍的使用可形成无法以其他方式获得的独特色彩和精细色调。务必注意的是,由于镍以化学方式结合在材料中,因此不存在释放风险。玻璃器皿生产中的镍化合物氧化镍还用于某些类型玻璃的生产,包括结晶玻璃、黑光蓝玻璃和镜片玻璃。在太阳镜中,镍作为着色剂使用,赋予镜片棕色以吸收太阳光并保护眼睛不受紫外线辐射。少量氧化镍用于让某些结晶玻璃产品形成紫色色调。使用数量较大时,镍化合物会使玻璃具有一系列特定的颜色,从浅灰色到蓝色、紫色甚至黑色,具体取决于镍的浓度。氧化镍的一种专业用途是荧光灯黑光蓝玻璃(BLB)的生产。BLB灯泡是一种荧光灯管,发射长波紫外线辐射,用于考古、人民币检验、法医学、食品工业、医药、矿物学、集邮等领域的检测和分析,以及在剧院和广告照明中形成特殊效果。
铅的朋友圈:铅化合物
2019-03-13 09:04:48
作为重金属的一名铅,它和其他的金属相同,都有着自己的朋友群,接下来让咱们来看看它的朋友圈吧!在铅的朋友圈中,咱们看到大部分都是艳丽的颜色。本来铅的许多化合物,颜色缤纷,常用作颜料,如是黄色颜料,碘化铅是金色颜料(与硫化锡齐名)。至于碳酸铅,早在古代就被用作白色颜料。考古工作者发掘到的古代岩画或泥俑,其间人脸常是黑色的。通过化学分析和考证,证明这黑色的颜料是铅的化合物——硫化铅。其实,古代涂上去的并不是黑色的硫化铅,而是白色的碳酸铅。只不过因为长时间受空气中微量或墓中尸身腐朽发生的的效果,才逐步变成了黑色的硫化铅。这件事一方面阐明碳酸铅作为白色颜料的前史很悠长,另一方面也阐明碳酸铅作白色颜料有很大的缺陷——变黑。不论铅化合物的长处或缺陷,不能否定的是铅化合物为咱们人类作出了重大贡献。
催化剂中的镍化合物
2018-05-09 18:41:14
催化剂中的镍化合物催化剂在化工生产中不可或缺,因为它们能使反应在较低温度和压力下更快发生,从而节省了能量并提高了效率。工业催化剂往往是金属或金属化合物,可通过固有性质催化特定的化学反应。催化剂中采用的金属包括镍、铜、钴、钼和铂等。燃料、化肥和精细化学品的生产都需要通过镍基催化剂来催化特定的工艺步骤。催化剂是为特定工艺设计的。例如,镍催化剂发挥重要的一个核心工艺是“蒸汽重整”,这是工业上的主要制氢工艺。H2主要在精炼厂使用,对于清洁燃料的生产至关重要。镍化合物及其他金属催化剂催化的另一个重要工艺是加氢处理。炼油厂采用该工艺对馏分油进行预处理并清除硫、氮、氧、金属和芳香族化合物。该工艺对于减少硫排放和实现环境目标至关重要。
纯钨化合物的制取—离子交换法净化并转型工艺
2019-01-25 15:50:16
A 基本原理 离子交换法净化并转型工艺的原理在于:在碱性溶液中强碱性阴离子交换树脂对W042-、Cl-以及杂质As043-、P043- , Si032-、SO42-等的亲和力不同,常用强碱性阴离子交换树脂对不同阴离子的亲和力顺序大体为: W042- ≈ Cl- > SO42->As043-> P043->Si032->CO32-> OH 下表1列出了钨冶金中常用的阴离子交换树脂的性质,从其分离系数β值也可看出上述规律,因此当含上述阴离子杂质的Na2W04溶液与Cl-型的树脂接触时,当溶液中C1-浓度很小,则将发生交换反应,W042-被吸附,反应为: —— ——— 2RCl + W042- ==== R2W04 + 2C1-
表1 用于钨离子交换的某些树脂的性质牌号201×17(717)WAW201Amberlite 4200CAmberlite 400C在交换柱内动态吸附时穿透交换容量,(WO3与干树脂质量比)0.25~0.28(交换前液WO320g/L)0.30~0.35(交换前液WO330g/L)0.28~0.31~0.32~0.32与不同阴离子分离系数βWO42-/MoO42-(1)0.85
(2)0.69 βWO42/OH-37.6~31.7([OH])=4~10g/L 37.9~3.08([OH]=4~10g/L)50.7~40.9([OH]=4~10g/L)βWO42/So42-2.5~3.78([SO42-])=0.04~0.8g/L βWO42/AsO43-(1)9.5~11.1([As]=0.04~0.16)
(2)10.6~10.8([WO3]=16g/L
[As]0.37~0.69g/L) 10~14([As]=0.04~.16g/L)12.8~20.5([As]=0.04g/L)βWO42/Cl-0.65~1.09([WO3]=25g/L
Cl-37~0.7g/L) βWO42/CO32-3344.7
其他阴离子,特别是相对亲和力小的Si032-、P043-离子将留在交换后液中与WO42-分离,阳离子Na+同样留在交换后液中与W042-分离。 吸附有W042-的树脂再用NH4C1解吸,反应为: ——— —— R2W04 + 2NH4 ==== (NH4)2W04 + 2RCl 因而经过吸附和解吸就同时实现了将Si,P,As,Sn等杂质除去,同时将Na2W04溶液转型成了(NH4)2WO4。 a 影响交换容量的因素 201×7树脂的全交换容量约为W03 360mg/g干树脂,表1中的数据为给定浓度的Na2W04溶液流过树脂层时的穿透交换容量,穿透交换容量随溶液中Cl-浓度、W042-浓度(以W03计)、OH-浓度以及线速度而变,人们对210×7树脂的吸附进行了全面研究,具体如下: (1) C1-浓度的影响由于C1-对树脂的亲和力与WO42-相近,因此,C1-浓度严重影响交换容量,根据试验测定,当起始C1-浓度由0g/L增至4.2g/L,则相同条件下,穿透交换容量减小约1/2。[next] (2) W03浓度的影响参照交换反应可知,每交换1mol W042-,将使溶液中增加2mol Cl- ,此W03浓度严重影响交换容量,试验表明,当W03浓度由lOg/L增至40g/L,则在相同条件下交换容量降低50%~60%。 (3) NaOH浓度尽管OH-对树脂的相对亲和力比W042-小得多,但当其浓度较大时,同样与W042-进行竞争吸附,当原液含W03 14.85g/L,起始OH-浓度由10-3 g/L增至40g/L,则交换容量减少30%左右。 (4)直线速度线速度过快,即溶液流过树脂层时,与树脂接触的时间太短,来不及完全交换,发生过早穿透,使交换容量降低,一般以5~l0cm/min为宜。 b 影响解吸效果的因素 解吸过程通常用NH4Cl+NH40H作解吸剂,NH4OH的作用主要是防止溶液pH值过低,以致形成APT结晶。 NH4Cl的浓度及流速明显影响解吸效果如下两图所示。
B 工业实践 a 原则流程 参见下图,图中应当说明的问题有:[next] (1)吸附前树脂为C1-型,吸附时W042-与Cl-交换入树脂相。As043-、Si032-、 P043-等主要进入交换后液。 (2)当处理标准黑钨精矿或白钨精矿时,交换前液中杂质较少,一般不需用淋洗剂淋洗除杂,仅用水清洗后直接解吸;当处理低品位复杂的钨中矿时,交换前液中杂质较高,要经过淋洗除杂过程。 (3)解吸后的树脂即Cl-型。不作处理即可转入下周期的吸附。 b 设备 我国采用离子交换柱进行动态交换,柱底有筛板,交换前液及解吸液均先后从上流过树脂层进行吸附和解吸过程,其特点是结构及操作简单,常用的规格及其生产能力如表2所示。
表2 常用离子交换柱的规格及生产能力规格Ф1.2m×6mФ1.4m×7mФ1.5m×9mФ1.6m×8mФ2m×12m生产能力0.6~0.7
t(APT)16h1.0~1.1
t(APT)16h1.1~1.4
t(APT)18h1.7~1.8
t(APT)24h4
t(APT)24h
c 主要工艺条件及技术经济指标 主要工艺条件及技术经济指标如下。 粗钨酸钠溶液成分:W03 15~30g/L; 交换时线速度:6~l0cm/min; 淋洗及解吸线速度:2~4cm/min; 吸附过程除杂率:As为85%~95%;P及Si02为90%~95%;Sn为95%以上; 吸附、淋洗总除杂率:P、As、Si02、Sn均为95%~99%; 过程总回收率大于99%; 生产1t的W03消耗0.45~0.65t NH4Cl,1~1.5 kg树脂。 产品质量:解吸液经蒸发结晶后,当结晶率控制90%左右,则产品APT中杂质能符合GB10116-88APT - 0级要求,但钼、锡的含量可能由于原料中含量较高而超标,K及Na亦可能由于NH4Cl中K、Na过高而超标。